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Self-consistent linear analysis of slow cyclotron and Cherenkov instabilities
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Slow cyclotron and Cherenkov instabilities are analyzed self-consistently for unbounded and cylindrical
slow wave systems considering electron beam propagating along the direction of a guiding magnetic field.
There are two electromagnetic modes present in the beam that are self-consistent solutions of Maxwell’'s
equations. The wave equation in the beam becomes the Altar—Appelton—Hartree equation in the limit of zero
beam velocity. For the unbounded system, the beam couples with the electromagnetic modes corresponding to
the X andO modes, resulting in the slow cyclotron and Cherenkov instabilities, respectively. For the cylindri-
cal system, axisymmetric electromagnetic modes in the beam are obtained by superposing the plane normal
modes of the unbounded system. Since self-consistent boundary conditions require all field components,
axisymmetric electromagnetic modes of cylindrical system are hybrid modes, which are classified as axisym-
metric EH and HE modes. The slow cyclotron and Cherenkov instabilities occur for both axisymmetric modes.
The temporal growth rate is calculated for each of the instabilities and compared.
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[. INTRODUCTION only longitudinal beam perturbations are considered in order
to simplify the analysis. For BWO near the cyclotron reso-

For an electron beam propagating along the direction ofiance or slow wave ECM, vertical perturbations of the beam
an axial magnetic field, there exist four beam modesplay an important role and should be taken into account self-
namely, slow and fast space-charge modes and slow and fa@@nsistently. A self-consistent dispersion relation has been
cyclotron modes. When the phase velocity of normal electroderived for an unbounded dielectric system in R&f. How-
magnetic(EM) mode is reduced to the beam velocity by €Ver, the beam interactions were analyzed with an assump-
means of slow wave structuréSWSs such as a dielectric tion of sufficiently small beam density. Hence, the beam
loaded waveguide or a periodically modulated waveguidecoupled with only one EM mode. It is shown in this paper
the microwave radiation can occur at frequencies approxithat there are two normal EM modes and that one couples
mately given by intersections between the slow beam mode4ith the slow space-charge beam mode and the other couples
and the normal EM mode. Figure 1 shows a dispersion diaith the slow cyclotron beam mode.
gram for a die'ectric SWS. The SIOW Space_charge and SIOW Alself-C(.).nSiStent relativistic field theory for the Cheren-
cyclotron modes couple with the normal EM modes at thekoV instability has been presented in Reff$5] and [16]
pointsC andA, respectively. In this paper instabilities at the Using helix TWT amplifier configurations. In R¢fL5], it has
pointsc and A are referred to respective]y, as “Cherenkov been pOintEd out for the first time that the wave equation in
instability” and “slow cyclotron instability.” the beam becomes the Altar—Appelton—Hartree equation

The operation of Cherenkov devices like backward wavd17] in the limit of zero beam velocity. And then, two pos-
oscillators (BWOs) and traveling wave tube§TWTs) are sible EM modes have been identified and are designat¥d as
based on the Cherenkov instability and have been studie@nd O modes. For convenience, in this paper, the same no-
extensively as a family for powerful slow wave microwave
sourceq 1]. In these devices, a magnetic field is applied to
confine an intense electron beam. If the magnetic field is
strong enough, it does not affect the stimulated Cherenkov
radiation except for cyclotron resonance regimes. Near cy-
clotron resonance, the output power may decr¢asg or
increasd 4—6] depending on the experimental conditions.

An alternative slow wave high-power microwave source
is a slow wave electron cyclotron mag&CM) based on the
slow cyclotron instability[7—11]. In the slow wave ECM,
the slow cyclotron and Cherenkov instabilities may compete
[10] or cooperatg11] with each other and must be con-
tr0||ed Cal’efu”y to Obtain meaningful OSCi”ation. In Ref FIG. 1. Dispersion diagram for a dielectric SWS system with
[11], a high power slow wave ECM based on the combineds,>1. PointsC and A are the intersections of the space-charge
resonance of the slow cyclotron and Cherenkov instabilitie$node @=k,v,) and the slow cyclotron modew(=k,vq—Q/7)
has been demonstrated experimentally. with normal EM modes, respectively. For simplicity, beam charge

In the previous analyses of Cherenkov devif&2-14, effects are neglected assuming infinitesimal beam density.

1063-651X/2001/6&%)/0565039)/$20.00 63 056503-1 ©2001 The American Physical Society



O. WATANABE, K. OGURA, T. CHO, AND MD. R. AMIN PHYSICAL REVIEW E63 056503

tations are used for the aforementioned modes. There are few (a)
self-consistent studies of the slow cyclotron instability in

bounded systems. In RéfL8], the slow cyclotron as well as /

Cherenkov instabilities in a BWO configuration have been A/

analyzed, taking into account of the beam perturbation per- A ;
pendicular to the magnetic field. However, an axisymmetric

TM mode has been assumed, which is not self-consistent /&\/ ' ﬂtwa%

solution of Maxwell's equations in the magnetized electron W
beam.

This paper is aimed at self-consistent analyses of the slow
cyclotron and Cherenkov instabilities. Basic physics of the /V /X/
beam interactions with normal EM modes are examined us- X /DIELECTRIC
ing a simplified unbounded SWS system. In most of the high
power slow wave devices, cylindrical systems are commonly (b)

used. In order to clarify a relationship between normal

modes of unbounded and cylindrically bounded systems, it is
shown that cylindrical normal modes can be derived by su-
perposing plane normal modes in the unbounded system.

This relationship has not been pointed out previously in the VACUUM \ B,(2) >
literatures. A dispersion relation for cylindrical dielectric - ELEGTRON BEAM Ak
loaded SWS is derived using cylindrical normal modes. For / "Rb R,
bounded systems, dispersion equations are derived subject to

appropriate boundary conditions. Note that the relationship DIELECTRIC .

between the electric polarization and perturbed current den- AVEGUIDE

sity of beam is different from that of rest plasma, since the

beam is a moving dlelectrl_c medlum._ Boundary conditions FIG. 2. (a) Unbounded dielectric system with dielectric constant

presented in this paper include this fact and are selfy ~3 and () cylindrical SWS partially loaded by dielectris

consistent. Basic features of the slow cyclotron and Cherens 1) Finite magnetic field, is applied uniformly in thez direc-

kov instabilities in the physical system are examined byton. An electron beam with monochromatic energy is streaming

comparing with those for the simplified unbounded system.ajong thez axis without initial velocity perpendicular 8B, and is
The organization of this paper is as follows. In Sec. Il, aneutralized by a fixed ion background.

self-consistent field theory for magnetized electron beams is

presented taking into account of three-dimensional perturbeHere, we summarize the results for later use. In the follow-

motions of electron in a finite strength magnetic field. Aing, the subscript 1 is introduced to indicate the first-order

self-consistent dispersion relation for a simplified dielectricperturbed values.

system is summarized in Sec. Il A. Cylindrical normal modes The self-consistent electric fie|ﬂ(1°°) exfi(k-r—wt)] is

in the beam are derived by superposing the plane normgjoverned by8]

modes in Sec. IIB. In Sec. lll, a self-consistent dispersion

relation for a dielectric loaded SWS is presented. Our nu- D(“>~E(1°°>=0, (1)

merical results are presented in Sec. IV. The slow cyclotron

and Cherenkov instabilities are examined for an unboundewhereD(*) is a 3x 3 matrix and its determinant is the dis-

dielectric system in Sec. IVA and for a dielectric loaded persion relation, which is given by

SWS in Sec. IV B. Discussions and conclusions of this paper

. . . 2 2 12

are described in Secs. V and VI, respectively. Wp b 28,0

s,FZ—WFFZ—m r kgl(srﬁz—l)-i- o2

II. SELF-CONSISTENT FIELDS IN MAGNETIZED w2 ew? T r
b r z
ELECTRON BEAM - K2, (e,82—1)+ . > + 7}
A. Dispersion relation for an unbounded system -
As shown in Fig. 2a), we consider plane waves in an +< “b ) ]:0 )
unbounded dielectric system with a uniform cold electron y°C
beam that is neutralized by a fixed ion background and is
propagating along a constant magnetic figlgl The wave Where
vectork=(ky,, ,0k,) is in thex-zplane and in the positive 2
z direction. The initial velocity of the electron is assumed to F'=¢——k2 —k?
Er c2 bl 71

be vo=(0,0,1). Beam interactions with EM modes in such
a system with arbitrary dielectric constan{(>1) have been
discussed by Cast al.[8], by using a self-consistent linear =s w K2 3)
theory considering three-dimensional beam perturbations. 2 ez T
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Here, o' = w—Kk,vy, ©"?=(w—k,re)?>—(Q/y)?, and w?
=e?ny/mye,, Wheren, is the beam electron densityy,

PHYSICAL REVIEW B3 056503

and —e are, respectively, electron rest mass and charge, enp e,

where A =eB,/m, is the nonrelativistic cyclotron angular

frequency of the electron, ang is the relativistic factor.
Equation(2) can be rewritten as

a4kﬁL+a2k§L+a0=O, (4)

where

2
Wp
Q=er— ,yw//Z (1_8rﬂ2)!

2 n2\ NN

wgfz Q 2_ a)ﬁ
Yo'’ y 0Z0)

wp
822—2/\ Sr_ysw,z +

XIBZ(Sr_l)Fva

wp
ap=A & 3,2
(5)
w? 5 wg w'?
A=eg,——ki— —7,

¢ 7 ylow

A=A2— w_ﬁw_’g i
’)/C2 wr/Z by ’

2

Wy

F=T7 .

Two values ofk3, can be expressed in terms @fandk, as

2
—a a a
2, 2 0

2a, - Vil a, ©

kkzu =
Two EM modes have the vertical wave numlker and k _
corresponding to the- and — signs in Eq.(6), respectively.
In the limit of vo=0 with &,=1, Eq. (6) becomes the
Altar-Appelton-Hartree equation. With?— w§—02> 0,k%
andk® atk,=0 become

=1 @b d
= - an
+ 2 w?

2= (w?— wk2)+ 0Q)(w?— wﬁ— ()
- (0’ —wp—0?)

()

The former is theD and the latter is th&X mode of magne-

Ky
x X

FIG. 3. Rectangular and cylindrical coordinate systems. The
X,Y,z axes are fixed and they axes rotate around theaxis so
that the conically propagating wave vectors is inthe plane. The
vectorse, , ey, ande, are the unit vectors in the 6, andz direc-
tions, respectively.

B. Cylindrical modes in magnetized electron beam

In this section, we consider cylindrical modes in a neu-
tralized beam propagating along a magnetic field in vacuum
(e,=1). Axisymmetric normal modes in the beam can be
obtained from superposition of the pla@ and X modes
described in the previous section, which are traveling along
the conical paths at an angte=arctank,, /k,) to the axis
[19]. Here,k,, =k, or k_ with e,=1. This is an essentially
different point of view from solving Maxwell's equations in
a cylindrical coordinate system. The rectangular coordinates
(x,y,2 and (X,Y,2) and the cylindrical coordinates ,,z)
and (,®,z) are shown in Fig. 3. Here, th¥,Y,z axes are
fixed and thex,y axes rotate around theaxis so that thek
vector is always in the-z plane.

By superposing the conically propagating plane waves at
a positionr=(r,0,z), the axial electric fieldg,, of the cy-
lindrical wave is given by

2m
Ey= fo E{-e,exi(Ky,r cosg)]de

=2mE ;) Jo(kp, 1). (8

Similarly, electric fieldsE4, in ther direction andg, 4 in the
6 direction are derived as

tized electron plasma with a fixed ion background. This cor-

respondence has been pointed out for the first time in the

field theory of TWT[15]. In general cases with finite, and
vy, +/— signs in Eq.(6) becomes-/+ when the sign of the
real part ofkﬁ | +a,/2a, changes. For sufficiently larde,,

Ey=2i WE(li)Jl(km"),

E19=2i mESy d1(Kp, 1). 9

the EM modes become right and left circular waves. FoHere, we putd=0 without loss of generality, the factor

convenience, we use the same notations as used irj Ff.
in which the EM mode corresponding to tl&(X) mode
whenk,=0 andvy=0 is designated as th@(X) mode.

exfi(kz— wt)] is suppressed for simplicityl,(ky, r) is the
nth order Bessel function of the first kind and its integral
representation20] is used.
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Vertical electric fields ;) and E(}), are expressed in .
terms of E{%) from Eq. (1). Substituting them into Eq9), B1,=¢[B+Jo(kir)+B_Jo(k-_r)],
axisymmetric electric-field components can be obtained as

(0f/ VLD ye)kE
E1,=Aezdo(Kp 1), B.= (AKZ - D)™ A, (12
2 2
w w H .
(w”ZF— y_cbzwz) k,— y_cbzw, vol'y and outside the beanR(,=r=Ry):
Fa= (AKE, —2)w"” Ey'=Dodo(x1) +EoNg(x),
(13
X Kpy Jo(Kpy M) AgZ, [
bL O( bl ) Ez ngt:E[FoJo(Xr)+GON0(Xr)]
wp  Q
WH 7(» Here, N is the zeroth-order Bessel function of the second
E,p=—— Ky I (ke 1A 1 kind, k. are given by Eq(6) with ¢,=1, and
16 (AkgL_A)wHZ bL‘]O( er) EZ» ( 0) g y q ) r
2 gy K2 14
where X*=erz =K% (14
r=T— wp For bounded systems, Maxwell's equations should be
b= ye2 solved subject to appropriate boundary conditions. At the

(12) beam surfacer_(= Rp), we obtain the following four inde-
pendent equations:

wVq
M=k, =z —
E?,—Ef=0, (153
— (=) - et .
Here, AEZ—27'TE1.Z a?g) Ji(x)= dJo(X)/dX. The first ’ EQU_EIN —0, (15h)
order magnetic fieldB;’ can be obtained from Faraday’s
=) — . B(*) ; o o .
law, k><E.1 wB}”’. The Bessel fungtlorjo(kmr) is e;< B BN = — /s 0k1p, (150
pressed in terms of the Hankel functions of the fitg'()
and second H{?) kinds as|H{"(ky, r)+HP (ky, 1)]/2. oy

SinceH{M(ky, r) andH{P(ky,, 1) represent, respectively, in- e By Eilnrzs_ov (15d)
ward and outward propagating wavgk9], the cylindrical
modes given by Eq(10) is a standing wave. Its node posi- Here, «, , is a surface current density in tigedirection and

tion i.s determined by a given boundary. ~ g,=—enyr, is a surface charge density given by
It is very natural that the wave equation for the cylindrical
O and X modes is identical to that for the plane normal will k2—T,p,
modes. The same wave equation and fields are obtained by o;=—igg 5 2 (AKZ—2)w" koJo(K.Rp)A,,
a=+,— a

solving Maxwell’'s equations in a cylindrical coordinate sys-
tem [1521. When By—=, k2, becomes I',(1

2 ' ; ;
—wi/y’w'?) or ;. The former is the vertical wave number wherer, =i, /o’ is a radial displacement of the beam sur-
of the TM mode and the latter is that of the TE mode, ob-face. Similar conditions were presented in Rfl]. The

tained from the analysis considering only the longitudinalhoundary conditiong15b) and (15d) can be replaced by
beam perturbation. AB,=0, theO andX modes degenerate. gout_pin = and B~ B",= uox1,, respectively. Here,

(16)

= 10~ P1o™
K1,= 01Vq IS @ surface current density in tlzedirection.
I1l. AXISYMMETRIC NORMAL MODES FOR A Equation(150d) is obtained by applying Gauss’s law to the
DIELECTRIC LOADED SWS SYSTEM boundary. Note that the beam is a moving dielectric medium.

Hence, the electric polarizatid®, and the current density;

We consider a dielectric SWS system depicted in Fig.in Maxwell's equations are given H22,23

2(b). An electron beam is a solid cylinder with radilg and

is neutralized by a fixed ion background. Self-consistent EM P,=—engly,
modes of the cylindrical SWS are composed of @hand X (17)
modes in the beam and TM and TE modes in the dielectric Jy= 3Py 19t+V X (PyX mp).

region. The axial components of the perturbed electric and
magnetic fields inside the beam=<R,) may be expressed The relationshipl; = dP, /dt for a rest dielectric medium is
as not applicable to moving dielectric medium. Equatidbd)
n is identical to that for the radial component of electric flux
E1=AJo(Kur) +A_Jo(k-r), density, which is continuous across the boundary, i.e., the
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radial component of electric flux density insideEil’( P, .=

+0,/e0) and outside £,,ESY) of the beam equal at the
boundary.

Since four independent equations obtained at the beam
surface contain six unknowns, the normal modes can be

PHYSICAL REVIEW B3 056503

Jo(k+Rp)[Jo(XRy)Ng(XRs) = Jg(XRy)No(XRy) ]

X(l_ 2/ 3 /2)
- :rb—kj/w‘lé(kt Rp)[Jo(XRy)No(XRy)

characterized by two unknowns, amplitudkes of the O and
X modes. Coefficients of Eq13) expressed in terms ..

are
1 i
DO:G“Zh— JO(k“Rb)No(XRb)_k_a
2
Wp
1- ;3—2) J4(KaRp)No(XRy) |A
- ’ X
EO:6“:+* _JO(k“Rb)Jo(XRb)"‘k_
2
x| 1 ’}/30),2 ‘]0( «Rb)Jo )
(wb/ ’)’C)(Q/ 'y)
0= Q (AKZ—A)e2 | 0K Ry)NG(XRy)

X
- k_a‘]é(kaRb)NO(XRb) A

K2 (wil yc)(Q/y)II

o~ g A | KRR

Jo(KaRp)Jo(XRy) |A

X
ke

a

Q=Jo(XRy)Ng(XRp) = Jo(XRp)No(XRy).

—Jo(XRp)No(XRy) 1,
k% Jo(kRp)
Py-= W[%(XRW)N()(XR&
, , k.XJo(K+Rp)
—Jo(XRp)No(XRy) ] — WJo(k +Rp)
X[Jo(XRy)No(XRp) = Jo(XRy)NG(XRy) 1. (23

For a waveguide partially filled with an unmagnetized di-
electric, it is well known that the normal modes are the TM
and TE modes in axisymmetric cases and become hybrid in
nonaxisymmetric cases. Hybrid modes are commonly desig-
nated as EH and HE, since this designation implies the hy-
brid nature consisting of the TM and TE modes. Qualita-
tively, E, is dominant in the EH mode arid, is dominant in
the HE mode. For the cylindrical system with magnetized
electron beam, normal modes are hybrid even in axisymmet-
ric cases. In this paper, axisymmetric hybrid modes are des-
ignated as Ek}, and HE,,. Here,n is any nonzero integer.
The EH,, (HEy,) mode is dominated by TMTE) compo-
nent and becomes the T\M (TEy,) mode in the limit of
Bo—°.

IV. NUMERICAL RESULTS

A. Slow cyclotron and Cherenkov instabilities in an infinite
system

Figure 4 shows dispersion curves for the infinite dielectric
system as depicted in Fig.(& for B;=0.8 T. Two EM
modes designated @& andX in Sec. Il are observed in Fig.

(18)
4(a). At k,=0, the real part oW4=k?2, +a,/2a, is negative

At the wall of r =R,,, two electric-field components tan- for the O mode and positive for th¥ mode as shown in Fig.

gential to the wallE,, andE,,, should be zero,

E1,(r=Rw) =DJo(XRy) + EgNo(XRy) =0,

wlc

From Egs.(19) and(20), we obtain

Pz+  Pz-
Po+ Po-

+ j—
1A =0.

Then, the dispersion relation is
P2+ Pyp-—P;- Py, =0.

Here,

4(b) and does not change its sign fos@y<c. Hence, the
O (X) mode corresponds to the(+) sign in Eq.(6). With
arbitraryk, and vq, the track of the real part V4 is im-
portant in determining the EM mode, because the sign in Eq.
(6) corresponding to th€® and X modes may exchange. In
Fig. 4(b), there are four points at which the real partvufl
changes the sign, at which the/— signs in Eq.(6) change.
Points of O, O,, andC; are attributed to th€® mode and
X1 to theX mode. AtC, andX;, W4 is purely imaginary as
can be seen from Fig.(d). At O; andO,, a, is zero. The
frequency at whicha,=0 corresponds to the upper hybrid
frequency for a rest plasma with,=1. Two fast beam
modes interact stably with the EM modes. The slow cyclo-
tron and slow space-charge beam modes couple wittXthe
andO modes, resulting in the slow cyclotron and Cherenkov
instabilities, respectively.

At a relatively low By, the space-charge mode merges
into the slow cyclotron mode as shown in Figab We refer
to this instability as “merged instability.” Although an iso-
lated Cherenkov instability due to the beam coupling with

(19

(20

(21)

(22
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|98 ]

’l:]\ I:é/ (a) A Slow cyclotron
20 m 3 @ Cherenkov
g E _.I/\ A.AA A Merged
5 {= § 2- S .
Z, % 8 \AA
"5]10 & m Sal,
A oae Al
= 2 = I P
”r—o—0—0—0—0—4
1 ©
— 0 - ﬂ/l.-.—?—.l R W
g > % 0.5_(b) A Slow cyclotron =
:N’ 0 m X z (i{herer;kov
g 5 o4y
g0 0.343 .
< N . \
%-1_— g A\ ]
2_2- &, 0. ]
0 5 [
WAVE NUMBER (cm™ A T
(om”) 02 04 06 038

FIG. 4. Dispersion curves for the unbounded dielectric system, MAGNETIC FIELD (T)
(a) real and imaginary parts of frequenty /27 and(b) real and
(c) imaginary parts ofV4= kﬁl +ay/2a, vsk,. Fgy (S) andFgy FIG. 6. Maximum temporal growth rates of the Cherenkov, slow

(Scp indicate the fastslow) cyclotron and fastslow) space-charge cyclotron, and merged instabilities as a functionBgf for the un-

beam modes. Beam energy and density are 660 keV and 2iBounded system with beam density 2.6x 10'*cm 2 and (b) 2.6

X 101 em™3, respectively, and,=4.0, ky, =3.0 cni'l, and B, x10*%cm 3. Beam energy is 660 ke\t,=4.0, andk,, =3.0.

=0.8 T. AtO4, O,, C,, andXy, the real part oMW4 changes its

sign. In Fig. 5(b), the growth rates near the onset of the merged
instability are shown. By decreasify, a bulge appears in

the O mode is observed neli;=2.3 cm', its growth rate is  the Cherekov instability and becomes the isolated Cherenkov

small, about one-fourth of the growth rate of the Cherenkovnstability. Peak values of these instabilities are depicted as a

instability in Fig. 4. The maximum growth rate of the function of the magnetic field in Fig. 6. Although there are

merged instability is determined by the coupling of te two peaks in the merged instability near its onset as shown in

mode with the slow cyclotron mode. Fig. 5b), only the largest value is plotted as the “peak

value.” Forny=2.6x 10'cm™ 2 in Fig. 6a), the growth rate

of the slow cyclotron instability is higher than that of the

Cherenkov instability and gradually increases with decreas-

[\
[=]
(=2}

) 3 ing the magnetic field. The magnetic field has no influence
e AS on the Cherenkov instability in the high magnetic field re-
o 4%5 gion, where the space-charge and slow cyclotron modes exist
é 10 S 2 separately.
& 253 By decreasing the beam density from 280" to 2.6
E > X 10'%cm™3, the slow cyclotron instability becomes lower
© than the Cherenkov instability witB,>0.15T, as shown in
0 AL L 0 Fig. 6(b). However, in the low magnetic field region 8f
WAVE NUMBER (cm™) <0.1T, the slow cyclotron instability becomes higher than
T T T the Cherenkov instability. For the merged instability, the
é 1_5}@ ] maximum value of the growth rate increases with decreasing
gé’ 5_812% o-. ] By. The isolated Cherenkov instability is much lower than
o3 1= 0.50T - that of the merged instability and its growth rate decreases
EE ; . V] gradually with decreasing,,.
Ex 05¢ Y [
% L . l “ ) L L ] B. Slow cyclotron and Cherenkov instabilities in a dielectric
0 1 2 3 4 5 6 loaded SWS system

1
WAVE NUMBER (cm) Dispersion curves for the dielectric loaded SWS of Fig.

FIG. 5. (a) Dispersion curves for the unbounded dielectric sys-2(b) are shown in Fig. 7. Axisymmetric normal EM modes
tem with Bo=0.25 T and (b) imaginary part of frequencyf  Of EHy; and HEy,; are observed. EJ(HEy;) mode is domi-

= w/2m7 for By=0.5, 0.4, and 0.3 T. The parameters other tBgn  nated by the TMTE) component and is near to T¢MTEg,)
are the same as Fig. 4. mode without the beam. For cylindrical solid beams, there
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20
’ = 08L@ ]
e g
i) & 0.6 E
8 =t
5 é 0.41 .
Z 10 E r
5 0.2} ]
% % 0_ 1 1 i I
= . % (b)
& = 0.15¢ .
0 N ) N | N 1 é
~o08L(b Cherenkov instability(EHy,) i | |
° 0.8t (b) Cherenl ' S 0.1
2 | Cherenkov instability(HEq,) =
350'6 si lotr ] EO'OS_ ]
o3 I insfa‘ﬁiﬁ;((ﬁﬁ?) 1
E o 0.4 ‘Slow.cyclotron T 0 ) ! X L X L . ! X
HE ¢ instability(EHor) 1 0 02 04 06 08 1
202 - MAGNETIC FIELD (T)
& ! (\ ]
© A D (1 FIG. 8. Maximum temporal growth rates as a functionBgf.
0 2 4 6 8 (a) the Cherenkov instability an¢b) the slow cyclotron instability

WAVE NUMBER (cm™) g
of the HE); mode. Parameters other thBp are the same as in Fig.

FIG. 7. Dispersion curves of the dielectric loaded SWS shown/-
in Fig. 2(b), (a) real parts of frequencf= w/27 and(b) imaginary
parts of f=w/27 vs k,. Parameters of SWS aR,=14.45 mm, instability [Fig. 8@)], the growth rate is nearly constant with
R,=8.0 mm, ande,=4 andB,=0.8 T. The beam density and By>0.3 T, and increases slightly with decreasing magnetic
energy are respectively, 26L0" cm 2 and 660 keV that corre- field with the relatively lowB,<0.3 T. The growth rate of
spond to beam current of 2.3 KA. the slow cyclotron instability have a maximum value at

, , aboutB,=0.4 T[Fig. 8b)] and decreases whedy,—0. In

are many beam modes that are attributed to multivaluedgntrast to the unbounded case, the slow cyclotron and
functionsJ, andNy in Eq. (13) as reported in Ref$l4land  gnace-charge beam modes does not merge and the Cheren-

[18]. Fast space charge and fast cyclotron modes corresporng,, instability is dominant, even in the low magnetic-field
to the Trivelpiece—Gould modes for a rest plasma in a Cy“n'region.

drical pipe[24,25 and are designated Etind HE modes,

respectively. These fast beam modes are stable for the axially

. V. DISCUSSION

streaming electron beam. The slow space-charge and slow

cyclotron modes are designated as Erand HE °, respec- If the Cherenkov and slow cyclotron instabilities are well

tively. Although the number of beam modes is infinite theo-separated, Eq2) with a sufficiently small density of beam
retically, a few dominant modes in the instabilities are plot-may be approximately given by
ted in Fig. 7, for simplicity.

The slow cyclotron and Cherenkov instabilities are ob- wp
served for both Et and HE, modes. Since axisymmetric kKo, =1z (X mode and I';+ —5-5I'; (O mode
normal EM modes consist of the cylindric@ and X modes Y (24)
inside the beam as El2), EH,, and HE,, modes contain
both of them. As a measure of contribution to gsHand  in the vicinity of the Cherenkov instability and by
HE,, modes, theD and X components at the beam surface
are calculated and compared. For theyEidode, theD com- wﬁ
ponent is four times larger than that tkecomponent in the kﬁl =I',+
slow cyclotron instability and increases with decreading
In the Cherenkov instability, a major component is the
mode and the lmaximum growth rate of the Cherenkov insta-
,?rl(l)layiigg,'[;g"?; (é.'iamn“s_cg_'irgre{hi‘z”%tlhﬂo%“eﬁh; ;I)o;vnc(:j);((:lo in.t.he yicinity of the slow cyclotror21 instability. In thi; sim-
components are nearly the same in both regions of the ChePlification, higher-order terms than, are neglected with the
enkov and slow cyclotron instabilities. In this case, the@SSUMPtionw>w, . Using the same approximation, E@)

growth rate of Cherenkov instability0.03 ns?!) becomes Was simplified in Ref[8] as

2

w/Z
8,—74’1_[2) (X mode and

7w1/2a4

I', (O mode (25)

much smaller than that of the slow cyclotron instabili@y18 > 2 )

ns 7). T el — —g 2o Ty —2 K2, (e, 87— 1)+ 2ol o
Figure 8 shows the magnetic-field dependence of thetem- | "~ y’0'?" ? yo"?| P4 7' c? '

poral growth rates of the EX mode. For the Cherenkov (26)
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It is pointed out that Eq(26) losesO andX mode. The beam ity has been investigated for an unbounded dielectric system
couples with only one EM mode, which corresponds®o in Ref.[8] and for a periodic slow wave system in REES].
and X modes of Eqs(24) and (25), respectively. The other This instability is attributed to the beam density bunching
EM mode given by’=0 is always stable and corresponds to mechanism and is a kind of the Cherenkov instability.
X andO modes of Egs(24) and(25), respectively. Equation
(26) also loses the isolated Cherenkov instability in the
merged region. VI. CONCLUSIONS

The Cherenkov instability includes three modes, the fast
and slow space-charge and normal EM modes. The slow The slow cyclotron and Cherenkov instabilities are ana-

cyclotron instability includes two modes, the slow cyclotronI sed self-consistently for the electron beam bropadatin
and normal EM modes. Considering these characters of inY y propagating

teractions. the arowth rates are approximatelv given b along the magnetic field, taking into account of three-
' 9 pp Y9 Y dimensional beam perturbations. For the unbounded system,
c V3

w?c?l, |13 two normal EM modes correspond to the well-knoXmand
o, 27(22—3) (27) O modes of the Altar-Appelton-Hartree equation in a rest
&y e plasma and are designated>XaandO modes. CylindricaD
and X modes are derived by superposing the pl@nand X

for the Cherenkov instability and by modes of the unbounded system. Because of this relation-

2 1272 29112 ship, it is very natural that the wave equation in the beam for
c /co)+11 2 . .
wi= wpler(@ ) ] (28) the cylindrical system is identical to that for unbounded sys-
2e Vo) tems.

i . . For the unbounded system, tiemode couples with the

for the slow cyclotron instability. Similar growth rates are |, cyclotron beam mode and t@mode couples with the
der]veq In Ref._[s]. The forme_r IS not affGPted by the_mag- slow space-charge beam mode. With relatively large mag-
netic field, while the latter increases with decreasing th&,qiic field, the slow cyclotron and Cherenkov instabilities
magnetic field wheky,, is real, as shown in Fig. 6. The slow .0 separately. With relatively low magnetic field, the
cyclotron instability is more susceptible fg than Cheren-  gna06_charge mode merges into the slow cyclotron mode,
kov instability as mentioned in Sec. IV A. . resulting in the merged instability. In this instability, tbe

For the slow cyclotron instability, _there are two possible ,,4e coupling with the slow cyclotron mode is dominant,
mechanismg8]. In the first mechanism, the force due 10 4ihough a low isolated Cherenkov instability due to the
—evyX By converts the original motion in the direction  poom coupling with th© mode exists.
into the perpendicular plane. The vertical _electric field For the dielectric loaded SWS system, normal EM modes
then does work on the electrons, converting the beam mesre hyhrid modes having all field components, even in axi-
chanical energy into the EM energy. This mechanism is efgymmetric cases. Axisymmetric normal modes are classified
fective to the mode having p_redommah;. In _the other into EH,, and HE;,, modes, which are dominated by the TM
mechanism, the cyclotron m0t|0r!s due to _the first-order peryng TE components, respectively. The slow cyclotron and
turbation lead to the beam density bunching. The perturbed|s,, space-charge modes are able to couple with, Ed
beam density an&,, of the EM wave are in phase and can ye ' modes, which consist of the cylindricalandX modes
convert the mechanical beam energy to the EM energy. Thigsijde the beam. Axially streaming electron beam without
mechanism is effective to the mode having regl . initial vertical velocity is able to excite EM modes in physi-

For the unbounded system, both mechanisms above agg systems at the siow cyclotron resonance as well as at the
effective in the slow cyclotron instability, which dominates cherenkov resonance. In contrast to the unbounded case, the
over the Cherenkov instability with the higiy or low Bo @ gjow cyclotron and space-charge beam modes exist sepa-
shown in Fig. 6. In the mergeq _mstablhty of th.e unbogndedratmy' even in the low magnetic-field region. The slow cy-
system, slow cyclotron instabilitytwo modes interaction  ciotron instabilities described in this paper may present a
suppresses the Cherenkov instabilithiree modes interac- promising way of generating microwaves and play an essen-

tion). For the dielectric loaded SWS system, the normal EMjy) role in the slow cyclotron masers driven by an electron
modes coupling with the slow beam modes does not vary itgaam with predominant axial velocity.

phase along the radial direction, because its radial wavenum-
ber is imaginary. Therefore, in contrast to the unbounded
case, the beam density bunching mechanism may not be ex-
pected. The slow cyclotron instability in this case is attrib-
uted to the—evyXB; mechanism and is much lower than  The authors would like to acknowledge the helpful dis-
the Cherenkov instability as shown in Figs. 7 and 8. Thecussions with Dr. T. Watanabe at National Institute for Fu-
Cherenkov instability dominates over the slow cyclotron in-sion Science and Dr. Y. Terumichi at University of Kyoto.
stability even in the low magnetic-field region negg=0. This work was partially supported by a Grant-in-Aid for Sci-

At By=0, the cyclotron and space-charge beam modeentific Research from the Ministry of Education, Science,
degenerate. Th® and X modes also degenerate. For cylin- Sports, and Culture of Japan. Support of numerical calcula-
drically bounded systems, axisymmetric TM and TE modegions was afforded by the Computer Center, National Insti-
become self-consistent EM modes. The degenerated instabilite for Fusion Science.
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