
Plasma and Fusion Research: Regular Articles Volume 7, 2406022 (2012)

Cylindrical Surface Wave on Periodically Corrugated Metal∗)
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We present a numerical and experimental study of the dispersion characteristics of cylindrical surface waves
on metallic cylinders with rectangular corrugations. In actual devices, reflections at both ends quantize the elec-
tromagnetic modes into resonant axial modes. A cavity method based on axial mode measurements is applied to
study the properties of the cylindrical surface waves. The resonances are relatively sharp near the upper cutoff,
but at low frequencies far from the cutoff, the resonances broaden to resemble those of a Sommerfeld wave.
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1. Introduction
Smith–Purcell free-electron lasers (SP-FELs) [1] have

been studied as conceivable electromagnetic wave sources
covering the microwave–terahertz range. In SP-FELs, an
electron beam passes by a periodic corrugation and ex-
cites spatial harmonics called Floquet harmonics. The SP
radiation occurs spontaneously when the excited harmon-
ics are in the fast-wave region. In addition to fast waves,
the periodic corrugation supports slow waves that do not
radiate directly. The slow wave provides a feedback to
form a beam bunch via a backward-wave operation, which
leads to stimulated radiations called super radiance [2, 3].
Stimulated SP radiation was first demonstrated by using
the beam from a scanning electron microscope (SEM) in
Ref. [2] and this technique has attracted attention as a way
to develop a compact terahertz wave source.

The SP devices mentioned above are commonly based
on a plane geometry. Another realistic geometry is cylin-
drical, which is very effective for high-power backward-
wave oscillators (BWOs). The concept of stimulated SP
radiations incorporating cylindrical BWOs appears very at-
tractive for improving the radiation intensity. A backward-
wave oscillation was examined on the basis of a cylindri-
cal surface wave (CSW) [4] and a preliminary experiment
demonstrated the generation of SP radiations on the ba-
sis of CSWs in a frequency range about four times higher
than the CSW frequency [5]. In actual devices, CSWs are
reflected at the corrugated ends and form standing waves
along the axial direction. To understand the generation
of stimulated SP radiation via backward-wave operation,
CSWs and axial modes need to be further studied.

We present herein a numerical and experimental study
of CSWs. In our experiments, we apply a cavity method
based on axial mode measurements and developed for
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BWOs [6] to study the properties of CSWs. On corru-
gated metal surfaces, Sommerfeld waves [7], which origi-
nate from surface plasmons, coexist with CSWs and now
attract a renewed attention for terahertz wave guiding [8].
We examine the axial mode properties of CSWs by com-
paring them with the properties of Sommerfeld waves.

2. Formulation of Cylindrical Surface
Waves
We consider a corrugated metallic cylinder inside a

hollow pipe, as shown in Fig. 1. The parameters are the av-
erage corrugation radius R0, the corrugation amplitude h,
the corrugation width d, the periodic corrugation length z0,
and the radius R1 of the hollow pipe. The corrugation wave
number is given by k0 = 2π/z0. A mathematical formula-
tion for a hollow waveguide with a rectangular corrugation
is presented in Ref. [9] and we apply this formulation to
the configuration shown in Fig. 1.

In rectangular corrugation (region I; R0 − h < r <
R0 + h), the electromagnetic waves may be expressed by a
sum of standing waves that satisfy the boundary conditions
at the wall of the rectangular corrugation. In the region
between the inner cylinder and the wall of the hollow pipe
(region II; R0 + h < r < R1), the electromagnetic field is
expanded in a spatial harmonic series according to Floquet
theorem:

Fig. 1 Schematic of a corrugated cylinder inside a hollow pipe.
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Here, Jm and Nm denote the mth-order Bessel function of
the first kind and of the second kind, respectively, where
m is the azimuthal mode number. The wave number kp

satisfies the relation kp = kz + pk0, where p is Floquet
harmonic number, kz is the axial wave number, and

x2
p =
ω2

c2
− k2

p, (2)

with ω being the angular frequency. The constants Dp,
Ep, Fp, and Gp are the coefficients of the electromagnetic
fields. The other field components can be derived from
Ez and Bz. When the waves become slow with a phase
velocity less than the speed of light, the Bessel functions
are replaced by the modified Bessel functions of the first
kind Im and of the second kind Km.

The normal modes of the system are derived subject
to the boundary conditions. The fields in the regions I and
II of Fig. 1 must be connected at the boundary. This field-
matching condition uniquely relates the standing waves in
region I to Floquet harmonics in region II. Thus, the elec-
tromagnetic fields in all regions are expressed in terms of
Dp, Ep, Fp, and Gp. The boundary conditions on the inner
corrugation and the outer pipe surface may be expressed,
respectively, by the following matrix forms:

[
D(11)D(12)D(13)D(14)

D(21)D(22)D(23)D(24)

]
·

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

D
E
F
G

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
= 0, (3)

[
D(31)D(32)D(33)D(34)

D(41)D(42)D(43)D(44)

]
·

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

D
E
F
G

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
= 0. (4)

Here, D, E, F, and G denote column vectors with elements
Dp, Ep, Fp, and Gp, and D(ij) with 1 ≤ i, j ≤ 4 denote a
matrix of infinite rank.

If the hollow pipe in Fig. 1 is removed, the boundary
condition at r = R1 is substituted by a condition that the
electromagnetic fields approach zero as r tends to ∞. In
this case, D = 0 and F = 0, and the boundary conditions on
the cylindrical corrugation becomes

[
D(12)D(14)

D(22)D(24)

]
·
[

E
G

]
= 0. (5)

3. Dispersion Characteristics
The dispersion characteristics are given by the condi-

tion that Eqs. (3) and (4) have nontrivial solutions, which

Fig. 2 Dispersion curves of corrugated cylinder (a) with and (b)
without hollow pipe. Dotted lines represent light lines. In
(b), starting with the upper-most solid curve, h takes the
values 0.25, 0.5, 1.0 and 2.0 mm.

leads to

det

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

D(11)D(12)D(13)D(14)

D(21)D(22)D(23)D(24)

D(31)D(32)D(33)D(34)

D(41)D(42)D(43)D(44)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
= 0. (6)

Similarly, the dispersion characteristics for R1 infinite is
obtained from Eq. (5) as,

det

[
D(12)D(14)

D(22)D(24)

]
= 0. (7)

The dispersion curves for Fig. 1 are plotted in
Fig. 2 (a) with R0 = 13 mm, d = 1.5 mm, z0 = 3.0 mm,
h =1.0 mm, and R1 = 15 mm. According to Floquet the-
orem, the dispersion curves are periodic in wave number
space (kz-space) with a period k0 = 20.9 cm−1. In Fig. 2 (a),
the reduced-zone scheme is shown for a period from −k0/2
to k0/2. The meaning of the backward wave based on this
scheme is equivalent to that of BWO in Refs. [3, 4], where
the dispersion curves are plotted for 0 < kz < 2π/z0 on
the basis of the periodic-zone scheme. Generally, a coaxial
cylinder in a hollow pipe generates a transverse electro-
magnetic (TEM) mode: a mode without a lower cutoff fre-
quency. When the inner cylinder is corrugated, as shown
in Fig. 1, the TEM mode transforms into a CSW, which is
a slow wave with an upper cutoff frequency at the π point
(kzz0 = π). Furthermore, the CSW has a finite Ez originat-
ing from the corrugation.

The transverse magnetic (TM) mode in Fig. 2 (a) is a
fast wave because of the pipe whose lower cutoff can be
below the upper cutoff of the CSW. In this case, the TM
mode and the CSW may overlap. The lower cutoff of the
TM mode is shifted up by decreasing the distance between
the inner and the outer cylinders. For the dimensions given
in Fig. 2 (a), the TM mode exists well above the CSW cut-
off leading to a stop band.

The CSW can exist even if the outer pipe is removed.
In this case, the dispersion characteristics are given by
Eq. (7) and potted in Fig. 2 (b) with R0 = 13.0 mm, d =
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1.5 mm, and z = 3.0 mm and for various values of h. Upon
increasing h, the upper cutoff frequency at the π point de-
creases. As we approach the π point, the CSW departs
from the light line because of a reduction in its phase ve-
locity. Near the π point, the CSW has a relatively short
attenuation length and is localized very close to the corru-
gation surface.

4. Axial Modes of Cylindrical Surface
Waves
For finite-length corrugations, the boundary condi-

tions at both ends (z = 0 and z = L) are imposed, in addi-
tion to Eq. (6) or (7). A forward-propagating wave reflects
at z = L and transforms into a backward-propagating wave,
which leads to axial modes. Except for the propagation
direction, the backward wave is identical to the forward
wave. For simplicity, we show only kz for the forward wave
like Fig. 3 (c), where the axial modes are equally spaced,
and kz takes on the values of πN/L, where N is a natural
number

First, we elucidate the axial mode excitation within
a waveguide cavity, as shown in Fig. 3. For the closed
cavity, a small wire antenna can be employed to excite
axial modes. A network analyzer is used to measure the
scattering parameters: the microwave reflection from the
structure (S 11) and the transmission through the structure
(S 21). The resonances appear as spikes where S 11 de-
creases while S 21 increases. The measured results are
shown in Figs. 3 (b) and (c). The clear peaks in S 11 and
S 21 correspond to axial modes with kz = πN/L.

We inserted the corrugated cylinder on the axis of
Fig. 3 (a) and measured the axial modes for the parame-
ters of Fig. 2 (a). The results are given in Fig. 4. The stop
band corresponding to Fig. 2 (a) is evident. The length of

Fig. 3 (a) Schematic of cylindrical cavity. (b) S 11 and S 21 pro-
files, and (c) frequency versus wave number for a cylin-
der of 15 mm radius and 34 mm length. In (b), the green,
red and blue dotted lines correspond to TM01, TM02 and
TM03 axial modes, respectively, which are shown in (c).
The dashed line in (c) is the light line.

the corrugated cylinder is L = 10z0, so the wave number
N/L of the axial mode can be changed from N = 0 to 10.
The axial mode at kzz0 = 9π/10 can be identified, but the
axial mode at the π point (N = 10) is not observed (Fig. 4).
In addition, the other peaks of S 11 and S 21 are not iden-
tified as axial modes of the CSW, which may be due to a
poor coupling of the antenna to the CSW and additional
resonant modes caused by the excitation section composed
of the antenna and pipe. The measurement of the CSW is
very complicated, even though the CSW and TM modes
exist independently.

To avoid the effects of the surrounding pipe, we have
removed it, as indicated in Fig. 5 (a). In this case, the cou-
pling of the wire antenna to the CSW weakens, so we
added a disk to the wire tip. After cautiously adjusting
parallelism between the disk, flange, and corrugation, the

Fig. 4 Profiles of S 11 and S 21 for the corrugation of Fig. 2 (a)
with L = 10z0.

Fig. 5 (a) Schematic of corrugated cylinder (b) S 11 profiles of
axial mode, and (c) frequency versus wave number for
CSW. The parameters are the same as those of Fig. 2 (b)
with h = 1.0 mm. Green dotted lines in (b) correspond
to the CSW axial mode in (c). The dashed line in (c)
represents the light line.
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Fig. 6 (a) S 11 profile of the axial mode and (b) frequency versus
wave number for the Sommerfeld wave. Green dotted
lines in (b) correspond to axial modes of the Sommerfeld
wave in (c).

reflection S 11 with and without the corrugated cylinder was
measured, with the results shown in Fig. 5 (b). The axial
modes agree with theoretical values up to kzz0 = 9π/10,
as shown in Fig. 5 (c). The N = 10 axial mode is not ob-
served. The CSW in the region denoted (1) has kzz0 >

5π/10 and generates sharper resonances than in region (2),
where kzz0 ≤ 5π/10. The small ripples are attributed to
standing waves between the connector and the antenna tip.

We examine the axial modes based on the Sommer-
feld wave by replacing the corrugated cylinder with 30-
mm-long straight cylinder with a 14 mm radius, which is
approximately equal to the dimensions of the corrugated
cylinder. The S 11 resonance peaks, as shown in Fig. 6 (a),
correspond to the theoretically expected axial modes due
to the Sommerfeld wave, which has almost the same dis-
persion as the light line in our experiments [10]. The ax-
ial modes are broad, similar to the lower-frequency region
(2) in Fig. 5 (b). In addition, similar small ripples are ob-
served, as in Fig. 5 (b).

5. Discussions and Conclusion
The CSW in region (1) of Fig. 5 (b) possesses a phase

velocity that is substantially less than the speed of light
and has a small group velocity. The effective impedance
is moderately different from that of light waves. Thus, at
the corrugated ends, the reflections are comparatively large
and the CSW has relatively sharp resonant axial modes,
than in region (2) of Fig. 5 (b). To date, the π point axial
mode has not been observed with or without the surround-

ing pipe possibly because of a strong reflection of the CSW
at the corrugated ends due to a zero group velocity, which
would reduce the coupling of the CSW to the antenna.

The CSW will be advantageous in practical applica-
tions not only for cylindrical SP-FELs but also for wave
guiding, since the properties of the surface waves can be
controlled by corrugations [11,12]. By measuring the axial
mode, we find that the CSW exhibits two distinctive prop-
erties: First, it consists of sharp axial modes in region (1)
of Fig. 5 (b), and second, it leads to broadened axial modes
in region (2) of Fig. 5 (b). In region (1), the wave length
is approximately equal to z0 and the CSWs are well con-
fined to the corrugation surfaces. In region (2), the CSW
approaches light and the structural periodicity may be in-
significant. Furthermore, the corrugations can be described
by the effective surface impedance or the effective dielec-
tric constant. The field properties of the CSW resemble
those of a Sommerfeld wave and correspond to the hybrid
surface plasmon of Ref. [11].

In conclusion, we have numerically and experimen-
tally analyzed the dispersion characteristics of CSWs on
metal cylinders with rectangular corrugations. We have
elucidated that the cavity method for a BWO can be ap-
plied to study CSWs. The axial modes of CSWs contain
relatively sharp resonances near the upper cutoff, showing
the well-confined fields. In the region away from the upper
cutoff, the axial resonances broaden and become similar to
those of a Sommerfeld wave.
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