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Search for charmless two-body baryonic decays ofB mesons
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We report the results of a search for the rare baryonic decaysB0→pp̄, LL̄, andB1→pL̄. The analysis is

based on a data set of 31.73106 BB̄ events collected by the Belle detector at the KEKBe1e2 collider. No

statistically significant signals are found, and we set branching fraction upper limitsB(B0→pp̄),1.2

31026, B(B0→LL̄),1.031026, andB(B1→pL̄),2.231026 at the 90% confidence level.
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The Belle Collaboration recently reported the observat
of the decay processB1→pp̄K1 @1#, which is the first
known example of aB meson decay to a charmless final sta
containing baryons. In this paper we report the results o
search for the related two-body modesB0→pp̄, LL̄ and
B1→pL̄ @2#. In the standard model, these decays are
pected to proceed via color-suppressedb→u tree diagrams
@Figs. 1~a! and 1~c!# and b→s, d penguin diagrams@Figs.
1~b! and 1~d!#. The search is based on a 29.4 fb21 sample of
e1e2 data accumulated at theY(4S) resonance, which con
tains 31.7 millionBB̄ pairs. A previous search for these d
cays by the CLEO Collaboration using a 5.41 fb21 sample
of Y(4S) data yielded 90% confidence-level~C.L.! upper
limits @3#.

Belle @4# is a general purpose detector operating at
KEKB asymmetrice1e2 collider @5#. Tracking information
is provided by a silicon vertex detector and a central d
chamber~CDC! in a 1.5 T magnetic field. Hadron identifica
tion ~PID! for p/K/p discrimination is obtained from CDC
dE/dx measurements, aerogel Cˇ erenkov counter pulse
heights, and timing information from the time-of-flight sy
tem. Electron identification is based mainly on CsI~Tl! elec-
tromagnetic calorimeter and CDCdE/dx information. KL
and muons are identified by a system of resistive p
counters interleaved with the iron plates of the flux-retu
iron yoke.

*On leave from Nova Gorica Polytechnic, Slovenia.
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The event selection criteria are based on tracking and
requirements, and are optimized using Monte Carlo~MC!
simulated event samples.

All primary charged tracks are required to satisfy the f
lowing track quality criteria based on the track impact p
rameters relative to the interaction point~IP!, which is deter-
mined run by run. Thez axis is defined by the positron bea
line. The deviations from the IP position are required to
within 60.05 cm in the transverse (x-y) plane, and within
62 cm in thez direction. Tracks that satisfy the muon o
electron identification requirements are rejected.

Primary proton candidates are selected based onp/K/p
likelihood functions obtained from the hadron identificatio

FIG. 1. Illustrative diagrams forB decays to charmless baryo
pairs.
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system. The selection criteria areLp /(Lp1LK).0.6 and
Lp /(Lp1Lp).0.6, whereLp/K/p stands for the proton/kaon
pion likelihood.

L candidates are reconstructed via thepp2 decay chan-
nel and are selected using cuts on four parameters: the a
lar difference between theL flight direction and the direction
pointing from IP to the decay vertex in the transverse pla
the distance between each track and the IP in the transv
plane; the distance between the decay vertex and the IP in
transverse plane; and the displacement inz of the closest
approach points of the two tracks to the beam axis. T
secondary protons are required to haveLp /(Lp1Lp).0.6.
The pp2 mass spectrum after the application of the abo
selection criteria is shown in Fig. 2 for a typical run perio
The peak position is consistent with the nominalL mass@6#
and the mass resolution is about 0.9 MeV/c2. Finally, we
require the invariant mass of theL candidate to be within
65 MeV/c2 of the nominalL mass.

Due to the high momentum of the primary particles fro
these two-body decay modes, the background from geneB
decays is negligible in the kinematic region~described be-
low! for signal fitting. This is checked with MC samples
B1B2 and B0B̄0 pairs where theB-mesons decay domi
nantly via b→c processes. We also checked backgrou
using MC samples of charmlessB meson decays that includ
low multiplicity B-decays into final states withp, K, K* , r,
v, f, h, andh8 mesons. Only thepp̄ mode is found to have
any background contamination. However, the level of t
contamination is negligible, corresponding to less than
event for the current data set.

The main background is from continuumqq̄ processes.
This is confirmed using an off-resonance data set@2.3 fb21

taken 60 MeV below theY(4S)# and a MC sample of 65
million continuum events. These continuum events hav
jetlike topology whileBB̄ events are more spherical in th
Y(4S) center of mass~c.m.! frame. For continuum even
rejection we use cosuT , the cosine of the angle between th
direction of one primary decay particle and the thrust axis@7#

FIG. 2. The mass distribution of the selectedL→pp2 candi-
dates for a typical run period. The MC distribution is shown a
dashed histogram. The65 MeV mass window is indicated by th
vertical arrows.
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of the noncandidate tracks and showers. This distributio
nearly flat for signal events and is strongly peaked at61 for
continuum background. We also use cosuB , the cosine of the
angle between theB candidate flight direction and the pos
tron beam direction. The signal has a sin2uB distribution
while the background is uniformly distributed. We requi
the absolute values of cosuT and cosuB to be less than 0.9 for
LL̄ decays and less than 0.8 for the other modes. For
latter case, the background reduction factor is more than fi
while ;70% of the signal is retained.

We use the following two kinematic variables to identi
the reconstructedB meson candidates: the beam constrain
mass, mbc5AEbeam

2 2pB
2, and the energy difference,DE

5EB2Ebeam, whereEbeam, pB andEB are the beam energy
the momentum and energy of the reconstructedB meson in
the Y(4S) c.m. frame, respectively. We retain events w
5.20 GeV/c2,mbc,5.29 GeV/c2 and 20.2 GeV,DE
,0.2 GeV. The signal yield is extracted by maximizing t
likelihood function

L5e2(s1b))
i 51

N

@sPs~mbci
,DEi !1bPb~mbci

,DEi !#,

whereN is the total number of candidate events,s(b) de-
notes the signal~background! yield and Ps(b) denotes the
signal ~background! probability density function~pdf!.

Thembc andDE signal pdf’s are determined by MC simu
lation. We use a Gaussian function as the signal pdf for
mbc distribution and a sum of two Gaussians for theDE
distribution. The Gaussian parameters~mean ands) are de-
termined separately for each mode. Background shapes
determined from events in sideband regions ofDE andmbc
separately. We adopt an empirical function@8# to model the
mbc background shape~for events with 0.1 GeV,uDEu
,0.2 GeV) and a first-order polynomial for theDE back-
ground shape ~for events with 5.20 GeV/c2,mbc
,5.26 GeV/c2).

Table I summarizes the results. The efficiencies for
LL̄ andpL̄ modes include theL→pp2 branching fraction
~64%!. The efficiencies are determined from a signal M
sample with the identical event selection and fitting pro
dure as for the data. Figures 3 and 4 show thembc ~with
uDEu,0.05 GeV) and DE ~with 5.27 GeV/c2,mbc
,5.29 GeV/c2) projections for these three modes, respe
tively. Projections of the fits are shown as smooth curves.
statistically significant signals are found and we determ
90% C.L. upper limits on the signal yields by integrating t
likelihood function. We also compute limits using a countin
method @9#. We define a signal region by 5.27 GeV/c2

,mbc,5.29 GeV/c2 and uDEu,0.05 GeV, and treat the
number of background events from the maximum likeliho
fit as a prediction for the background in this region. We th
count the number of events actually observed, and apply
method of@9# to obtain 90% C.L. intervals.

To estimate the possible influence of fluctuations on
determination of the upper limits, we vary the parameters
the pdf’s by one standard deviation and change the form
the DE signal pdf to a single Gaussian. The relative chan

a
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TABLE I. Results of the search for the exclusive baryon modes. The signal yields,Y, and errors are
determined from maximum likelihood fits. The 90% C.L. upper limits from the fits and from the coun
method are listed together. We quote the higher values as our conservative estimates for upper lim
efficiencies,«, are obtained from MC simulation. The 90% C.L. upper limits for the branching fractionsB,
determined by this experiment are shown along with previous CLEO results. Some theoretical pred
from Ref. @10# are quoted for comparison.

Mode Y UL ~fitting/counting! « (%) B(1026) CLEO B(1026) TheoryB(1026)

pp̄ 0.620.6
12.7 7.0/9.7 27.562.0 ,1.2 ,7.0 0.1–7.0

LL̄ 0.020.0
10.5 3.0/3.2 10.861.1 ,1.0 ,3.9 0.0–0.2

pL̄ 1.021.0
12.5 7.0/10.4 16.261.4 ,2.2 ,2.6 0.2–3.0
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of the upper limit is 25%, which is mainly due to the chang
in the background shape. The upper limit determination
the counting method is checked by redefining the signal
gion ~varying theDE range from 2s to 4s) and comparing
the outcomes. The upper limits from both methods listed
column 3 of Table I include these fluctuations. We quote
values from the counting method as the most conserva
upper limits. Fit projections with the signal yield fixed at th
upper limit for each mode are shown as the superimpo
dashed curves in Figs. 3 and 4 for comparison.

The systematic error due to the efficiency of the pro
identification (p-K and p-p) criteria is studied usingL
samples. We vary the likelihood ratio requirement for p
tons and compare the ratio of reconstructedL yields in data
and MC calculation. The overall error is about 3%. We
clude a 2% error per track to account for the uncertainty
tracking efficiency. TheL reconstruction efficiency is
checked by comparing the flight distance distributions
data and MC calculation. They agree very well and no ad
tional error is assigned. The correlated parts of the errors
added linearly to obtain the overall uncertainty in the tra
ing efficiency and the uncertainty in the PID efficiencies~for

FIG. 3. The distributions ofmbc for ~a! B0→pp̄, ~b! B0→LL̄

and~c! B1→pL̄ candidates. The solid curve is the projection of t
maximum likelihood fit. The dashed curve shows the fit with t
signal yield fixed at the 90% C.L. upper limit.
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p and p̄), then the resulting errors are combined in quad
ture. When determining the upper limit for the branchi
fraction, the efficiency was reduced by one standard de
tion. The efficiencies and upper limits for all three dec
modes are listed in Table I.

In summary, we have performed a search for the r
baryonic decaysB0→pp̄, LL̄, andB1→pL̄ with 31.7 mil-
lion BB̄ events collected by the Belle detector at the KEK
e1e2 collider. No statistically significant signals are foun
for these modes, and we set upper limits on their branch
fractions at the 90% C.L. The upper limits are

B~B0→pp̄!,1.231026,

B~B0→LL̄!,1.031026,

B~B1→pL̄ !,2.231026.

These are currently the most stringent limits for these
cays. The limit onB0→pp̄ has been improved by a factor o
six compared to the existing bound@3#. These limits are con-

FIG. 4. The distributions ofDE for ~a! B0→pp̄, ~b! B0→LL̄

and~c! B1→pL̄ candidates. The solid curve is the projection of t
maximum likelihood fit. The dashed curve shows the fit with t
signal yield fixed at the 90% C.L. upper limit.
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siderably below corresponding charmless mesonic branc
fractions which are typically at the level of 1025. In contrast,
the recent Belle measurement ofB1→pp̄K1 @1# indicates a
relatively large branching fraction of 4.331026. The under-
lying physics@10# is now being probed with rapidly accumu
lating data and new experimental results.
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