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Observation of a Plateau Electron Distribution Function Due to Electron Cyclotron Heating

for an Efficient Plug Potential Formation
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A plateau-shaped electron distribution function is observed when an electrostatic electron-trapping po-

tential is formed by the electron cyclotron heating (ECH) in the plug region of the GAMMA 10 tandem

mirror. Also, a remarkable thermal-isolation e汀ect due to a kV-range thermal barrier is observed along

with a di汀erence between distribution functions in thermally separated regions. These new findings as

well as the relation between ion-confining potentials and thermal-barrier potentials in the kV range con-

sistently support the validity of Cohen's strong ECH theory.

PACS numbers: 52.55.Pi, 52.50.Gj, 52.55.Jd, 52.70.La

Recent research related to electron cyclotron heating

(ECH) has been intensi丘ed for.several types of plasma
confinement devices.1 In tandem mirrors, ECH is uti-

lized for the formation of a thermal-barrier potential,

<pb, ' in the barrier region, as well as of an ion-confining

potential, ¢c, in the plug region. The enhancement of ¢c

is theoretically predicted with increasing (f>b,　because

of the e爪cient heating of localized plug electrons; they

are thermally isolated from the large volume of central-

cell electrons when <pb is formed. The theoretical scaling

of ¢c vs <l>b has been described in terms of Cohen s weak

ECH and strong ECH theories.1 The scaling law of

the potentials is one of the most important and critical

items for the future development and the design of

thermal-barrier tandem mirrors. However, its expen-

mental studies compared with the theories have been

limited to our preliminary results alone,13 even in which

only the relation between ¢c and <j>b was treated.

One of the most essential and direct methods to study

the bases of these scaling theories10-12 is to observe the

plug electron distribution function,ん, since an essential
difference of the strong ECH theory from the weak one

is whether the characteristic time of plug electron heat-

ing by ECH for a plateau distribution formation dom-
inates over the collisions for a Maxwellian formation.

In this Letter, we report (i) the first observation of the

formation of a plateau electron distribution function in

the plug using several x-ray diagnostics, (ii) In addition,

our previous experiments merely suggested a transition

tendency from the weak to the strong ECH scaling with

increasing ¢b, since the two theories did not provide

values with clear differences for the limited range of the

¢ vs <f>b data (mostdata being at sb≦0.7 kV). Here,

we report a wider range of data (¢b≦1.2 kV), which

show a clear discrepancy from the weak ECH scaling in

the high-06 region. These potential data again support

the strong ECH scaling as observed in (i) using the x-ray

diagnostics, (iii) Furthermore, the first direct observa-

tion of the thermal-isolation effect due to a kV-range

thermal barrier is reported by showing a large difference

in x-ray spectra between the central cell and the plug.

These new伝ndings give clear pictures of the thermal-

isolation effect due to fa as well as of the plug electron

heating process according to the strong ECH theory for

a kV-range ¢c formation.

The experiments have been carried out in GAMMA
10,'・ which is a minimum-β anchored tandem mirror

with outboard plug and barrier cells. It has an axial

length L-27 m and the total volume of the vacuum
vessel is 150 rrr. The central cell has L-6 m, a limiter

diameter d -36 cm, and the magnetic-field intensity at

the midplane 5=0.405 T with a mirror ratio R-5.2.

The plug and barrier cells are axisymmetric mirrors with
L-2.5 m, 5-0.497 T, and #-6.2. Microwaves (28

GHz and 140 kW) are injected as an extraordinary

mode into the barrier (BECH) and the plug (PECH) re-

gions, respectively. Neutral-beam injections for a slosh-

ing ion formation >8 and ion cyclotron heating (6.2 MHz

and 200 kW) in the central cell are employed. '

The energy spectra, from x-ray pulse-height analyses

(PHA), ranging from 0.7 to 150 keV in the plug are
measured with a combination of a Si(Li) detector (a de-

pletion layer p-0.27 cm with an 8-/im Be window) and

a pure Ge detector ¥p=1 cm with a 0.125-mm Be win-

dow). X-ray tomographic reconstructions using micro-

channel plates (MCP) with fifty channels15 are utilized

for obtaining the x-ray radial profiles in the plug, barrier,

and central-cell regions. Here, we use the detailed call-

bration data on the MCP as a function of x-ray en-

ergy from 0.06 to 82 keV and incident angle; these have

been investigated using synchrotron radiation for the

precise x-ray data analyses. In order to estimate the

electron distribution functions the xィay absorption

method4・ is employed using polypropylene, polyester,

and aluminum absorbers. A plug electron-con丘ning po-

tential ¢pb　　¢c+Qb) is measured with multigrided

electrostatic end-loss・ion energy analyzers (ELA's) 13

and an EIIB end-loss-ion spectrometer (ELIS) from the
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FIG. 1. (a) Scaling data on ¢, vs ¢6 as compared with the

ECH theories, (b) An axial potential profile, (c) A model of

an electron velocity distribution function due to the strong

ECH theory. (Velocity space at the plug.)

Tandem Mirror Experiment TMX-U as well as

heavy-ion (Au ) beam probes.・

In Fig. 1(a) the scaling data on ¢C vs ¢b are plotted

with the ratio of the plug to the central-cell densities

njnr -0.30-0.55 using ELA's (filled circles) and ELIS

(open circles). The data are compared with the calculat-

ed results from the weak (dashed curves) and strong

(solid curves) ECH theories. As compared with our pre-

vious results, Fig. 1 clearly shows a transition from the

weak, through the intermediate,12 and then to the strong

ECH prediction with increasing ¢t. From these ECH

theories, this transition is expected to be accompanied by

a change in fep from Maxwellian to the plateau distnbu-
tion, since a remarkable thermal-isolation effect due to

the　¢b increase causes an e爪cient heating of plug-

1∝alized electrons and thereby their drastically reduced

collisions. Therefore, our next important issue is the ob-

servation of fep in this high-¢t, region. The axial

configuration of o/>, ¢c, and ¢pb is depicted in Fig. 1(b).

In Fig. 1(c) a schematic drawing offep resulting from

the strong ECH theory is shown.' This velocity space is

divided into three regions: The ¢p6-trapped electrons are

con伝ned in the regime P, where the plateau electrons are

bounded by an ellipsoidal separatrix. The Maxwellian
electrons trapped by the plug and barrier mirror with a

temperature Tpm are located in the region M; these elec-

trons are heated by both plug and barrier ECH. The

electrons in the region L are lost from the plug and bar-

rier cell through the "loss cone" with an angle 6q-35

The x-ray PHA data in the plug are represented with

the Si(Li) detector 【Fig. 2(a)】. The data are taken dur-

ing PECH [potentials are formed as shown in Fig. 1(b)J,

as well as at 5 ms after PECH is switched o打(¢pb has

already decayed to 0, but the other heating powers are

still being injected). A remarkable feature is the quick

decayofthe x rays at hv≦5 keV (in thiscase, 2¢pb-5.4

kV) as compared with ¢pb-0. However, a higher-

energy component, continued to at least 7 keV, does not

change m either case. The data with the pure Ge detec-
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FIG.2.(a)X-rayspectrafor2¢>pb-5.4kVand0.Dataare

fittedbyplateauelectrondistributionfunctions(themaximum

energyof5.4keVonaxis)andwiththe<ppbpro丘IeinFig.3(a)

alongwithMaxwellianelectrons(2.5%tothetotalnp,60keV
witha"loss-cone"angleof35-)(thedashedcurve).Thecon-

tnbutionoftheon-axiscoreelectronsisshownbythesolid
curve,(b)The60-keVMaxwellianelectronsareobserved.

Forcomparison,xraysfromMaxwellianelectronswith1or2
keVareshownbythedottedcurvesin(a).

torareshowninFig.2(b)fortheobservationofsuch

higher-energyxrays(hv^5keV).Almostthesame

spectraineachcaseof¢pbareagainobtained(forsim-

plicity,aspectrumfor2¢pt,=5.4kValoneisrepresented

there).Also,thesespectrafromthehigh-energyelectron

componentobservedwithbothdetectorsconsistently

showthesameelectrontemperatureof60keV.

Forthex-rayspectrumanalyses,therelativisticBorn

approximation21'22correctedbytheElwertfactor3is

usedforthevaluesofthex-raycrosssection.Thex

raysemittedatthedetectorangle21arecalculatedusing

vano
[see芸splateaudistributionfunctionsdependingon<p

ig.1(c)]aswellasrelativisticMaxwellians8wi霊variousTp-andOo-Impuritylinera

andLshells24isnotobservedinFig.宣iationfrombothK

(a);hence,impuri-tiesintheplasmasareignoredfortheanalyses(formore

detailseeRef.15).

X-rayobservationswithanNal(Tl)detectorinthe

barrierregionshowanelectrontemperatureof60keV

ascomparabletoTpm.These60-keVelectronsobserved

inbothbarrierandplugregionssupporttheexistenceof

theplugandbarriermirror-trappedelectronsaspredict-

edintheregionM[Fig.1(c)1.Evenafterthe¢pbdecay,

suchmirror-trappedhigh-energyelectronsaremain-

tainedasseeninFigs.2(a)and2(b),becauseoftheir

lowcollisionahty.

Ontheotherhand,intensexraysfromthelower-

energycomponentbelow5keVareobservedonlywhen

・t>pbisformed【Fig.2(a)J.Thespectrumisfittedusing

thecalculatedresultsfromrelativisticMaxwelhandistn-

butions;however,thedottedcurveswith2and1kevcan

fitthedatarangingupto2.5keValone,andexceeding

2.5keValone,respectively.NoMaxwelliancombina-

tionscaneverfitthespectrumwithK-d¥n(hvdn)/

d(hv)2<0,sinceMaxwellianelectronsalwaysemitpho-

tonspectrawithk>Oasseenbythesedottedcurves.

Suchaspectrumwithk<Oisoneoftheremarkablex-
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raycharacteristicsfromplateauelectrondistribution

functions.ThesolidcurveshowninFig.2(a)iscalculat-

edusingfepinFig.1(c);here,weusethedataof

2¢pfr=5.4kVforthepotential-trappedplateauelectrons

alongwiththemirror-trappedMaxwellianwitha35'

losscone(Tpm-60keVand2.5%tothetotalnD).(The
pm
intensityofelectron-electronbremsstrahlungisweaker

by2ordersofmagnitude.)Thisfittingisbasedonthe

factthatdominantxrayscomefromhotcoreplasmas.

Moredetailedanalysestakingaccountof¢,b¥r)arecar-

riedoutusingfepinFig.1(c):Aline-integratedintensi-

tyathvwiththex-rayPHA,Ixp(hv),iswrittenas

J【neriiZ'】(r)Ixc(hv,r)dr-,here,Jxcforhvatriscalcu-

latedusingthe<f>pbprofileinFig.3(a).Theproductof

netiiZatrisobtainedfromtomographic-reconstructed

x-rayemissivityatr,JxT(∫),whichiscorrectedbythe

absorbertransmissivityandtheMCPresponse,di-

videdbyflxc(hv,r)d(hv),sincelxc(hv,r)isnormal-'

lzedforunitvaluesofelectronandiondensities,ne,ォ,-,

andanione汀ectivechargeZ.Thus,Jxp(hv)isde-

scribedby

J[[lxT(r)/Jlxc(hv,r)d(hv))lxc(hv,r)}dr.

InFig.3,thedatafromx-raytomographyforlxjir)

andthedataon¢pb(r)forcalculatingI¥c(hv,r),there-

fore,predictthespectrumoflxp(hv)[thedashedcurve

inFig.2(a)j.Goodagreementbetweenthedataandthe

calculationinFig.2(a)indicatesthevalidityofthe

strongECHtheory,whichpredictsthemodelinFig.

1(c).Here,theindividualvaluesofne,ォ/,andZarenot

necessaryfortheaboveanalyses,sincetheyarereplaced

bythetomographydata.

Anotherindependentmethodofcomparingthex-ray

datawiththecalculatedxraysfromtheplateaudistn-

butionsrequirestheassumptionsofalow-Z(oraradial-

lyuniformZ)conditionandofasmallcontributionof

high-energyelectronstothetotalxrays(thereby,

FIG. 3. (a) Radial profile data on ¢pb. (b) Tomographic-

reconstructed x-ray emissivity using a 1.8-/im polypropylene

absorber (hv≧80 eV). (c) X-ray radial profile data with vari-

ous absorbers are compared with the calculated x-ray profiles

from the plateau electron distribution functions using the ¢pb

data in (a).

ne -ォ,-); these are satis丘ed as described above. Now, we

can calculate the x-ray profiles with various thickness ab-

sorbers from

【solid curves in Fig. 3(c)】 Here, we use ¢pb(r) and the

model in Fig. 1(c) as well as the ne profile deduced from

x-ray data with a 1.8-/im polypropylene absorber (sensi-

tive to nentZ2 but insensitive to hv; see Ref. 8). This

pro丘Ie is consistent with those with microwave inter-

ferometers in the barrier and the central cell mapped

along magnetic lines of force to the plug. Good agree-

ment between the x-ray profile data and the calculations

in Fig. 3(c) again proves the validity of the strong ECH

plateau-formation theory.

Thc丘nal issue in investigating this model is whether

these plateau electrons are isolated by the thermal bar-

rier and trapped in the plug. In Fig. 4 the absorption

characteristics of the central-cell x rays (丘Iied circles)

are compared with those of the plug x rays (open circles)

at r-0 in Fig. 3(c). The central-cell data are fitted by

the 0.15-keV Maxwellian bulk electrons (Tec) along with

high-energy electrons (4 keV and 5% to the total nc).

Here, the bulk electron collision time of 30 〃s and no

ECH power in the central cell may form this Maxwellian

distribution. These　4-keV electrons are also detected

with ELA's; they may be explained by ECH-driven loss

electrons through the loss cone of the plug,12 since they

appear during the PECH injection period only.

Such a remarkable electron-energy difference between

the two regions has shown the丘rst demonstration of the

thermal-isolation effect due to a 1-kV-range thermal

barrier. Also, different shapes of distribution functions

are separated by the thermal barrier, indicating the in-

formation on the isolation of the ¢pi-trapped plug elec-

trons by <f>b・

Here, it is useful to evaluate a criterion of validity of

the strong ECH theory: Its essential requirement is

whether the field strength of the plug ECH is large

0　1　2　　3　　A　　5

Polyester A由Jヒ貯r Thickness( iim)

FIG. 4. X-ray tomography data (r-0) in the plug (o) (see

Fig. 3) and in the central cell (・) are compared during the

thermal-barrier period. Here, hv^ 80 eV.
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enough to dominate over the plug-electron colhsionahty.

Cohen has derived the equation for its criterion 【see Eq.

(9) in Ref. 11】. Using the plasma parameters (〝♪-4

×10" cm"3 and Tec-¥50 eV) and the GAMMA 10

machine parameters (the axial scale length of B and

the width of the plug region being 0.4 and 0.9 m, respec-

tively), we obtain the critical丘eld strength of 54

Vcm . The incident power of 100 kW forms the kV

range of ¢。;-this corresponds to the field intensity of a

few hundred V cm　. This estimated value as well as a

stronger BECH field producing 60-keV electrons may

satisfy the strong ECH conditions.

In summary, the丘rst observation of a plateau-shaped

plug electron distribution function for the potential-

(¢pb-) trapped electron-energy regime has been ob-

tained using the x-ray PHA and tomography data. Also,

mirror-trapped hot electrons in the same energy level as

the 60-keV barrier electrons have been observed. These

data along with the scaling relation between ¢　and (f>b

for a kV range have shown the validity of Cohen s strong

ECH theory for the ion-confining potential enhancement.

Furthermore, the丘rst observation of the thermal-iso-

lation effect due to the kV-range thermal barrier has

been obtained along with the different shapes of the elec-

tron distribution functions in the thermally isolated re-

gions separated by the thermal barrier.
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