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A novel nonlinear σ model method is proposed for the two-dimensional J1-J2 model, which is
extended to include plaquette-type distortion. The nonlinear σ model is properly derived without
spoiling the original spin degrees of freedom. A disordered phase is found to continue, without
quantum phase transitions, from a frustrated uniform regime to an unfrustrated distorted regime.
By the continuity and Oshikawa’s commensurability condition, the disordered ground states for the
uniform J1-J2 model are plaquette states with four-fold degeneracy.
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The two-dimensional (2D) J1-J2 model is a frustrated
Heisenberg model with nearest neighbor (NN) and next
nearest neighbor (NNN) antiferromagnetic exchange in-
teractions on a square lattice. The model with spin mag-
nitude S = 1

2 is realized in mother materials of cuprate
superconductors, La2CuO4, YBa2CuO6 and Sr2CuO2Cl2
as small-J2 systems [1, 2]. Recently found materials,
Li2VOSiO4 and Li2VOGeO4, are also described by the
model in the case of J2/J1∼1 [3, 4]. A particular interest
for the J1-J2 model is in a gapful disordered state, which
may be formed by frustration under strong quantum fluc-
tuations [5]. The subject has been theoretically investi-
gated by various methods [1]: e. g. spin wave theories [6–
8], nonlinear σ model (NLSM) methods [9, 10], numerical
diagonalizations [11–14], quantum Monte Carlo (QMC)
simulations [15–17], series expansions [18–20], and varia-
tional methods [21].

For a system only with the NN interactions (J2=0),
the ground state is believed to have an antiferromag-
netic (AF) order. The NNN exchange interactions are ex-
pected to induce strong frustration to break the AF order
and to form a disordered ground state around J2/J1 =
0.5. A current leading QMC calculation [15, 16] supports
the disordered phase with spin-gap for J2/J1

>∼0.4. Ac-
cepting this result, the issue is the character of the ground
state in the disordered phase. Candidates examined in
recent several years are the uniform resonating-valence-
bond (RVB) state [21], the plaquette state [16, 18], the
dimer state [19–21], and a state both with dimer and
plaquette structures [17]; their degeneracies are 1, 4, 4
and 8, respectively. The true ground state is still under
debate. To restrict possibilities, Oshikawa’s commensu-
rability condition [22] is useful; e. g. the uniform RVB
state with spin-gap is possible only if there exist gap-
less singlet excitations. In this Letter, we determine the
true ground state as the plaquette state, assisted by the
condition.

A disordered state is formed also by distortion in
the exchange constants, even if there is no frustration
(J2 = 0). For a plaquette-type distortion, a disordered

state interpreted as a 2D array of plaquette-singlets are
formed [23]. Here it is a question whether the disor-
dered state by frustration is essentially the same as that
by plaquette-type distortion. If it is the same, a disor-
dered phase continuously extends from a region of strong
frustration and weak distortion to a region of weak frus-
tration and strong distortion in a parameter space. How-
ever, if not, there exists a phase boundary between them;
then the ground state of the uniform J1-J2 model is not
plaquette-like. Hereafter we consider the J1-J2 model
which is extended to include a plaquette-type distortion.

Among various methods to analyze spin systems, the
NLSM method is effective to clarify their characters.
The first successful example appeared in one-dimensional
(1D) systems. A uniform spin chain with NN interactions
is mapped onto an NLSM with an appropriate topolog-
ical term [24]. Inhomogeneous spin chains with period-
icity are treated by refined and extended NLSM meth-
ods [25, 26]. For 2D systems, an NLSM without topo-
logical term is derived for J2 = 0 [27]. For J2 �= 0,
Chakravarty et al. [9] analyzed 2D NLSM which rep-
resents the uniform J1-J2 model. By applying a renor-
malization group (RG) method to the NLSM, they con-
structed a standard theory for the quantum phase tran-
sition.

Despite the success, there remains ambiguity in the
correspondence of a derived NLSM to the J1-J2 model.
If one use a naive mapping in literature, a single spin
variable is replaced by the sum of two new variables rep-
resenting a slowly varying AF motion and a rapid fluc-
tuation. This is not justified because the number of the
degrees of freedom increases by the variable transforma-
tion. Although the mapping may give the correct NLSM
phenomenologically, there is no way to confirm the cor-
rectness within the NLSM method itself. Further the
increase of the degrees of freedom leaves ambiguity for
the choice of the cutoff. In one dimension, the problem
of the degrees of freedom has been overcome in general-
ized formulations [25, 26]. However there has not been
proposed such a reasonable theory in two dimensions. To
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FIG. 1: (a) Lattice of the J1-J2 model. Lattice sites are
denoted by small circles and exchange constants are by various
lines between circles. (b) A plaquette consisting of four sites
connected by J1 and J2; this is a block which is a unit in the
NLSM formulation. A variable nj in the pth block is relabeled
as nµν(p), where µ and ν take + or −. The value of (µ, ν) at
each site is shown. (c) Another kind of plaquette consisting
of four sites connected by J ′

1 and J ′
2.

construct a qualified 2D NLSM method is a purpose of
this Letter. Using the NLSM method, to determine the
character of the ground state for the 2D J1-J2 model is
the final purpose.

The J1-J2 model with plaquette-type distortion is rep-
resented by the Hamiltonian:

H =
∑
〈i,j〉

J1;ij Si · Sj +
∑
〈〈i,k〉〉

J2;ik Si · Sk, (1)

where Si is the spin of magnitude S at site i. The first
and the second summations are taken over NN and NNN
pairs, respectively, in a square lattice. J1;ij takes J1 or
J ′

1, and J2;ij does J2, J ′
2 or J ′′

2 as shown in Fig. 1(a). The
system is reduced to the uniform J1-J2 model when J1

= J ′
1 and J2 = J ′

2 = J ′′
2 = 0. In the limit of J ′

1 = J ′
2 =

J ′′
2 = 0, the lattice is an assembly of isolated plaquettes

each of which consists of four spins connected by J1 and
J2 (Fig. 1(b)). Also, in the limit of J1 = J2 = J ′′

2 =
0, the lattice is an assembly of another kind of isolated
plaquettes; each consists of four spins connected by J ′

1

and J ′
2 (Fig. 1(c)). Hamiltonian (1) is invariant under

the simultaneous exchanges of J1 and J ′
1, and of J2 and

J ′
2. The symmetric case of J1 = J ′

1 and J2 = J ′
2 includes

the uniform J1-J2 model.
We consider the quantum Hamiltonian (1) in the clas-

sical Néel ordered region. The expectation value of Sj

for a spin coherent state at imaginary time τ is given as

〈Sj〉 = (−1)jSnj(τ) with n2
j = 1, (2)

where (−1)j is a symbol taking + or − depending on the
sublattice which the jth site belongs to. The partition
function is then written in a path integral formula as

Z =
∫

D[nj(τ)]
∏
j

δ(n2
j (τ) − 1) e−A. (3)

The action A at temperature 1/β is given by

A = iS
∑

j

(−1)jw[nj ] +
∫ β

0

dτH(τ). (4)

The first term is the Berry phase term with the solid
angle w[nj ] which the unit vector nj(τ) forms in period
β. H(τ) in the second term is given by

H(τ) =
1
2
S2

∑
〈i,j〉

J1;ij [ni(τ) − nj(τ)]2

− 1
2
S2

∑
〈〈i,k〉〉

J2;ik[ni(τ) − nk(τ)]2, (5)

where the constraint n2
j(τ) = 1 in the δ-function of

Eq. (3) has been used. Hereafter we do not explicitly
write the τ dependence of nj(τ).

We adopt a plaquette of Fig. 1(b) as a unit of transfor-
mation, and call it a block ; we would choose another kind
of plaquette in Fig. 1(c) as a block. We relabel four vari-
ables, nj ’s, in the pth block as n++(p), n+−(p), n−+(p)
and n−−(p), as shown in Fig. 1(b). By analogy with the
1D case [26], we transform them as

nµν(p) = m(p) + a[µνL0(p) + µL1(p) + νL2(p)]. (6)

Here L0(p), L1(p) and L2(p) describe small fluctuations
around m(p). According to the variable transforma-
tion, four original constraints, [nµν(p)]2 = 1 (µ, ν =
±), are changed to four new constraints, m2(p)=1 and
m(p)·Lq(p) = 0 (q = 0, 1, 2). Thus we obtained a new set
of variables, the number of which is the same as that of
the original variables. This plaquette-based transforma-
tion is inevitable to keep the original degrees of freedom
even in the uniform J1-J2 model.

In the continuum limit, the first term of the
action (4) is written as iS

∑
p

∑
µ,ν µνw[nµν(p)] =

i(S/a)
∫
dτd2rL0 ·(m×∂τm) with lattice spacing a. For

the second term of Eq. (4), we substitute Eq. (6) into
Eq. (5) and taking the continuum limit. Thus, to the
leading order of derivatives and fluctuations, we have the
field-theoretic action

A = S2

∫
dτd2r

{ i

Sa
L0 · (m×∂τm)

+ J ′
0[(∂xm)2 + (∂ym)2 − 2∂xm · L1 − 2∂ym · L2]

+ 2(J1 + J ′
1)L

2
0 + (J0 + J ′

0)(L
2
1 + L2

2)
}

(7)

with J0 ≡ J1 − J2 − J ′′
2 and J ′

0 ≡ J ′
1 − J ′

2 − J ′′
2 . This

action includes all the low-energy excitations surviving



the continuum approximation, since the original degrees
of freedom are not spoiled in the variable transformation
(6). In Eq. (7), L0, L1 and L2 are massive fields [28],
so that they are irrelevant to a symmetry change of the
ground state.

Now we integrate out the partition function for the ac-
tion (7) with respect to massive fields L0, L1 and L2. The
resultant partition function contains the NLSM action:

Aeff =
∫

dτd2r
{

1
8a2(J1 + J ′

1)
(∂τm)2

+ S2

(
1
J0

+
1
J ′

0

)−1

[(∂xm)2 + (∂ym)2]
}

. (8)

There appears no topological term even if the NNN in-
teractions exist. The bare spin wave velocity is read as
v = 2

√
2Sa(J1 + J ′

1)1/2(1/J0 + 1/J ′
0)−1/2. Action Aeff

keeps the original invariance against the simultaneous ex-
changes of J1 and J ′

1, and of J2 and J ′
2, meaning that the

same action is obtained if we use a plaquette in Fig. 1(c),
instead of Fig. 1(b), as a block. This result reflects that
the variable transformation (6) does not restrict the spin
motion to form a singlet on the plaquette of Fig. 1(b).

We apply the RG analysis by Chakravarty et al. [9]
to the present NLSM. We first introduce rescaled dimen-
sionless coordinates, x0 = Λvτ , x1 = Λx and x2 = Λy,
with a momentum cutoff Λ of order a−1. The NLSM
action (8) is then rewritten as

Aeff =
1

2g0

∫
d3x

(
∂m
∂xµ

)2

(9)

with coupling constant g0 =
√

2ΛaS−1(J1+J ′
1)1/2(1/J0+

1/J ′
0)

1/2. By RG equations up to one-loop approxima-
tion, the quantum phase transition from the AF ordered
(Néel) state to a disordered state takes place at g0 = 4π.
Rewriting this, the phase boundary in the space of the
exchange parameters is given by

(J1 + J ′
1)

(
1
J0

+
1
J ′

0

)
=

2
λ

with λ ≡
(

Λa

2πS

)2

. (10)

Parameter λ represents the strength of quantum effect;
λ = 0 in the classical spin limit.

To make the NLSM method complete, we determine
the cutoff Λ by considering the number of degrees of
freedom for the square lattice. The variable m is orig-
inally defined for each block of size 2a × 2a (Fig. 2(b)
and Eq. (6)), and is taken a continuum limit. Hence the
correspondence of the momentum spaces is expressed as
(π/a)2 = πΛ2, or the cutoff is given by Λ =

√
π/a. Thus

Eq. (10) unambiguously determines the phase boundary
between the ordered and the disordered phases.

In the uniform limit (J1 = J ′
1, J2 = J ′

2 = J ′′
2 ), the

system depends only on frustration parameter α ≡ J2/J1

and Eq. (10) is reduced to α = 1
2 − λ. Hence, for S = 1

2
with Λ =

√
π/a, the critical value for α is given as
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FIG. 2: Phase diagram in the space of distortion parameter
γ and frustration parameter α (=J2/J1). The bold solid line
for S=∞ separates the classical Néel and the classical colinear
phases. The region between the bold solid and the thin solid
lines is the gapful plaquette phase for S= 1

2
. In the uniform

case (γ=0), the ground states in the gapful phase are four-fold
degenerate with broken translational invariance. The phase
boundaries for S = 1, 3

2
and 2 are also shown by dashed lines.

αc � 0.18. Thus the NLSM method succeeds in pro-
ducing a critical value satisfying 0 < αc < 1

2 without
any additional assumption or interpretation. The value
is smaller than ∼0.4 estimated by the QMC simulation
[15, 16]. The deviation reflects the difference between the
dispersions for spin-wave excitations in the lattice and
the continuum models, and may be reduced by adjusting
the cutoff. Since we aim at inspecting the continuity of a
phase, we do not need such a phenomenological adjust-
ment.

In the limit of no frustration (J2 = J ′
2 = J ′′

2 = 0), the
plaquette distortion may cause an order-disorder transi-
tion. We denote the strength of the distortion by distor-
tion parameter γ defined as J ′

1 = (1−γ)J1. Then Eq. (10)
produces the critical value γc = 2− λ−1 +

√
λ−2 − 2λ−1.

This value decreases from 1 to 0 as λ increases from 0 to
1
2 .

We now examine the continuity of the ground state
between both the limits above. To be concrete, we pa-
rameterize the exchange constants as J ′

1 = (1− γ)J1, J ′
2

= (1 − γ)2J2 and J ′′
2 = (1 − γ)J2 for 0 ≤ γ < 1. Equa-

tion (10) for the phase boundary is reduced to a simple
form as α = (2− γ)−1 − 1

2λ(2− γ)(1− γ)−1. The phase
diagram in the γ-α parameter space is shown in Fig. 2.
The bold line with S=∞ is the classical phase bound-
ary between the Néel and the colinear phases [28]. The
phase boundary of S= 1

2 between the gapful and the gap-
less phases for variable m is the thin solid line; the state



above is gapful, while that blow is gapless corresponding
to the Néel (AF) ordered state. Boundaries for other spin
magnitudes S are also shown by dashed lines.

The gapful region of m in Fig. 2 extends continuously
from the uniform limit on the α-axis (γ=0) to the limit
of no frustration on the γ-axis (α=0). Remembering that
fields L0, L1 and L2 are gapful, there is no gapless excita-
tion throughout the region whether it is triplet or singlet.
Hence, the whole gapful region in Fig. 2 is a single dis-
ordered phase. In particular, the phase continues to the
point of (γ, α) = (1, 0) [29]. Hence a disordered ground
state on the α-axis finally continues to the ground state
of the assembly of isolated plaquettes.

Thus there remain two possibilities for a disordered
ground state of the uniform J1-J2 model, which is on the
α-axis in the phase diagram (Fig. 2). First, the transla-
tional symmetry may be spontaneously broken; then the
ground states are four-fold degenerate and one of them
continues to the ground state at (γ, α) = (1, 0). Second,
the symmetry may not be spontaneously broken; then the
ground state is unique and is a uniform RVB state with
strong fluctuations of plaquette-singlets. However, the
second possibility is excluded by Oshikawa’s commensu-
rability condition [22]. Applying it to the present case, a
uniform ground state with triplet excitation gap must be
accompanied with other gapless excitations like singlet
ones. Such gapless excitations do not exist as we have al-
ready shown. We therefore conclude that the disordered
ground states for the uniform J1-J2 model are four-fold
degenerate plaquette states with spontaneously-broken
translational invariance.

In summary, we examined the disordered phase of a
2D J1-J2 model by a novel field-theoretic method. The
method inevitably starts from a plaquette-based variable
transformation not to spoil the original spin degrees of
freedom, and hence becomes applicable to a system with
plaquette-type distortion. Integrating the partition func-
tion with respect to massive fields, we obtained an NLSM
action without topological term. Applying the RG anal-
ysis of Chakravarty et al. to the NLSM, we obtained an
analytic expression for the phase boundary between the
Néel phase and the disordered phase in the space of frus-
tration and distortion parameters. The disordered phase
extends continuously from the uniform limit to the limit
of no frustration without any quantum phase transitions.
Assisted by Oshikawa’s commensurability condition, we
determined the disordered ground states for the uniform
J1-J2 model as four-fold degenerate plaquette states with
spontaneously-broken translational invariance.
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