Observation of Large *CP* Violation and Evidence for Direct *CP* Violation in $B^0 \rightarrow \pi^+\pi^-$ Decays

K. Abe, ⁵ K. Abe, ³⁸ N. Abe, ⁴¹ T. Abe, ⁵ I. Adachi, ⁵ H. Aihara, ⁴⁰ K. Akai, ⁵ M. Akatsu, ¹⁸ M. Akemoto, ⁵ Y. Asano, ⁴⁵ T. Aso, ⁴⁴ V. Aulchenko, ¹ T. Aushev, ⁹ A. M. Bakich, ³⁵ Y. Ban, ²⁸ S. Banerjee, ³⁶ A. Bay, ¹⁴ I. Bedny, ¹ I. Bizjak, ¹⁰ A. Bondar, ¹ A. Bozek, ²² M. Bračko, ^{16,10} T. E. Browder, ⁴ Y. Chao, ²¹ K.-F. Chen, ²¹ B. G. Cheon, ³⁴ R. Chistov, ⁹ S. K. Choi, ⁴⁹ Y. Choi, ³⁴ A. Chuvikov, ²⁹ S. Cole, ³⁵ M. Danilov, ⁹ J. Dragit, ¹⁷ A. Drutskoy, ⁹ S. Eidelman, ¹ V. Eiges, ⁹ Y. Enari, ¹⁸ D. Epifanov, ¹ J. Flanagan, ⁵ K. Furukawa, ⁵ N. Gabyshev, ⁵ A. Garmash, ²⁹ T. Gershon, ⁵ B. Golob, ^{15,10} J. Haba, ⁵ K. Hara, ²⁶ N. C. Hastings, ⁵ H. Hayashii, ¹⁰ M. Hazumi, ⁵ L. Hinz, ¹⁴ T. Hokuue, ¹⁸ Y. Hoshi, ³⁸ W.-S. Hou, ²¹ Y. B. Hsiung, ^{21,*} H.-C. Huang, ²¹ T. Iijima, ¹⁸ H. Ikeda, ⁵ K. Inami, ¹⁸ A. Ishikawa, ⁵ H. Ishino, ⁴¹ R. Itoh, ⁵ H. Iwasaki, ⁵ M. Iwasaki, ⁴⁰ Y. Iwasaki, ⁵ H. Kakuno, ⁴¹ T. Kamitani, ⁵ J. H. Kang, ⁴⁸ J. S. Kang, ¹² P. Kapusta, ²² S. U. Kataoka, ¹⁹ N. Katayama, ⁵ H. Kawai, ² T. Kawasaki, ²⁴ A. Kibayashi, ⁴¹ H. Kichimi, ⁵ E. Kikutani, ⁵ H. J. Kim, ⁴⁸ J. H. Kim, ³⁴ S. K. Kim, ³³ K. Kinoshita, ⁵⁰ P. Koppenburg, ⁵ S. Korpar, ^{16,10} P. Križan, ^{15,10} P. Krokovny, ¹ S. Kumar, ²⁷ A. Kuzmin, ¹ Y.-J. Kwon, ⁴⁸ J. S. Lange, ^{3,30} G. Leder, ⁸ S. H. Lee, ³¹ Y.-J. Lee, ²¹ T. Leisak, ²² J. Li, ³² A. Limosani, ¹⁷ S.-W. Lin, ²¹ D. Liventsev, ⁹ J. MacNaughton, ⁸ F. Mandl, ⁸ D. Marlow, ²⁹ H. Matsumoto, ²⁴ T. Matsumoto, ⁴² A. Matyja, ²² S. Michizono, ⁵ T. Mimashi, ⁵ W. Mitaroff, ⁸ K. Miyabayashi, ¹⁹ H. Miyake, ²⁶ H. Miyata, ²⁴ D. Mohapatra, ⁴⁶ G. R. Moloney, ¹⁷ A. Murakami, ³¹ T. Nagamine, ³⁹ Y. Nagasaka, ⁶ T. Nakadaira, ⁴⁰ T. T. Nakamura, ⁵ E. Nakano, ²⁵ M. Nakao, ⁵ H. Nakazawa, ⁵ Z. J. Chokim, ¹⁸ N. Ohuchi, ⁵ K. Oitde, ⁵ T. Okshim, ¹⁸ N. Ohuchi, ⁵ K. Oitde, ⁵ T. Okshwa

(Belle Collaboration)

¹Budker Institute of Nuclear Physics, Novosibirsk ²Chiba University, Chiba ³University of Frankfurt, Frankfurt ⁴University of Hawaii, Honolulu, Hawaii 96822 ⁵High Energy Accelerator Research Organization (KEK), Tsukuba ⁶*Hiroshima Institute of Technology, Hiroshima* ⁷Institute of High Energy Physics, Chinese Academy of Sciences, Beijing ⁸Institute of High Energy Physics, Vienna ⁹Institute for Theoretical and Experimental Physics, Moscow ¹⁰J. Stefan Institute, Ljubljana ¹¹Kanagawa University, Yokohama ¹²Korea University, Seoul ¹³Kyungpook National University, Taegu ¹⁴Swiss Federal Institute of Technology of Lausanne, EPFL, Lausanne ¹⁵University of Ljubljana, Ljubljana ¹⁶University of Maribor, Maribor ¹⁷University of Melbourne, Victoria ¹⁸Nagoya University, Nagoya ¹⁹Nara Women's University, Nara ²⁰National United University, Miao Li ²¹Department of Physics, National Taiwan University, Taipei ²²H. Niewodniczanski Institute of Nuclear Physics, Krakow ²³Nihon Dental College, Niigata ²⁴Niigata University, Niigata ²⁵Osaka City University, Osaka

021601-1 0031-9007/04/93(2)/021601(5)\$22.50 © 2004 The American Physical Society 021601-1

²⁶Osaka University, Osaka ²⁷Panjab University, Chandigarh ²⁸Peking University, Beijing ²⁹Princeton University, Princeton, New Jersey 08545 ³⁰RIKEN BNL Research Center, Upton, New York 11973 ³¹Saga University, Saga ³²University of Science and Technology of China, Hefei ³³Seoul National University, Seoul ³⁴Sungkyunkwan University, Suwon ³⁵University of Sydney, Sydney, New South Wales ³⁶Tata Institute of Fundamental Research, Bombay ³⁷Toho University, Funabashi ³⁸Tohoku Gakuin University, Tagajo ³⁹Tohoku University, Sendai ⁴⁰Department of Physics, University of Tokyo, Tokyo ⁴¹Tokyo Institute of Technology, Tokyo ⁴²Tokyo Metropolitan University, Tokyo ⁴³Tokyo University of Agriculture and Technology, Tokyo ⁴⁴Toyama National College of Maritime Technology, Toyama ⁴⁵University of Tsukuba, Tsukuba ⁴⁶Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061 ⁴⁷Yokkaichi University, Yokkaichi ⁴⁸Yonsei University, Seoul ⁴⁹Gyeongsang National University, Chinju ⁵⁰University of Cincinnati, Cincinnati, Ohio (Received 18 January 2004; published 6 July 2004)

We report the first observation of *CP* violation in $B^0 \to \pi^+ \pi^-$ decays based on $152 \times 10^6 \text{ Y}(4S) \to B\overline{B}$ decays collected with the Belle detector at the KEKB asymmetric-energy e^+e^- collider. We reconstruct a $B^0 \to \pi^+ \pi^- CP$ eigenstate and identify the flavor of the accompanying *B* meson from its decay products. From the distribution of the time intervals between the two *B* meson decay points, we obtain $\mathcal{A}_{\pi\pi} = +0.58 \pm 0.15(\text{stat}) \pm 0.07(\text{syst})$ and $S_{\pi\pi} = -1.00 \pm 0.21(\text{stat}) \pm 0.07(\text{syst})$. We rule out the *CP*-conserving case, $\mathcal{A}_{\pi\pi} = S_{\pi\pi} = 0$, at a level of 5.2 standard deviations. We also find evidence for direct *CP* violation with a significance at or greater than 3.2 standard deviations for any $S_{\pi\pi}$ value.

DOI: 10.1103/PhysRevLett.93.021601

PACS numbers: 13.25.Hw, 11.30.Er, 12.15.Hh

In the standard model (SM) of elementary particles, *CP* violation arises from the Kobayashi-Maskawa (KM) phase [1] in the weak interaction quark-mixing matrix. In particular, the SM predicts *CP* asymmetries in the time-dependent rates for B^0 and \overline{B}^0 decays to a common *CP* eigenstate [2]. Comparison between SM expectations and measurements in various *CP* eigenstates is important to test the KM model. The $B^0 \rightarrow \pi^+\pi^-$ decay [3], which is dominated by the $b \rightarrow u\overline{u}d$ transition, is of particular interest and is sensitive to the *CP*-violating parameter ϕ_2 . Direct *CP* violation may also occur in this decay because of interference between the $b \rightarrow u$ tree (*T*) and $b \rightarrow d$ penguin (*P*) amplitudes [4].

In the decay chain $Y(4S) \rightarrow B^0 \overline{B}^0 \rightarrow (\pi^+ \pi^-) f_{tag}$, where one of the *B* mesons decays at time $t_{\pi\pi}$ to the *CP* eigenstate $\pi^+ \pi^-$ and the other decays at time t_{tag} to a final state f_{tag} that distinguishes between B^0 and \overline{B}^0 , the decay rate has a time dependence given by [2]

$$\mathcal{P}_{\pi\pi}(\Delta t) = \frac{e^{-|\Delta t|/\tau_{B^0}}}{4\tau_{B^0}} [1 + q \cdot \{S_{\pi\pi}\sin(\Delta m_d\Delta t) + \mathcal{A}_{\pi\pi}\cos(\Delta m_d\Delta t)\}],\tag{1}$$

where τ_{B^0} is the B^0 lifetime, Δm_d is the mass difference between the two B^0 mass eigenstates, $\Delta t = t_{\pi\pi} - t_{\text{tag}}$, and the *b*-flavor charge q = +1(-1) when the tagging *B* meson is a B^0 (\overline{B}^0). $S_{\pi\pi}$ and $\mathcal{A}_{\pi\pi}$ are mixing-induced and direct *CP*-violating parameters, respectively.

Belle's previous results for $B^0 \rightarrow \pi^+\pi^-$ [5], based on a 78 fb⁻¹ data sample (85 × 10⁶BB pairs), suggested large direct *CP* asymmetry and/or mixing-induced asymmetry, while the result by the *BaBar* collaboration based on a sample of 88 × 10⁶ BB pairs did not [6]. In this Letter, we

report a new measurement with an improved analysis that incorporates an additional 62 fb⁻¹ for a total of 140 fb⁻¹ ($152 \times 10^6 B\overline{B}$ pairs) that confirms Belle's previous results with much greater significance.

The data were collected with the Belle detector [7] at the KEKB asymmetric-energy e^+e^- collider [8], which collides 8.0 GeV e^- and 3.5 GeV e^+ beams. The Y(4S) is produced with a Lorentz boost of $\beta\gamma = 0.425$ nearly along the electron beam line (z). Since the B^0 and \overline{B}^0 mesons are approximately at rest in the Y(4S) center-ofmass system (c.m.s.), Δt can be determined from Δz , the displacement in z between the $\pi^+\pi^-$ and f_{tag} decay vertices: $\Delta t \simeq (z_{\pi\pi} - z_{\text{tag}})/\beta\gamma c \equiv \Delta z/\beta\gamma c$. The reconstruction method of the vertex positions remains unchanged from the previous publication [5].

We use oppositely charged track pairs that are positively identified as pions to reconstruct $B^0 \rightarrow \pi^+ \pi^-$ candidates. The pion efficiency is 91%, and 10.4% of kaons are misidentified as pions. We select the B meson candidates using the energy difference $\Delta E \equiv E_B^{\text{c.m.s.}} - E_{\text{beam}}^{\text{c.m.s.}}$ and the beam-energy constrained mass $M_{\rm bc} \equiv \sqrt{(E_{\rm beam}^{\rm c.m.s.})^2 - (p_B^{\rm c.m.s.})^2}$, where $E_{\rm beam}^{\rm c.m.s.}$ is the c.m.s. beamenergy, and $E_B^{c.m.s.}$ and $p_B^{c.m.s.}$ are the c.m.s. energy and momentum of the B candidate. The signal region is defined as 5.271 GeV/ $c^2 < M_{bc} < 5.287$ GeV/ c^2 and $|\Delta E| < 0.064$ GeV, corresponding to $\pm 3\sigma$ from the central values. To suppress the $e^+e^- \rightarrow q\overline{q}$ continuum background (q = u, d, s, c), we form signal and background likelihood functions, \mathcal{L}_{S} and \mathcal{L}_{BG} , from the event topology variables and impose requirements on the likelihood ratio $LR = \mathcal{L}_S / (\mathcal{L}_S + \mathcal{L}_{BG})$ for candidate events. We use the same event topology variables and the procedure that were used for the $\mathcal{B}(B^0 \to \pi^0 \pi^0)$ measurement [9].

The flavor of the accompanying *B* meson is identified from inclusive properties of particles that are not associated with the reconstructed $B^0 \rightarrow \pi^+ \pi^-$ decay. We use two parameters, *q* [defined in Eq. (1)] and *r*, to represent the tagging information. The parameter *r* is an eventby-event, Monte Carlo (MC) determined flavor-tagging dilution factor that ranges from r = 0 for no flavor discrimination to r = 1 for unambiguous flavor assignment. It is used only to sort data into six *r* intervals. The wrong tag fractions for the six *r* intervals, $w_l(l = 1, 6)$, and differences between B^0 and \overline{B}^0 decays, Δw_l , are determined from data [10].

We optimize the expected sensitivity by using the improved likelihood ratio LR. We require LR > 0.86 for all r intervals. We include additional candidate events with lower signal likelihood ratio cuts (0.50, 0.45, 0.45, 0.45, 0.45, and 0.20) for different r intervals since the separation of continuum background from the B signal varies with r; we accept candidate events from 12 distinct regions in the LR-r plane.

Figure 1 shows the ΔE distribution for the $B^0 \rightarrow \pi^+ \pi^$ candidates that are in the $M_{\rm bc}$ signal region with LR > 0.86 after flavor tagging and vertex reconstruction. In the $M_{\rm bc}$ and ΔE signal region, we find 483 candidates with LR > 0.86 and 1046 candidates with LR ≤ 0.86 . The $B^0 \rightarrow \pi^+ \pi^-$ signal yield for LR > 0.86 is determined from an unbinned two-dimensional maximum likelihood fit to the $M_{\rm bc}$ - ΔE distribution (5.20 GeV/c² < $M_{\rm bc}$ < 5.30 GeV/c² and -0.3 GeV < ΔE < 0.5 GeV) with a Gaussian signal function plus contributions from misidentified $B^0 \rightarrow K^+ \pi^-$ events, three-body *B* decays, and continuum background. The fit yields $232^{+20}_{-19} \pi^+ \pi^-$

021601-3

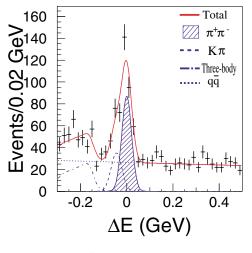


FIG. 1 (color online). ΔE distribution in the $M_{\rm bc}$ signal region for $B^0 \rightarrow \pi^+ \pi^-$ candidates with LR > 0.86.

events and $82^{+14}_{-13} K^+ \pi^-$ events in the signal region, where the errors are statistical only. Extrapolating from the size of the continuum background in this fit, we expect 169 continuum events in the signal region. For LR ≤ 0.86 , the same procedure used in the previous publication [5] yields $141 \pm 12 \pi^+\pi^-$ events, $50 \pm 8 K^+\pi^-$ events, and 855 continuum events in the signal region. The contribution from three-body *B* decays is negligibly small in the signal region.

The Δt resolution function $R_{\pi\pi}$ for $B^0 \rightarrow \pi^+ \pi^-$ signal events is formed by convolving four components: the detector resolutions for $z_{\pi\pi}$ and z_{tag} , the shift in the z_{tag} vertex position due to secondary tracks originating from charmed particle decays, and the smearing due to the kinematic approximation used to convert Δz to Δt [10]. We assume $R_{\pi\pi} = R_{K\pi}$ and denote them collectively as R_{sig} .

 $\mathcal{A}_{\pi\pi}$ and $S_{\pi\pi}$ are obtained from an unbinned maximum likelihood fit to the observed Δt distribution. The probability density function (PDF) for $B^0 \rightarrow \pi^+ \pi^-$ signal events $(\mathcal{P}_{\pi\pi}^q)$ is given by Eq. (1), modified to incorporate the effect of incorrect flavor assignment. The PDF for $B^0 \to K^+ \pi^-$ background events is $\mathcal{P}^q_{K\pi}(\Delta t,$ $w_{l}, \Delta w_{l}) = (1/4\tau_{B^{0}})e^{-|\Delta t|/\tau_{B^{0}}} \{1 - q\Delta w_{l} + q \cdot (1 - 2w_{l}) \cdot (1 - 2w_{l}) + q \cdot (1 - 2w_{l}) + q \cdot (1 - 2w_{l}) \}$ $\mathcal{A}_{K\pi} \cdot \cos(\Delta m_d \Delta t)$. We use $\mathcal{A}_{K\pi} = 0$ as a default and include an effect of a possible nonzero value for $\mathcal{A}_{K\pi}$ in the systematic error. The PDF for continuum background events is $\mathcal{P}_{q\overline{q}}(\Delta t) = (1 + q \cdot \mathcal{A}_{bkg}) \{(f_{\tau}/2\tau_{bkg})e^{-|\Delta t|/\tau_{bkg}} +$ $(1 - f_{\tau})\delta(\Delta t)$, where f_{τ} is the fraction of the background with effective lifetime $\tau_{\rm bkg}$, and δ is the Dirac delta function. We use $A_{bkg} = 0$ as a default. A fit to sideband events yields $A_{bkg} = 0.010 \pm 0.005$. This uncertainty is included in the systematic error for $\mathcal{A}_{\pi\pi}$ and $S_{\pi\pi}$. All parameters of $\mathcal{P}_{q\overline{q}}(\Delta t)$ and $R_{q\overline{q}}$ are determined from the events in the sideband region.

We define the likelihood value for each (*i*th) event as a function of $A_{\pi\pi}$ and $S_{\pi\pi}$:

$$P_{i} = (1 - f_{ol}) \int_{-\infty}^{+\infty} [\{f_{\pi\pi}^{m} \mathcal{P}_{\pi\pi}^{q}(\Delta t', w_{l}; \mathcal{A}_{\pi\pi}, S_{\pi\pi}) + f_{K\pi}^{m} \mathcal{P}_{K\pi}^{q}(\Delta t', w_{l})\} \cdot R_{sig}(\Delta t_{i} - \Delta t') + f_{q\overline{q}}^{m} \mathcal{P}_{q\overline{q}}(\Delta t') \cdot R_{q\overline{q}}(\Delta t_{i} - \Delta t')] d\Delta t' + f_{ol} \mathcal{P}_{ol}(\Delta t_{i}).$$

$$(2)$$

Here, the probability functions f_k^m ($k = \pi \pi$, $K\pi$, or $q\overline{q}$) are determined on an event-by-event basis as functions of ΔE and $M_{\rm bc}$ for each LR-*r* interval (m = 1, 12) [5]. The small number of signal and background events that have large values of Δt are accommodated by the outlier PDF, $\mathcal{P}_{\rm ol}$, with fractional area $f_{\rm ol}$. In the fit, $S_{\pi\pi}$ and $\mathcal{A}_{\pi\pi}$ are the only free parameters determined by maximizing the likelihood function $\mathcal{L} = \prod_i P_i$, where the product is over all $B^0 \to \pi^+ \pi^-$ candidates.

The unbinned maximum likelihood fit to the 1529 $B^0 \rightarrow \pi^+ \pi^-$ candidates (801 B^0 tags and 728 \overline{B}^0 tags), containing $372^{+32}_{-31} \pi^+\pi^-$ signal events, yields $\mathcal{A}_{\pi\pi} =$ $+0.58 \pm 0.15$ (stat) ± 0.07 (syst) and $S_{\pi\pi} = -1.00 \pm$ $0.21(\text{stat}) \pm 0.07(\text{syst})$. The correlation between $\mathcal{A}_{\pi\pi}$ and $S_{\pi\pi}$ is 0.286. As in our previous publication [5], we quote the rms values of the $\mathcal{A}_{\pi\pi}$ and $S_{\pi\pi}$ distributions of the MC pseudoexperiments as the statistical errors of our measurement [11]. The usual fit errors from the likelihood functions, called the MINOS errors in the previous publication [5], are $^{+0.15}_{-0.16}$ and $^{+0.22}_{-0.20}$ for $\mathcal{A}_{\pi\pi}$ and $S_{\pi\pi}$, respectively, in good agreement with the rms values above [12]. In Figs. 2(a) and 2(b), we show the Δt distributions for the 264 B^0 - and 219 \overline{B}^0 -tagged events in the subset of data with LR > 0.86. We define the raw asymmetry in each Δt bin by $A \equiv (N_{+} - N_{-})/(N_{+} + N_{-})$, where $N_{+(-)}$ is the number of observed candidates with q = +1(-1). Figures 2(c) and 2(d) show the raw asymmetries for two regions of the flavor-tagging parameter r. The effective tagging efficiency and signal purity is much larger in the $0.5 < r \le 1.0$ region.

We test the goodness of fit from a χ^2 comparison of the results of the unbinned fit and the Δt projections for $B^0 \rightarrow \pi^+ \pi^-$ candidates. We obtain $\chi^2/\text{DOF} = 12.5/12(7.6/12)$ for the Δt distribution of the B^0 (\overline{B}^0) tags.

An ensemble of MC pseudoexperiments indicates a 26.7% probability of measuring *CP* violation at a level above the one we observe when the input values are $\mathcal{A}_{\pi\pi} = +0.55$ and $S_{\pi\pi} = -0.84$, which correspond to the values at the point of maximum likelihood in the physically allowed region $(S_{\pi\pi}^2 + \mathcal{A}_{\pi\pi}^2 \le 1)$; in this measurement, it is located at the physical boundary $(\mathcal{A}_{\pi\pi}^2 + S_{\pi\pi}^2 = 1)$.

The systematic error is primarily due to uncertainties in the vertexing (± 0.04 for $\mathcal{A}_{\pi\pi}$ and ± 0.05 for $S_{\pi\pi}$) and the background fractions (± 0.03 for $\mathcal{A}_{\pi\pi}$ and ± 0.02 for $S_{\pi\pi}$). We include the effect of tag side interference [13] on $\mathcal{A}_{\pi\pi}(\pm 0.03)$ and $S_{\pi\pi}(\pm 0.01)$. Other sources of systematic error are uncertainties in the wrong tag fraction, physics parameters (Δm_d , τ_{B^0} , and $\mathcal{A}_{K\pi}$), resolution function, background modeling, and fit bias. We add each contribution in quadrature to obtain the total systematic errors. The effect of the 3% charge asymmetry in the kaon misidentification rate is negligibly small.

We perform a number of cross-checks. We measure the B^0 lifetime with the $B^0 \rightarrow \pi^+ \pi^-$ candidate events. The result, $\tau_{B^0} = 1.46 \pm 0.09$ ps, is consistent with the worldaverage value [14]. A comparison of the event yields and Δt distributions for B^0 - and \overline{B}^0 -tagged events in the sideband region reveals no significant asymmetry. We select $B^0 \rightarrow K^+ \pi^-$ candidates by positively identifying the charged kaons. A fit to the 2358 candidates (1198 signal events) yields $A_{K\pi} = -0.02 \pm 0.08$, consistent with the counting analysis [15], and $S_{K\pi} = 0.14 \pm 0.11$, which is consistent with zero. With the $K^+\pi^-$ event sample, we determine $\tau_{B^0} = 1.52 \pm 0.06$ ps and $\Delta m_d =$ $0.53^{+0.04}_{-0.07}$ ps⁻¹, which are in agreement with the worldaverage values [14]. We check the measurement of $\mathcal{A}_{\pi\pi}$ using time-independent fits to the $M_{\rm hc}$ - ΔE distributions for the B^0 and \overline{B}^0 tags. We obtain $\mathcal{A}_{\pi\pi} = +0.73 \pm 0.19$, which is consistent with the time-dependent CP fit result. We also perform an independent analysis based on a binned maximum-likelihood fit to the Δt distribution. The result is consistent with that of the unbinned maximum-likelihood fit quoted here.

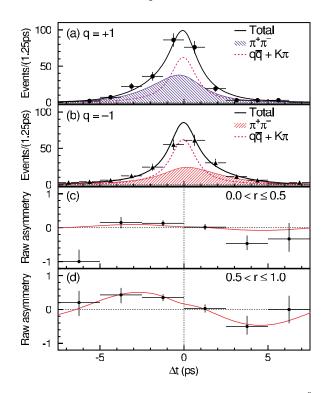


FIG. 2 (color online). The Δt distributions for the 483 $B^0 \rightarrow \pi^+ \pi^-$ candidates with LR > 0.86 in the signal region: (a) 264 candidates with q = +1, i.e., the tag side is identified as B^0 ; (b) 219 candidates with q = -1. (c) Asymmetry, A, in each Δt bin with $0 < r \le 0.5$ and (d) with $0.5 < r \le 1.0$. The solid curves show the results of the unbinned maximum likelihood fit to the Δt distributions of the 1529 $B^0 \rightarrow \pi^+ \pi^-$ candidates.

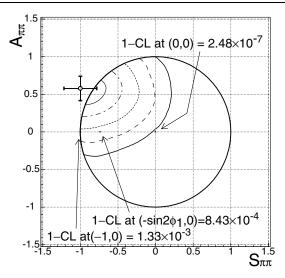


FIG. 3. Confidence regions for $A_{\pi\pi}$ and $S_{\pi\pi}$. The curves show the contours for $1 - \text{C.L.} = 3.17 \times 10^{-1}$ (solid), 4.55×10^{-2} (dot-dashed), 2.70×10^{-3} (dotted), 6.34×10^{-5} (dashed), and 5.96×10^{-7} (thick solid).

The statistical significance of our measurement is determined from the same approach used in the previous publication [5]. Figure 3 shows the resulting twodimensional confidence regions in the $A_{\pi\pi}$ versus $S_{\pi\pi}$ plane. The case that *CP* symmetry is conserved, $A_{\pi\pi} =$ $S_{\pi\pi} = 0$, is ruled out at the 99.999 976% confidence level (C.L.), i.e., $1 - C.L. = 2.5 \times 10^{-7}$, equivalent to 5.2σ significance for Gaussian errors. The case of no direct *CP* violation, $A_{\pi\pi} = 0$, is also ruled out with a significance at or greater than 3.2σ for any $S_{\pi\pi}$ value. If the source of *CP* violation is due to only *B*-*B* mixing or $\Delta B = 2$ transitions, as in so-called superweak scenarios [16], then $(S_{\pi\pi}, A_{\pi\pi}) = (-\sin 2\phi_1, 0)$. 1 - C.L. at this point is 8.4×10^{-4} , equivalent to 3.3σ significance.

Adopting the notation of Ref. [17], the range of ϕ_2 that corresponds to the 95.5% C.L. region for $\mathcal{A}_{\pi\pi}$ and $S_{\pi\pi}$ in Fig. 3 is 90° $\leq \phi_2 \leq 146^\circ$ for 0.15 < |P/T| < 0.45, as used in the previous publication [5], and $\sin 2\phi_1 = 0.736$ [18]. The result is in agreement with constraints on the unitarity triangle from other indirect measurements [19]. The 95.5% C.L. region for $\mathcal{A}_{\pi\pi}$ and $S_{\pi\pi}$ excludes |P/T| < 0.17.

In summary, we have performed a new measurement of *CP* violation parameters in $B^0 \rightarrow \pi^+ \pi^-$ decays. We obtain $\mathcal{A}_{\pi\pi} = +0.58 \pm 0.15(\text{stat}) \pm 0.07(\text{syst})$, and $S_{\pi\pi} = -1.00 \pm 0.21(\text{stat}) \pm 0.07(\text{syst})$. We rule out the *CP*-conserving case, $\mathcal{A}_{\pi\pi} = S_{\pi\pi} = 0$, at the 5.2 σ level. We find evidence for direct *CP* violation with a significance at or greater than 3.2 σ . The constraints on ϕ_2 from our result are consistent with indirect measurements that assume the correctness of the SM.

We thank the KEKB group for the excellent operation of the accelerator, the KEK Cryogenics group for the efficient operation of the solenoid, and the KEK computer group and the NII for valuable computing and SuperSINET network support. We acknowledge support from MEXT and JSPS (Japan); ARC and DEST (Australia); NSFC (Contract No. 10175071, China); DST (India); the BK21 program of MOEHRD and the CHEP SRC program of KOSEF (Korea); KBN (Contract No. 2P03B 01324, Poland); MIST (Russia); MESS (Slovenia); NSC and MOE (Taiwan); and DOE (USA).

*On leave from Fermi National Accelerator Laboratory, Batavia, IL 60510, USA.

[†]On leave from Nova Gorica Polytechnic, Nova Gorica.

- M. Kobayashi and T. Maskawa, Prog. Theor. Phys. 49, 652 (1973).
- [2] A. B. Carter and A. I. Sanda, Phys. Rev. D 23, 1567 (1981);
 I. I. Bigi and A. I. Sanda, Nucl. Phys. B B193, 85 (1981).
- [3] Throughout this Letter, the inclusion of the charge conjugate mode decay is implied unless otherwise stated.
- [4] M. Gronau, Phys. Rev. Lett. 63, 1451 (1989); D. London and R. Peccei, Phys. Lett. B 223, 257 (1989).
- [5] Belle Collaboration, K. Abe *et al.*, Phys. Rev. D 68, 012001 (2003).
- [6] BaBar Collaboration, B. Aubert *et al.*, Phys. Rev. Lett. 89, 281802 (2002).
- [7] Belle Collaboration, A. Abashian *et al.*, Nucl. Instrum. Methods Phys. Res., Sect. A 479, 117 (2002).
- [8] S. Kurokawa and E. Kikutani, Nucl. Instrum. Methods Phys. Res., Sect. A 499, 1 (2003).
- [9] Belle Collaboration, S. H. Lee *et al.*, Phys. Rev. Lett. **91**, 261801 (2003).
- Belle Collaboration, K. Abe *et al.*, hep-ex/0308036, BELLE-CONF-0353; Belle Collaboration, K. Abe *et al.*, Phys. Rev. D 66, 071102 (2002).
- [11] The statistical errors are reduced by about a factor of two due to the increase in the data sample (0.75), the improvement in signal yield extraction (0.90) and continuum rejection (0.95), the use of a more accurate signal fraction (0.93), and other effects (0.93). The values in parentheses are the expected reduction factors.
- [12] The log-likelihood ratio $-2\ln \mathcal{L}/\mathcal{L}_{max}$ is now nearly parabolic, and the sensitivity to a large single event fluctuation [5] is greatly reduced.
- [13] O. Long, M. Baak, R. N. Cahn, and D. Kirkby, Phys. Rev. D 68, 034010 (2003).
- [14] Particle Data Group, K. Hagiwara *et al.*, http:// www-pdg.lbl.gov/2003/contents_listings.html.
- [15] J. Fry, in Proceedings of the XXI International Symposium on Lepton and Photon Interactions at High Energies (World Scientific, Singapore, 2004).
- [16] I. I. Bigi, Phys. Lett. B 535, 155 (2002); L. Wolfenstein and F. Wu, Europhys. Lett. 58, 49 (2002).
- [17] M. Gronau and J. L. Rosner, Phys. Rev. D 65, 093012 (2002).
- [18] Heavy Flavor Averaging Group, http://www.slac. stanford.edu/xorg/hfag.
- [19] K. R. Schubert, in *Proceedings of the XXI International Symposium on Lepton and Photon Interactions at High Energies* (World Scientific, Singapore, 2004).