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Self-consistent linear analysis of slow cyclotron and Cherenkov instabilities
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Slow cyclotron and Cherenkov instabilities are analyzed self-consistently for unbounded and cylindrical
slow wave systems considering electron beam propagating along the direction of a guiding magnetic field.
There are two electromagnetic modes present in the beam that are self-consistent solutions of Maxwell’s
equations. The wave equation in the beam becomes the Altar–Appelton–Hartree equation in the limit of zero
beam velocity. For the unbounded system, the beam couples with the electromagnetic modes corresponding to
theX andO modes, resulting in the slow cyclotron and Cherenkov instabilities, respectively. For the cylindri-
cal system, axisymmetric electromagnetic modes in the beam are obtained by superposing the plane normal
modes of the unbounded system. Since self-consistent boundary conditions require all field components,
axisymmetric electromagnetic modes of cylindrical system are hybrid modes, which are classified as axisym-
metric EH and HE modes. The slow cyclotron and Cherenkov instabilities occur for both axisymmetric modes.
The temporal growth rate is calculated for each of the instabilities and compared.
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I. INTRODUCTION

For an electron beam propagating along the direction
an axial magnetic field, there exist four beam mod
namely, slow and fast space-charge modes and slow and
cyclotron modes. When the phase velocity of normal elec
magnetic~EM! mode is reduced to the beam velocity b
means of slow wave structures~SWSs! such as a dielectric
loaded waveguide or a periodically modulated wavegui
the microwave radiation can occur at frequencies appr
mately given by intersections between the slow beam mo
and the normal EM mode. Figure 1 shows a dispersion
gram for a dielectric SWS. The slow space-charge and s
cyclotron modes couple with the normal EM modes at
pointsC andA, respectively. In this paper instabilities at th
points C and A are referred to respectively, as ‘‘Cherenko
instability’’ and ‘‘slow cyclotron instability.’’

The operation of Cherenkov devices like backward wa
oscillators ~BWOs! and traveling wave tubes~TWTs! are
based on the Cherenkov instability and have been stu
extensively as a family for powerful slow wave microwa
sources@1#. In these devices, a magnetic field is applied
confine an intense electron beam. If the magnetic field
strong enough, it does not affect the stimulated Cheren
radiation except for cyclotron resonance regimes. Near
clotron resonance, the output power may decrease@2,3# or
increase@4–6# depending on the experimental conditions.

An alternative slow wave high-power microwave sour
is a slow wave electron cyclotron maser~ECM! based on the
slow cyclotron instability@7–11#. In the slow wave ECM,
the slow cyclotron and Cherenkov instabilities may comp
@10# or cooperate@11# with each other and must be con
trolled carefully to obtain meaningful oscillation. In Re
@11#, a high power slow wave ECM based on the combin
resonance of the slow cyclotron and Cherenkov instabili
has been demonstrated experimentally.

In the previous analyses of Cherenkov devices@12–14#,
1063-651X/2001/63~5!/056503~9!/$20.00 63 0565
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only longitudinal beam perturbations are considered in or
to simplify the analysis. For BWO near the cyclotron res
nance or slow wave ECM, vertical perturbations of the be
play an important role and should be taken into account s
consistently. A self-consistent dispersion relation has b
derived for an unbounded dielectric system in Ref.@8#. How-
ever, the beam interactions were analyzed with an assu
tion of sufficiently small beam density. Hence, the bea
coupled with only one EM mode. It is shown in this pap
that there are two normal EM modes and that one coup
with the slow space-charge beam mode and the other cou
with the slow cyclotron beam mode.

A self-consistent relativistic field theory for the Chere
kov instability has been presented in Refs.@15# and @16#
using helix TWT amplifier configurations. In Ref.@15#, it has
been pointed out for the first time that the wave equation
the beam becomes the Altar–Appelton–Hartree equa
@17# in the limit of zero beam velocity. And then, two pos
sible EM modes have been identified and are designatedX
andO modes. For convenience, in this paper, the same

FIG. 1. Dispersion diagram for a dielectric SWS system w
« r.1. PointsC and A are the intersections of the space-char
mode (v5kzn0) and the slow cyclotron mode (v5kzn02V/g)
with normal EM modes, respectively. For simplicity, beam char
effects are neglected assuming infinitesimal beam density.
©2001 The American Physical Society03-1
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tations are used for the aforementioned modes. There are
self-consistent studies of the slow cyclotron instability
bounded systems. In Ref.@18#, the slow cyclotron as well as
Cherenkov instabilities in a BWO configuration have be
analyzed, taking into account of the beam perturbation p
pendicular to the magnetic field. However, an axisymme
TM mode has been assumed, which is not self-consis
solution of Maxwell’s equations in the magnetized electr
beam.

This paper is aimed at self-consistent analyses of the s
cyclotron and Cherenkov instabilities. Basic physics of
beam interactions with normal EM modes are examined
ing a simplified unbounded SWS system. In most of the h
power slow wave devices, cylindrical systems are commo
used. In order to clarify a relationship between norm
modes of unbounded and cylindrically bounded systems,
shown that cylindrical normal modes can be derived by
perposing plane normal modes in the unbounded sys
This relationship has not been pointed out previously in
literatures. A dispersion relation for cylindrical dielectr
loaded SWS is derived using cylindrical normal modes. F
bounded systems, dispersion equations are derived subje
appropriate boundary conditions. Note that the relations
between the electric polarization and perturbed current d
sity of beam is different from that of rest plasma, since
beam is a moving dielectric medium. Boundary conditio
presented in this paper include this fact and are s
consistent. Basic features of the slow cyclotron and Che
kov instabilities in the physical system are examined
comparing with those for the simplified unbounded syste

The organization of this paper is as follows. In Sec. II
self-consistent field theory for magnetized electron beam
presented taking into account of three-dimensional pertur
motions of electron in a finite strength magnetic field.
self-consistent dispersion relation for a simplified dielect
system is summarized in Sec. II A. Cylindrical normal mod
in the beam are derived by superposing the plane nor
modes in Sec. II B. In Sec. III, a self-consistent dispers
relation for a dielectric loaded SWS is presented. Our
merical results are presented in Sec. IV. The slow cyclot
and Cherenkov instabilities are examined for an unboun
dielectric system in Sec. IV A and for a dielectric load
SWS in Sec. IV B. Discussions and conclusions of this pa
are described in Secs. V and VI, respectively.

II. SELF-CONSISTENT FIELDS IN MAGNETIZED
ELECTRON BEAM

A. Dispersion relation for an unbounded system

As shown in Fig. 2~a!, we consider plane waves in a
unbounded dielectric system with a uniform cold electr
beam that is neutralized by a fixed ion background and
propagating along a constant magnetic fieldB0 . The wave
vectork5(kb',0,kz) is in thex-zplane andB0 in the positive
z direction. The initial velocity of the electron is assumed
be n05(0,0,n0). Beam interactions with EM modes in suc
a system with arbitrary dielectric constant« r(.1) have been
discussed by Caseet al. @8#, by using a self-consistent linea
theory considering three-dimensional beam perturbatio
05650
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Here, we summarize the results for later use. In the follo
ing, the subscript 1 is introduced to indicate the first-ord
perturbed values.

The self-consistent electric fieldE1
(`) exp@i(k•r2vt)# is

governed by@8#

D ~`!
•E1

~`!50, ~1!

whereD (`) is a 333 matrix and its determinant is the dis
persion relation, which is given by

« rG
22

vb
2

g3v82 GGz2
vb

2

gv92 H GFkb'
2 ~« rb

221!1
2« rv82

c2 G
2

vb
2

gc2 Fkb'
2 ~« rb

221!1
« rv82

c2 1
Gz

g2 1
G

g2G
1S vb

2

g2c2D 2J 50, ~2!

where

G5« r

v2

c2 2kb'
2 2kz

2,

Gz5« r

v2

c2 2kz
2. ~3!

FIG. 2. ~a! Unbounded dielectric system with dielectric consta
« r.1 and ~b! cylindrical SWS partially loaded by dielectric (« r

.1). Finite magnetic fieldB0 is applied uniformly in thez direc-
tion. An electron beam with monochromatic energy is stream
along thez axis without initial velocity perpendicular toB0 and is
neutralized by a fixed ion background.
3-2
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Here, v85v2kzn0 , v925(v2kzn0)22(V/g)2, and vb
2

5e2n0 /m0«0 , where n0 is the beam electron density,m0
and 2e are, respectively, electron rest mass and cha
where V5eB0 /m0 is the nonrelativistic cyclotron angula
frequency of the electron, andg is the relativistic factor.
Equation~2! can be rewritten as

a4kb'
4 1a2kb'

2 1a050, ~4!

where

a45« r2
vb

2

gv92 ~12« rb
2!,

a2522LS « r2
vb

2

g3v82D 1
vb

2Gz

g3v82v92 S V

g D 2

2
vb

2

gv92

3b2~« r21!Gzb ,

a05DS « r2
vb

2

g3v82D ,

~5!

L5« r

v2

c2 2kz
22

vb
2

gc2

v82

v92 ,

D5L22S vb
2

gc2

v8

v92

V

g D 2

,

Gzb5Gz2
vb

2

gc2 .

Two values ofkb'
2 can be expressed in terms ofv andkz as

kb'
2 5

2a2

2a4
6A a2

2

4a4
22

a0

a4
. ~6!

Two EM modes have the vertical wave numberk1 andk2

corresponding to the1 and2 signs in Eq.~6!, respectively.
In the limit of n050 with « r51, Eq. ~6! becomes the

Altar-Appelton-Hartree equation. Withv22vb
22V2.0, k1

2

andk2
2 at kz50 become

k1
2 5

v2

c2 S 12
vb

2

v2D and

k2
2 5

~v22vb
21vV!~v22vb

22vV!

c2~v22vb
22V2!

. ~7!

The former is theO and the latter is theX mode of magne-
tized electron plasma with a fixed ion background. This c
respondence has been pointed out for the first time in
field theory of TWT@15#. In general cases with finitekz and
n0 , 1/2 signs in Eq.~6! becomes2/1 when the sign of the
real part ofkb'

2 1a2/2a4 changes. For sufficiently largekz ,
the EM modes become right and left circular waves. F
convenience, we use the same notations as used in Ref.@15#,
in which the EM mode corresponding to theO(X) mode
whenkz50 andn050 is designated as theO(X) mode.
05650
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B. Cylindrical modes in magnetized electron beam

In this section, we consider cylindrical modes in a ne
tralized beam propagating along a magnetic field in vacu
(« r51). Axisymmetric normal modes in the beam can
obtained from superposition of the planeO and X modes
described in the previous section, which are traveling alo
the conical paths at an anglea5arctan(kb' /kz) to the axis
@19#. Here,kb'5k1 or k2 with « r51. This is an essentially
different point of view from solving Maxwell’s equations i
a cylindrical coordinate system. The rectangular coordina
~x,y,z! and ~X,Y,z! and the cylindrical coordinates (r ,u,z)
and (r ,f,z) are shown in Fig. 3. Here, theX,Y,z axes are
fixed and thex,y axes rotate around thez axis so that thek
vector is always in thex-z plane.

By superposing the conically propagating plane waves
a positionr 5(r ,0,z), the axial electric fieldE1z of the cy-
lindrical wave is given by

E1z5E
0

2p

E1
~`!

•ez exp@ i ~kb'r cosf!#df

52pE1z
~`!J0~kb'r !. ~8!

Similarly, electric fieldsE1r in the r direction andE1u in the
u direction are derived as

E1r52ipE1x
~`!J1~kb'r !,

E1u52ipE1y
~`!J1~kb'r !. ~9!

Here, we putu50 without loss of generality, the facto
exp@i(kzz2vt)# is suppressed for simplicity,Jn(kb'r ) is the
nth order Bessel function of the first kind and its integr
representation@20# is used.

FIG. 3. Rectangular and cylindrical coordinate systems. T
X,Y,z axes are fixed and thex,y axes rotate around thez axis so
that the conically propagating wave vectors is in thex–z plane. The
vectorser , eu , andez are the unit vectors in ther, u, andz direc-
tions, respectively.
3-3
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Vertical electric fields,E1x
(`) and E1y

(`) , are expressed in
terms ofE1z

(`) from Eq. ~1!. Substituting them into Eq.~9!,
axisymmetric electric-field components can be obtained

E1z5AEZJ0~kb'r !,

E1r52 i
S v92G2

vb
2

gc2 v2D kz2
vb

2

gc2 v8n0Gb

~Lkb'
2 2D!v92

3kb'J08~kb'r !AEZ ,

E1u5

vb
2

gc2 P
V

g
v

~Lkb'
2 2D!v92 kb'J08~kb'r !AEZ , ~10!

where

Gb5G2
vb

2

gc2 ,

~11!

P5kz2
vn0

c2 .

Here, AEZ52pE1z
(`) and J1(x)52dJ0(x)/dx. The first-

order magnetic fieldB1
(`) can be obtained from Faraday

law, k3E1
(`)5vB1

(`) . The Bessel functionJ0(kb'r ) is ex-
pressed in terms of the Hankel functions of the first (H0

(1))
and second (H0

(2)) kinds as bH0
(1)(kb'r )1H0

(2)(kb'r ) c/2.
SinceH0

(1)(kb'r ) andH0
(2)(kb'r ) represent, respectively, in

ward and outward propagating waves@19#, the cylindrical
modes given by Eq.~10! is a standing wave. Its node pos
tion is determined by a given boundary.

It is very natural that the wave equation for the cylindric
O and X modes is identical to that for the plane norm
modes. The same wave equation and fields are obtaine
solving Maxwell’s equations in a cylindrical coordinate sy
tem @15,21#. When B0→`, kb'

2 becomes Gz(1
2vb

2/g3v82) or Gz . The former is the vertical wave numbe
of the TM mode and the latter is that of the TE mode, o
tained from the analysis considering only the longitudin
beam perturbation. AtB050, theO andX modes degenerate

III. AXISYMMETRIC NORMAL MODES FOR A
DIELECTRIC LOADED SWS SYSTEM

We consider a dielectric SWS system depicted in F
2~b!. An electron beam is a solid cylinder with radiusRb and
is neutralized by a fixed ion background. Self-consistent E
modes of the cylindrical SWS are composed of theO andX
modes in the beam and TM and TE modes in the dielec
region. The axial components of the perturbed electric
magnetic fields inside the beam (r %Rb) may be expressed
as

E1z
in 5A1J0~k1r !1A2J0~k2r !,
05650
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B1z
in 5

i

c
@B1J0~k1r !1B2J0~k2r !#,

B65
~vb

2/g!P~V/gc!k6
2

~Lk6
2 2D!v92 A6 , ~12!

and outside the beam (RW^r ^Rb):

E1z
out5D0J0~xr !1E0N0~xr !,

~13!

B1z
out5

i

c
@F0J0~xr !1G0N0~xr !#.

Here, N0 is the zeroth-order Bessel function of the seco
kind, k6 are given by Eq.~6! with « r51, and

x25« r

v2

c2 2k2. ~14!

For bounded systems, Maxwell’s equations should
solved subject to appropriate boundary conditions. At
beam surface (r 5Rb), we obtain the following four inde-
pendent equations:

E1z
out2E1z

in 50, ~15a!

E1u
out2E1u

in 50. ~15b!

B1z
out2B1z

in 52m0k1u , ~15c!

« rE1r
out2E1r

in 5
s1

«0
, ~15d!

Here,k1u is a surface current density in theu direction and
s152en0r 1 is a surface charge density given by

s152 i«0

vb
2P

g (
a51,2

ka
22Gzb

~Lka
22D!v92 kaJ08~kaRb!Aa ,

~16!

wherer 15 in1 /v8 is a radial displacement of the beam su
face. Similar conditions were presented in Ref.@21#. The
boundary conditions~15b! and ~15d! can be replaced by
B1r

out2B1r
in 50 and B1u

out2B1u
in 5m0k1z , respectively. Here,

k1z5s1n0 is a surface current density in thez direction.
Equation~15d! is obtained by applying Gauss’s law to th

boundary. Note that the beam is a moving dielectric mediu
Hence, the electric polarizationP1 and the current densityJ1
in Maxwell’s equations are given by@22,23#

P152en0r1 ,
~17!

J15]P1 /]t1“3~P13n0!.

The relationshipJ15]P1 /]t for a rest dielectric medium is
not applicable to moving dielectric medium. Equation~15d!
is identical to that for the radial component of electric flu
density, which is continuous across the boundary, i.e.,
3-4
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radial component of electric flux density inside (E1r
in

1s1 /«0) and outside (« r ,E1r
out) of the beam equal at th

boundary.
Since four independent equations obtained at the b

surface contain six unknowns, the normal modes can
characterized by two unknowns, amplitudesA6 of theO and
X modes. Coefficients of Eq.~13! expressed in terms ofA6

are

D05
1

Q (
a51,2

FJ0~kaRb!N08~xRb!2
x

ka

3S 12
vb

2

g3v82D J08~kaRb!N0~xRb!GAa ,

E05
1

Q (
a51,2

F2J0~kaRb!J08~xRb!1
x

ka

3S 12
vb

2

g3v82D J08~kaRb!J0~xRb!GAa ,

F05
ka

2

Q

~vb
2/gc!~V/g!P

~Lka
22D!v92 FJ0~kaRb!N08~xRb!

2
x

ka
J08~kaRb!N0~xRb!GAa ,

G052
ka

2

Q

~vb
2/gc!~V/g!P

~Lka
22D!v92 FJ0~kaRb!J08~xRb!

2
x

ka
J08~kaRb!J0~xRb!GAa ,

Q5J0~xRb!N08~xRb!2J08~xRb!N0~xRb!. ~18!

At the wall of r 5RW , two electric-field components tan
gential to the wall,E1z andE1u , should be zero,

E1z~r 5RW!5D0J0~xRW!1E0N0~xRW!50, ~19!

E1u~r 5RW!5
v/c

x
@F0J08~xRW!1G0N08~xRW!#50.

~20!

From Eqs.~19! and ~20!, we obtain

F pz1 pz2

pu1 pu2
G•FA1

A2
G50. ~21!

Then, the dispersion relation is

Pz1•Pu22Pz2•Pu150. ~22!

Here,
05650
m
e

Pz65J0~k6Rb!@J0~xRw!N08~xRb!2J08~xRb!N0~xRw!#

2
x~12vb

2/g3v82!

« rk6
J08~k6Rb!@J0~xRw!N0~xRb!

2J0~xRb!N0~xRw!#,

Pu65
k6

2 J0~k6Rb!

~Lk6
2 2D!v92 @J08~xRw!N08~xRb!

2J08~xRb!N08~xRw!#2
k6xJ08~k6Rb!

~Lk6
2 2D!v92 J08~k6Rb!

3@J08~xRw!N0~xRb!2J0~xRb!N08~xRw!#. ~23!

For a waveguide partially filled with an unmagnetized d
electric, it is well known that the normal modes are the T
and TE modes in axisymmetric cases and become hybri
nonaxisymmetric cases. Hybrid modes are commonly de
nated as EH and HE, since this designation implies the
brid nature consisting of the TM and TE modes. Quali
tively, Ez is dominant in the EH mode andHz is dominant in
the HE mode. For the cylindrical system with magnetiz
electron beam, normal modes are hybrid even in axisymm
ric cases. In this paper, axisymmetric hybrid modes are d
ignated as EH0n and HE0n . Here,n is any nonzero integer
The EH0n (HE0n) mode is dominated by TM~TE! compo-
nent and becomes the TM0n (TE0n) mode in the limit of
B0→`.

IV. NUMERICAL RESULTS

A. Slow cyclotron and Cherenkov instabilities in an infinite
system

Figure 4 shows dispersion curves for the infinite dielect
system as depicted in Fig. 2~a! for B050.8 T. Two EM
modes designated asO andX in Sec. II are observed in Fig
4~a!. At kz50, the real part ofW45kb'

2 1a2/2a4 is negative
for theO mode and positive for theX mode as shown in Fig
4~b! and does not change its sign for 0<n0,c. Hence, the
O (X) mode corresponds to the2~1! sign in Eq.~6!. With
arbitrary kz andn0 , the track of the real part ofW4 is im-
portant in determining the EM mode, because the sign in
~6! corresponding to theO and X modes may exchange. I
Fig. 4~b!, there are four points at which the real part ofW4
changes the sign, at which the1/2 signs in Eq.~6! change.
Points ofO1 , O2 , andC1 are attributed to theO mode and
X1 to theX mode. AtC1 andX1 , W4 is purely imaginary as
can be seen from Fig. 4~c!. At O1 andO2 , a4 is zero. The
frequency at whicha450 corresponds to the upper hybr
frequency for a rest plasma with« r51. Two fast beam
modes interact stably with the EM modes. The slow cyc
tron and slow space-charge beam modes couple with thX
andO modes, resulting in the slow cyclotron and Cherenk
instabilities, respectively.

At a relatively low B0 , the space-charge mode merg
into the slow cyclotron mode as shown in Fig. 5~a!. We refer
to this instability as ‘‘merged instability.’’ Although an iso
lated Cherenkov instability due to the beam coupling w
3-5
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theO mode is observed nearkz52.3 cm21, its growth rate is
small, about one-fourth of the growth rate of the Cherenk
instability in Fig. 4. The maximum growth rate of th
merged instability is determined by the coupling of theX
mode with the slow cyclotron mode.

FIG. 4. Dispersion curves for the unbounded dielectric syst
~a! real and imaginary parts of frequencyf 5v/2p and~b! real and
~c! imaginary parts ofW45kb'

2 1a2/2a4 vs kz . Fcy (Scy) andFCh

(SCh) indicate the fast~slow! cyclotron and fast~slow! space-charge
beam modes. Beam energy and density are 660 keV and
31011 cm23, respectively, and« r54.0, kb'53.0 cm21, and B0

50.8 T. At O1, O2, C1, andX1, the real part ofW4 changes its
sign.

FIG. 5. ~a! Dispersion curves for the unbounded dielectric s
tem with B050.25 T and ~b! imaginary part of frequencyf
5v/2p for B050.5, 0.4, and 0.3 T. The parameters other thanB0

are the same as Fig. 4.
05650
v

In Fig. 5~b!, the growth rates near the onset of the merg
instability are shown. By decreasingB0 , a bulge appears in
the Cherekov instability and becomes the isolated Cheren
instability. Peak values of these instabilities are depicted a
function of the magnetic field in Fig. 6. Although there a
two peaks in the merged instability near its onset as show
Fig. 5~b!, only the largest value is plotted as the ‘‘pea
value.’’ For n052.631011cm23 in Fig. 6~a!, the growth rate
of the slow cyclotron instability is higher than that of th
Cherenkov instability and gradually increases with decre
ing the magnetic field. The magnetic field has no influen
on the Cherenkov instability in the high magnetic field r
gion, where the space-charge and slow cyclotron modes e
separately.

By decreasing the beam density from 2.631011 to 2.6
31010cm23, the slow cyclotron instability becomes lowe
than the Cherenkov instability withB0.0.15 T, as shown in
Fig. 6~b!. However, in the low magnetic field region ofB0
,0.1 T, the slow cyclotron instability becomes higher th
the Cherenkov instability. For the merged instability, t
maximum value of the growth rate increases with decreas
B0 . The isolated Cherenkov instability is much lower th
that of the merged instability and its growth rate decrea
gradually with decreasingB0 .

B. Slow cyclotron and Cherenkov instabilities in a dielectric
loaded SWS system

Dispersion curves for the dielectric loaded SWS of F
2~b! are shown in Fig. 7. Axisymmetric normal EM mode
of EH01 and HE01 are observed. EH01~HE01! mode is domi-
nated by the TM~TE! component and is near to TM01~TE01!
mode without the beam. For cylindrical solid beams, th

,

.6

-

FIG. 6. Maximum temporal growth rates of the Cherenkov, sl
cyclotron, and merged instabilities as a function ofB0 for the un-
bounded system with beam density~a! 2.631011 cm23 and ~b! 2.6
31010 cm23. Beam energy is 660 keV,« r54.0, andkb'53.0.
3-6



ue

o
lin

ia
sl

o
ot

b
c

ce

sta
-

he
he

em
v

h
tic

at

and
eren-
ld

ell

-

w

d

.

SELF-CONSISTENT LINEAR ANALYSIS OF SLOW . . . PHYSICAL REVIEW E63 056503
are many beam modes that are attributed to multival
functionsJ0 andN0 in Eq. ~13! as reported in Refs.@14# and
@18#. Fast space charge and fast cyclotron modes corresp
to the Trivelpiece–Gould modes for a rest plasma in a cy
drical pipe@24,25# and are designated EHp and HEc modes,
respectively. These fast beam modes are stable for the ax
streaming electron beam. The slow space-charge and
cyclotron modes are designated as EH2p and HE2c, respec-
tively. Although the number of beam modes is infinite the
retically, a few dominant modes in the instabilities are pl
ted in Fig. 7, for simplicity.

The slow cyclotron and Cherenkov instabilities are o
served for both EH01 and HE01 modes. Since axisymmetri
normal EM modes consist of the cylindricalO andX modes
inside the beam as Eq.~12!, EH0n and HE0n modes contain
both of them. As a measure of contribution to EH0n and
HE0n modes, theO and X components at the beam surfa
are calculated and compared. For the EH01 mode, theO com-
ponent is four times larger than that theX component in the
slow cyclotron instability and increases with decreasingkz .
In the Cherenkov instability, a major component is theO
mode and the maximum growth rate of the Cherenkov in
bility ~0.76 ns21! is much larger than that of the slow cyclo
tron instability~0.16 ns21!. For the HE01 mode, theO andX
components are nearly the same in both regions of the C
enkov and slow cyclotron instabilities. In this case, t
growth rate of Cherenkov instability~0.03 ns21! becomes
much smaller than that of the slow cyclotron instability~0.18
ns21!.

Figure 8 shows the magnetic-field dependence of the t
poral growth rates of the EH01 mode. For the Cherenko

FIG. 7. Dispersion curves of the dielectric loaded SWS sho
in Fig. 2~b!, ~a! real parts of frequencyf 5v/2p and~b! imaginary
parts of f 5v/2p vs kz . Parameters of SWS areR0514.45 mm,
Rb58.0 mm, and« r54 and B050.8 T. The beam density an
energy are respectively, 2.631011 cm23 and 660 keV that corre-
spond to beam current of 2.3 kA.
05650
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instability @Fig. 8~a!#, the growth rate is nearly constant wit
B0.0.3 T, and increases slightly with decreasing magne
field with the relatively lowB0,0.3 T. The growth rate of
the slow cyclotron instability have a maximum value
aboutB050.4 T @Fig. 8~b!# and decreases whenB0→0. In
contrast to the unbounded case, the slow cyclotron
space-charge beam modes does not merge and the Ch
kov instability is dominant, even in the low magnetic-fie
region.

V. DISCUSSION

If the Cherenkov and slow cyclotron instabilities are w
separated, Eq.~2! with a sufficiently small density of beam
may be approximately given by

kb'
2 5Gz ~X mode! and Gz1

vb
2

« rg
3v82 Gz ~O mode!

~24!

in the vicinity of the Cherenkov instability and by

kb'
2 5Gz1

vb
2

gv92a4
S « r

v82

c2 1P2D ~X mode! and

Gz ~O mode! ~25!

in the vicinity of the slow cyclotron instability. In this sim
plification, higher-order terms thanvb

2 are neglected with the
assumptionv@vb . Using the same approximation, Eq.~2!
was simplified in Ref.@8# as

GH « rG2
vb

2

g3v82 Gz2
vb

2

gv92 Fkb'
2 ~« rb

221!1
2« rv82

c2 G J 50.

~26!

n

FIG. 8. Maximum temporal growth rates as a function ofB0 :
~a! the Cherenkov instability and~b! the slow cyclotron instability
of the HE01 mode. Parameters other thanB0 are the same as in Fig
7.
3-7



r
to

he

a
lo

on
f i

re
-

th

le
to

m
e

e
be
n
h

a
s

ed

-
M
i

u
e
e

ib
n
h
in

de
n-
e
ab

tem

ng

a-
ing
e-
tem,

st

ion-
for
ys-

ag-
es
e
de,

nt,
he

es
xi-
fied

nd

ut
i-
t the
, the
epa-
y-
t a
en-
on

is-
u-

o.
i-
e,

ula-
sti-

O. WATANABE, K. OGURA, T. CHO, AND MD. R. AMIN PHYSICAL REVIEW E63 056503
It is pointed out that Eq.~26! losesO andX mode. The beam
couples with only one EM mode, which corresponds toO
andX modes of Eqs.~24! and ~25!, respectively. The othe
EM mode given byG50 is always stable and corresponds
X andO modes of Eqs.~24! and~25!, respectively. Equation
~26! also loses the isolated Cherenkov instability in t
merged region.

The Cherenkov instability includes three modes, the f
and slow space-charge and normal EM modes. The s
cyclotron instability includes two modes, the slow cyclotr
and normal EM modes. Considering these characters o
teractions, the growth rates are approximately given by

v i
C5
)

2 S vb
2c2Gz

2« r
2g3v D 1/3

~27!

for the Cherenkov instability and by

v i
s5

c2vb@« r~v82/c2!1P2#1/2

2« rAvV
~28!

for the slow cyclotron instability. Similar growth rates a
derived in Ref.@8#. The former is not affected by the mag
netic field, while the latter increases with decreasing
magnetic field whenkb' is real, as shown in Fig. 6. The slow
cyclotron instability is more susceptible ton0 than Cheren-
kov instability as mentioned in Sec. IV A.

For the slow cyclotron instability, there are two possib
mechanisms@8#. In the first mechanism, the force due
2ev03B1 converts the original motion in thez direction
into the perpendicular plane. The vertical electric fieldE1'

then does work on the electrons, converting the beam
chanical energy into the EM energy. This mechanism is
fective to the mode having predominantkz . In the other
mechanism, the cyclotron motions due to the first-order p
turbation lead to the beam density bunching. The pertur
beam density andE1z of the EM wave are in phase and ca
convert the mechanical beam energy to the EM energy. T
mechanism is effective to the mode having realkb' .

For the unbounded system, both mechanisms above
effective in the slow cyclotron instability, which dominate
over the Cherenkov instability with the highn0 or low B0 as
shown in Fig. 6. In the merged instability of the unbound
system, slow cyclotron instability~two modes interaction!
suppresses the Cherenkov instability~three modes interac
tion!. For the dielectric loaded SWS system, the normal E
modes coupling with the slow beam modes does not vary
phase along the radial direction, because its radial waven
ber is imaginary. Therefore, in contrast to the unbound
case, the beam density bunching mechanism may not be
pected. The slow cyclotron instability in this case is attr
uted to the2ev03B1 mechanism and is much lower tha
the Cherenkov instability as shown in Figs. 7 and 8. T
Cherenkov instability dominates over the slow cyclotron
stability even in the low magnetic-field region nearB050.

At B050, the cyclotron and space-charge beam mo
degenerate. TheO andX modes also degenerate. For cyli
drically bounded systems, axisymmetric TM and TE mod
become self-consistent EM modes. The degenerated inst
05650
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ity has been investigated for an unbounded dielectric sys
in Ref. @8# and for a periodic slow wave system in Ref.@18#.
This instability is attributed to the beam density bunchi
mechanism and is a kind of the Cherenkov instability.

VI. CONCLUSIONS

The slow cyclotron and Cherenkov instabilities are an
lyzed self-consistently for the electron beam propagat
along the magnetic field, taking into account of thre
dimensional beam perturbations. For the unbounded sys
two normal EM modes correspond to the well-knownX and
O modes of the Altar-Appelton-Hartree equation in a re
plasma and are designated asX andO modes. CylindricalO
andX modes are derived by superposing the planeO andX
modes of the unbounded system. Because of this relat
ship, it is very natural that the wave equation in the beam
the cylindrical system is identical to that for unbounded s
tems.

For the unbounded system, theX mode couples with the
slow cyclotron beam mode and theO mode couples with the
slow space-charge beam mode. With relatively large m
netic field, the slow cyclotron and Cherenkov instabiliti
occur separately. With relatively low magnetic field, th
space-charge mode merges into the slow cyclotron mo
resulting in the merged instability. In this instability, theX
mode coupling with the slow cyclotron mode is domina
although a low isolated Cherenkov instability due to t
beam coupling with theO mode exists.

For the dielectric loaded SWS system, normal EM mod
are hybrid modes having all field components, even in a
symmetric cases. Axisymmetric normal modes are classi
into EH0n and HE0n modes, which are dominated by the TM
and TE components, respectively. The slow cyclotron a
slow space-charge modes are able to couple with EH0n and
HE0n modes, which consist of the cylindricalO andX modes
inside the beam. Axially streaming electron beam witho
initial vertical velocity is able to excite EM modes in phys
cal systems at the slow cyclotron resonance as well as a
Cherenkov resonance. In contrast to the unbounded case
slow cyclotron and space-charge beam modes exist s
rately, even in the low magnetic-field region. The slow c
clotron instabilities described in this paper may presen
promising way of generating microwaves and play an ess
tial role in the slow cyclotron masers driven by an electr
beam with predominant axial velocity.

ACKNOWLEDGMENTS

The authors would like to acknowledge the helpful d
cussions with Dr. T. Watanabe at National Institute for F
sion Science and Dr. Y. Terumichi at University of Kyot
This work was partially supported by a Grant-in-Aid for Sc
entific Research from the Ministry of Education, Scienc
Sports, and Culture of Japan. Support of numerical calc
tions was afforded by the Computer Center, National In
tute for Fusion Science.
3-8



r,

B.
B

g,
.
e

e,

-

a-

, J

,
in

u.

.

ids

.

E

er-

, J.

s

l

r-
.
ce

SELF-CONSISTENT LINEAR ANALYSIS OF SLOW . . . PHYSICAL REVIEW E63 056503
@1# J. N. Benford and J. A. Swegle,High Power Microwaves
~Artech House, Boston, 1992!.

@2# V. S. Ivanov, S. I. Krementsov, V. A. Kutsenko, M. D. Raize
A. A. Rukhadze, and A. V. Fedotov, Zh. Tekh. Fiz.51, 970
~1981! @Sov. Phys. Tech. Phys.26, 580 ~1981!#.

@3# Y. Carmel, W. R. Lou, T. M. Antonsen, Jr., J. Rodgers,
Levush, W. W. Destler, and V. L. Granatstein, Phys. Fluids
4, 2286~1992!.

@4# Yu. V. Tkach, N. P. Gadetskii, Yu. P. Bliokh, E. A. Lember
M. G. Lyubarskii, V. V. Ermolenko, V. V. Dyatlova, S. I
Naisteter, I. I. Magda, S. S. Pushkarev, and G. V. Skach
Fiz. Plazmy 5, 1012 ~1979! @Sov. J. Plasma Phys.5, 566
~1979!#.

@5# K. Ogura, K. Minami, K. Kurashina, W. S. Kim, T. Watanab
K. Ishi, and S. Sugito, Fusion Eng. Des.26, 365 ~1995!.

@6# M. R. Amin, K. Minami, K. Ogura, X. Zheng, and T. Wa
tanabe, J. Phys. Soc. Jpn.64, 4473~1995!.

@7# A. N. Didenko, A. R. Borisov, G. P. Fomenko, A. S. Shlap
kovskii, and Yu. G. Shtein, Pis’ma Zh. Tekh. Fiz.9, 1331
~1983! @Sov. Tech. Phys. Lett.9, 572 ~1983!#.

@8# W. B. Case, R. D. Kaplan, J. E. Golub, and J. E. Walsh
Appl. Phys.55, 2651~1984!.

@9# T. H. Kho and A. T. Lin, Phys. Rev. A38, 2883~1988!.
@10# T. H. Kho and A. T. Lin, IEEE Trans. Plasma Sci.18, 513

~1990!.
@11# K. Ogura, M. R. Amin, K. Minami, X. D. Zheng, Y. Suzuki

W. S. Kim, T. Watanabe, Y. Carmel, and V. L. Granatste
Phys. Rev. E53, 2726~1996!.

@12# N. E. Belov, N. I. Karbushev, A. A. Rukhadze, and S. Y
05650
k,

.

,

Udovichenko, Fiz. Plazmy9, 785~1983! @Sov. J. Plasma Phys
9, 454 ~1983!#.

@13# J. A. Swegle, J. W. Poukey, and G. T. Leifeste, Phys. Flu
28, 2882~1985!.

@14# K. Minami, Y. Carmel, V. L. Granatstein, W. W. Destler, W
Lou, D. K. Abe, R. A. Kehs, M. M. Ali, T. Hosolawa, K.
Ogura, and T. Watanabe, IEEE Trans. Plasma Sci.18, 537
~1990!.

@15# H. P. Freund, N. R. Vanderplaats, and M. A. Kodis, IEE
Trans. Plasma Sci.21, 654 ~1993!.

@16# H. P. Freund, E. G. Zaidaman, M. A. Kodis, and N. R. Vand
plaats, IEEE Trans. Plasma Sci.24, 895 ~1996!.

@17# T. H. Stix, Waves in Plasmas~AIP, New York, 1992!.
@18# K. Ogura, T. Azegami, O. Watanabe, and T. Watanabe

Phys. Soc. Jpn.67, 3462~1998!.
@19# R. Courant and D. Hirbert,Methods of Mathematical Physic

~Wiley, New York, 1989!, Vol. 2, Chap. 3.
@20# M. Abramowitz and I. A. Stegun,Handbook of Mathematica

Functions~Dover, New York, 1972!.
@21# O. Watanabe and K. Ogura, J. Plasma Fusion Res.3, 601

~2000!; Proceedings of the 10th International Toki Confe
ence, Toki, Japan, 2000, edited by A. Sagara, Y. Hirooka, N
Noda, and O. Motojima~The Japan Society of Plasma Scien
and Nuclear Fusion Research, Nagoya, 2000!.

@22# D. L. Bobroff, IRE Trans. Electron Devices6, 68 ~1959!.
@23# W. K. H. Panofsky and M. Phillips,Classical Electricity and

Magnetism~Addison-Wesley, Reading, MA, 1962!.
@24# A. W. Trivelpiece and R. W. Gould, J. Appl. Phys.30, 1784

~1959!.
@25# S. T. Ivanov and E. G. Alexov, J. Plasma Phys.43, 51 ~1990!.
3-9


