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We present a detailed study of the charmonium spectrum using anisotropic lattice QCD. We first derive a
trec-level improved clover quark action on the anisotropic lattice for arbitrary quark mass by matching the
Hamiltonian on the lattice and in the continuum. The heavy quark mass dependence of the improvement
cocfficients, i.c., the ratio of the hopping parameters {=K,/K, and the clover cocflicients ¢, ,, is examined at
the tree level, and effects of the choice of the spatial Wilson parameter , are discussed. We then compute the
charmonium spectrum in the quenched approximation employing £=a,/a,= 3 anisotropic lattices. Simulations
arc made with the standard anisotropic gauge action and the anisotropic clover quark action with =1 at four
lattice spacings in the range a, = 0.07-0.2 fm. The clover coefficients ¢, , are estimated from tree-level tadpole
improvement. On the other hand, for the ratio of the hopping parameters ¢, we adopt both the tree-level
tadpole-improved value and a non-perturbative one. The latter employs the condition that the speed of light
calculated from the meson energy-momentum relation be unity. We calculate the spectrum of S and P states
and their excitations using both the pole and kinctic masses. We find that the combination of the pole mass and
the tadpole-improved value of { to yield the smoothest approach to the continuum limit, which we then adopt
for the continuum extrapolation of the spectrum. The results largely depend on the scale input even in the
continuum limit, showing a quenching effect. When the lattice spacing is determined from the 1P-15 splitting,
the deviation from the experimental value is estimated to be ~30% for the S-state hyperfine splitting and
~20% for the P-state fine structure. Our results are consistent with previous results at €=2 obtained by Chen
when the lattice spacing is determined from the Sommer scale »,. We also address the problem with the
hyperfine splitting that different choices of the clover cocfficients lead to disagrecing results in the continuum
limit. Making a leading order analysis based on potential models we show that a large hyperfine splitting
~95 MecV obtained by Klassen with a different choice of the clover coefficients is likely an overestimate.
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I. INTRODUCTION

Lattice study of hcavy quark physics is indispensable for
determining the standard model parameters such as the quark
masses and Cabibbo-Kobayashi-Maskawa (CKM) matrix el-
ements, and for finding signals of new physics beyond it.
Obtaining accurate results for heavy quark observables, how-
ever, is a non-trivial task. Since lattice spacings of order a
~(2 GeV) ™! currently accessible are comparable or even
larger than the Compton wavelength of heavy quarks given
by /m, for charm and bottom, a naive latticc calculation
with conventional fermion actions suffers from large uncon-
trolled systematic errors. For this reason, effective theory
approaches for heavy quarks have been pursued.

Onc of the approaches is the lattice version of the non-
relativistic QCD (NRQCD), which is applicable for a
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>1/m, [1,2]. Since the cxpansion parameter of NRQCD is
the quark velocity squared v?, lattice NRQCD works well for

sufficiently heavy quarks such as the the bottom (v?~0.1),

and the bottomonium spectrum [3—6] and the bbg hybrid
spectrum [7-10] have been studied successfully using lattice
NRQCD. A scrious constraint with the approach, however,
is that the continuum limit cannot be taken due to the con-
dition ¢>1/m,,. Thus the scaling violation from the gauge
and light quark sectors should be sufficiently small. In prac-
tice it is often difficult to quantify the magnitude of system-
atic errors arising from this origin. Another difficulty is that
therc are a number of parameters in the NRQCD action
which have to be determined. Since in the present calcula-
tions the tuning of paramecters is made at the tree level (or
tadpole improved tree level) of perturbation theory, the accu-
racy achieved is rather limited.

Another approach for heavy quarks uses a space-time
asymmetric quark action, aiming at implementing O(a) im-
provement for arbitrary quark mass [11]. With appropriate
parameter tunings, this action is unitarily cquivalent to the
NRQCD action up to higher order corrections for a
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>1/m,, and goes over into the light quark Sheikholeslami-
Wohlert (SW) action [12] for am, <1. This approach has
been originally proposed by the Fermilab group and the ac-
tion is hence called the ““Fermilab action,™ whose first appli-
cation is found in [13]. Since the necessary tuning of mass-
dependent parameters is in general difficult, in practice one
uscs the usual SW quark action even for a>1/m, , where the
SW action is unitarily equivalent to NRQCD. This simplified
approach, called the *‘non-relativistic interpretation” for the
SW quark, has been widely used in current lattice simula-
tions of heavy quark, such as the calculation of the B meson
decay constant [14—17). Toward the continuum limit a—0
the lattice action approaches the usual O(a)-improved action
and the systematic error becomes smaller as (a/nq)z. How-
ever, the am, dependence at aqul is quite non-linear, and
it is not trivial how the systematic error could be controlled.

Recently, use of the anisotropic lattice for heavy quark
simulations has been proposed [18,19] as a possible alterna-
tive to solve the difficultics of the effective approach. On an
anisotropic lattice, where the temporal lattice spacing a, is
smaller than the spatial one ag, one can achieve a,m, <1
while keeping a,m,~ 1. Therefore, using anisotropic lat-
tices, one can reduce 0((a,mq)") (n=12,...) discretiza-
tion crrors while the computer cost is much less than that
needed for the isotropic lattice at the same a,. Naively it is
expected that the reduction of O((a,m,)") errors entails the
reduction of most of discretization errors due to a large quark
mass, since the on-shell condition cnsures that the large en-
ergy scale flows only into the temporal direction as far as one
considers the static particle, with zero or small spatial mo-
mentum. If such a naive expectation is correct, the discreti-
zation error is controlled by a small parameter a,m, as it is
for light quarks, and onc can achicve even better accuracy by
taking a continuum limit. However, it is not obvious that one
can climinate all O((a,m,)") errors at the quantum level,
even if it is possible at the tree level.

Another advantage’ of the anisotropic lattice, which is
more practical, is that a finer temporal resolution allows us to
determine large masses more accurately. This has been al-
ready demonstrated in simulations of the glueball [20,21]
and the hybrid meson [8].

Klassen calculated the charmonium spectrum in the
quenched approximation, employing lattices with the ratio of
the temporal and spatial lattice spacings §=ag;/a,=2 and 3,
as a feasibility study of the anisotropic approach [18,19]. He
tuncd the ratio of the temporal and spatial hopping param-
eters {=K, /K, non-perturbatively by demanding the relativ-
istic dispersion relation for mesons. For the spatial clover
coefficient ¢, , he adopted two choices: the tree level tadpole
improved valuc correct for any mass (a,m,20) and that
correct only in the massless (a,m,=0) limit, in order to
make a comparison. He mainly studied the spin splitting of
the spectrum, and obtained an unexpected result that two
different choices of the clover cocfficients lead to two differ-
ent values of the S-state hyperfine splitting even in the con-
tinuum limit [18,19]. The continuum limit is of course
unique, and clearly, at Icast one of the two continuum ex-
trapolations is misleading. Since the hyperfine splitting is
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sensitive to the clover coefficients, it is plausible that the
disagreement is due to a large discretization crror arising
from the choice of the clover coefficients. In an unpublished
paper [19], he pointed out the possibility that the
O((&a,m)")=0((am,)") errors still remain with his
choice of the parameters, which we review in the next sec-
tion. A similar statement can be found in some recent studies
[22,23]. In fact, he adopted rather coarse lattice spacings a;
=0.17-0.30 fm where am,~1. It is then questionable
whether the reliable continuum extrapolation is performed at
such coarse lattice spacings.

Using the same anisotropic approach as Klassen, Chen
has recently calculated the quenched charmonium spectrum
[24]. She employed £€=2 and finer (a,=0.10-0.25 fm) lat-
tices, and adopted the trec level tadpole improved clover
coefficient ¢, correct for any mass, which is expected to be
better than the other choice that is correct only in the mass-
less limit. She computed not only the ground state masses
but also the first excited state masses, and extrapolated them
to the continuum limit. Her results at é=2 are consistent
with Klassen’s results at £=2 and 3 with the same choice of
the clover cocfficients.

Since Chen’s calculation was performed only at §=2,
similar calculations at different values of £ using fine lattices
are needed to check the reliability of the continuum limit
from the anisotropic approach. In addition, the complete
P-state fine structure has not yet obtained in this approach so
far, since the mass of 3P,(x..) state has not been measured
in previous studics.

In this work, we present a detailed study of the charmo-
nium spectrum from the anisotropic lattice QCD. We per-
form simulations in the quenched approximation at =3,
employing finc lattice spacings in the range qg
=0.07-0.2 fm. We attempt to determine the ground state
masses of all the S and P states (including 3P,) as well as
their first excited statc masses. To cstimate the systematic
errors accurately, we adopt both the tree level tadpole im-
proved value and non-perturbative one for £, and both the

pole mass and kinetic mass for M, (1S5) which is tuned to
the experimental value. We focus on the lattice spacing de-
pendence and continuum limit of the mass splittings. We
compare our results with the previous anisotropic results by
Klassen and Chen to check the consistency, and with experi-
mental values [25] to estimate the quenching effect.

In addition, to understand the discrepancy of the hyperfine
splitting mentioned above, we make a leading order analysis
using the potential model. To cxamine the effect of clover
coefficients, we estimate the hyperfine splitting at leading
order. Comparing the leading order estimates with numerical
results for the hyperfine splitting, we attempt to find a prob-
able solution for this problem. Our preliminary results are
already reported in Refs. [26,27].

This paper is organized as follows. In Sec. 11, we summa-
rize and discuss the theoretical aspect of the anisotropic lat-
tice QCD. In Scc. I1I, we give details of our simulation. Our
results for the charmonium spectra are shown in Sec. 1V,
where we attempt to take the continuum limit and estimate
the quenching cffect. We address the problem of the discrep-
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ancy of the hyperfine splitting and study the cffect of clover
coefficients in Sec. V. Scction VI is devoted to our conclu-
sions.

1. ANISOTROPIC LATTICE QCD ACTION

In this section we first define the anisotropic lattice action
used in this work and fix notations. We then derive the tree
level values of bare parameters in our massive quark action,
and discuss effects of the anisotropy. Although it was already
discussed in carlier papers [22,23], we bricfly describe the
outline of derivations in order to be self-contained. We also
consider the tadpole improvement of bare parameters and see
how tree level values arc modified.

A. Anisotropic gauge action

In this work, we use the standard Wilson gauge action
defined on an anisotropic latticc:

1
Se=Blg 2, [ =Puwr0]+ 62 [1-Pyx)]),
o M)

where B8=6/g” is the gauge coupling, and P ;(x) and
P, (x) arc the spatial and temporal plaquettes with P, ,(x)
={ReTr U, .(x). The anisotropy is introduccd by thc pa-
rameter &, and we call this the “*bare anisotropy.” We denote
spatial and temporal latticc spacings as a, and a, and define
the “‘renormalized anisotropy” é=a,/a,. We have £=¢; at
the tree level, and the §=&(&,,B) at finite B can be deter-
mined non-perturbatively by Wilson loop matching [28-30].
In numerical simulations, there are two methods for anisot-
ropy tuning: either varying &, to keep & constant or vice
versa. Since the former is more convenient for keeping the
physical size constant and casicer for performing the con-
tinuum extrapolation, we adopt it in this work.

B. Anisotropic quark action

For the quark action, we employ the space-time asymmet-
ric clover quark action on an anisotropic lattice proposed in
Refs. [18,19]:

S=2 Q¥ @)

. v .
O=my+ W, 70"‘3 2 Wiy
]

i

. ®
+5 woz 0oiFi(x)+ +—
x,i

& <i<j UUFU(-") ,(3)

where vy=1 and my=a,m, is the barc quark mass, and
W#'y#Ea#W#‘yﬂ' and [:‘#,,E(J#({,F#,, with  (ag,a;)
=(a,.a). The Wilson operator I, is defined by

_ Au 2
W, Y, =Du¥u——r,D

pYu= 5wl (#=0,123) @
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with the Wilson coefficients (rq,r;)=(r,,r,) and

1 +
DywxE 5‘—(;[ Uu..vl/’.t+/.;_ U”.x_l;l/lx—/l]’ (5)
o ,
D;‘a’bxs a_Z[U“"'l/I“'*'/;-*- U”,x-,}‘/’.r—/l_z'/’x]' 6)

m

For the field tensor /.., we adopt the standard cloverleaf
definition. Note that, in Eq. (3), the factors in front of spatial
Wilson and clover operators include &, rather than &, This is
merely a convention and there is no deep theoretical reason.
This action is essentially the same as the one employed by
Klassen [19] and Chen [24]. In Chen’s work, however, v,
was a tuning parameter with »=1 fixed. The two parametri-
zations arc rclated to cach other by a ficld rescaling
=1 /\Jv. Therefore {mg,vy,w,w,}' corresponds to
{mg/v,1/v,0/v,wy/v} in our convention. Among these six
parameters {m, v,r, i, , 0,0y}, at least one is redundant, so
that we take r, as a redundant parameter and usc it to remove
the fermion doublers. Although r; may not be taken arbitrary
in the O(«a) improved anisotropic quark action [23] for the
matrix clements, it can be taken arbitrary for the hadron mass
calculation. Therefore we always sct /,= 1 and lecave r; free
in this work. The remaining parameters {mg,,v,w,w,} are
used to tune the quark mass and reduce the lattice discreti-
zation error.

For convenience in numerical simulations, we also
present the quark action in a different form. Rescaling the
fields i, , the quark action can be transformed into a form
given by

S;=2 { tth— K1 = y0) U cWreai+ ¥,

X

X1+ ¥) Uy _¥h-i1= K. 2 [rs= v)U, ot
™ + . o A
+ l/’.r(rs+ ’yi)U,- I-;'/’x—i] +’K,\'c.v Z '/’xo'ijFij(x)ll’x
" X<

'HK,:C:Z ‘/Tx(fo,‘ﬁ()i(-")l//x’ )

where K, and ¢, are the spatial and temporal hopping
parameters and the clover cocfficients, respectively. The hop-
ping parameters K, , arc related to the bare quark mass my
=a,mgq through

amgo=1/(2K)-3r /{-1, {=K,//K,. 8)
The form, Eq. (7), on the anisotropic lattice is the same as
that on the isotropic lattice in Ref. [11]. Note however that
Ref. [11] uses the inverse of our definition for £. We refer to
their definition as {y=K,/K,=1/{. Using Eq. (8) onc can

. - c ¢ .
"More precisely, Chen used the language {1y, v,,Chy,Csw} in-
stead of {m,, ¥y, w,wy}.
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convert {mq,{} to {K,,K,}. In our convention, the relation
between {v,w,w,y} and {{.c, .c,} is given by

(=& /v, c,=owlv, c=§uwylv 9)
or, equivalently,
v=§,/L, w=cr, wy=cvl. (10)

Following Ref. [11], we call the quark action Eq. (3) as
the “mass form” and Eq. (7) as the ‘“hopping paramecter
form.”

C. Tree level tuning of bare parameters for arbitrary mass

To derive the tree level value of bare parameters, we fol-
low the Fermilab method and calculate the lattice Hamil-
tonian [11]. After some algebra (see the Appendix for de-
tails), we obtain the lattice Hamiltonian, Eq. (A9). Using the
Foldy-Wouthuysen-Tani (FWT) transformation, Eq. (A17),
we then transform it to the non-relativistic form, in which the
upper components of the Dirac spinor completely decouple
from the lower ones (i.c., climinate y-D and «-E). The
transformed Hamiltonian is given by

I p? 2B
_gu_ + e
a,H ¥ n, 7()'40 2"12

2mp

-D,y-E B
rD.rEl 1§

: (1)
8myg
with

a,m,=log(1+m,), (12)
12 rodp a3)

ams mo(2+mg)  1+my’

1 20 e
= — (14)

amg my(2+my) 1+m,

1 4 (]+mo)2

/71(2,(2+1;10)2

(e~ 1 )mo(2 +mg) |’

(15)

where (g, r, and ¢, arc defined in Eq. (A8). The - B term
gives the leading order contribution to the hyperfine splitting,
while the [ y-D,y- E] term yields the fine structure splitting.

The matching condition I:IU=I:INR+ 0((15) is equivalent
to

(a,m,;)2

M=M= mg=mg=m,. 16
1 2 B E q

This yields the tree level value of bare parameters for the
massive quark:
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o Eoramg(2+mg)\?
fodp=v= \/( 4(1+my) )+

Eoramo(2+my)

mo(2+myg)
2 log(1+my)

4(1+myg) amn
c;=ry (W=rgp), (18)
(§o§r)2— 1 g(z)"xll: (§ol‘s)2mo(2+mo)
= +
my(2+mg)  1+my, 4(1 ‘*'”70)2
(19)

We note that ¢, is indcpendent of the quark mass, while »
and ¢, have complicated mass dependences. The term &ymy
=a,myo secems to exist in Eq. (17) and (19). To sec this
explicitly, we expand v and ¢, in m. This gives

] 1
v=1+ (1= & )mo+ 70— 1+ 6&r,+3(£0r0) g

24
+0(1113), (20)
0
1+ &r, |1 , ”
= 2§0 +E[—2—3§0rx+3(§0rx)']mﬂ+O(m()).
(21

The a,m o term, which is O(1) for heavy quarks at currently
accessible lattice spacings of a, '~2 GeV, appears in v and
¢, even at the tree level. Since §ymo=asm g is always mul-
tiplied by the spatial Wilson coefficient r, in Egs. (20) and
(21), one can climinate the agm, term at the tree level by
choosing

rFe= ]/§0 (22)

However, this choicc has the disadvantage that the mass

splitting between unphysical doubler states and the physical

state decreases as &, incrcases. Morcover, the hopping terms

in the quark action are no longer proportional to the 1+ 1y,

projection operators. It is also doubtful that, beyond the tree

level, the agm g term can be still eliminated by this choice.
If one adopts the conventional choice

re=1, (23)

the agm, o term remains, but the unphysical doubler states
decouple. This choice also has the practical merit that the
quark action has the full projection property, so that the cod-
ing is casicr and the computational cost is lower.

The tree-level full mass dependences of v and ¢, for ry
=1/€, and r,=1 arc shown in Figs. 1 and 2. In order to
compare at the same «a,, we choose ma, as the horizontal
axis instead of ma, where m is the pole mass. Since as_l
=1 GeV and m<mygem~4.5 GeV in current typical
simulations, we plot results for ma <4.

For r,=1/£, shown in Fig. 1, both v and ¢, arc monotonic
functions in mass, and they converge to their massless values
as &, increases at any fixed values of ma,. Hence, the
agmgq dependence can be controlled by increasing &,. At §
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40 —— . .
— =1

sof . g: (=1 1
-——— E-4
—-—- £=100

20} .

¢ (my.E)c(0.8)

0'0 A s s
0.0 1.0 2.0 3.0 4.0
m1a5

FIG. 1. Tree level full mass dependences of v and ¢, for r,=1/£=1/£,. Horizontal axis is the pole mass in spatial lattice units ma,
= & log(1-+my). Vertical axis is normalized to be | in the massless limit.

=100 the mass dependences of v and ¢, completely disap-
pear with the cost that the physical and unphysical states are
almost degenerate. In actual simulations with r,=1/§,, tak-
ing 2<§,<> to decouple unphysical doublers, one is al-
lowed to use the massless values for v and ¢,, since their
mass dependences are monotonic and very weak. In this case
mass dependent parameter tuning can be avoided cven at
agmy~1.

For r¢=1, on the other hand, the mass dependences of v
and ¢, are complicated and non-negligible cven for large &;.
Indeed v and ¢, do not converge to their massless values as
& increases at fixed ma, ., as shown in Fig, 2, The deviation
from the massless values at £,=2 is smaller than the one at
&o=1, but it becomes larger again as &, increases. Therefore,
taking £,=2-3 in simulations with ;= 1, one needs to per-
form a mass dependent parameter tuning.

For both choices of r,, it is better to usc a moderate value
of &,, rather than excessively large values. In our numerical
study of the charmonium spectra, we adopt the choice r,
=1, and make a mass dependent parameter tuning, duc to
the practical reasons mentioned above.

4.0

3.0

1.0

0.0 1 1 L
0.0 1.0 2.0 3.0 4.0
mias

Finally we show the tree level value of the parameters in
the massless limit. By taking a,m ,—0 in Egs. (17)-(19),
onc obtains

1+ §0’.s
p=1 =r, =— 24
=1 e=r, =gy (24)
in the mass form, or
1+ g()rx
§=§0~ Cs=Trs, = 5 5 (25)

in the hopping parameter form. Note that there is an ambi-
guity in the tree level value of a, /a,, since €y= ¢ at the tree
level but &, # & in the simulation. Fortunately, this ambiguity
almost disappears after the tadpole improvement, as shown
in the next subsection.

4.0 v T T >

30}
20 F R -

10 \

0'0 1, 1 1
0.0 1.0 2.0 3.0 4.0

m,a

¢(m,.8)/c(0.8)

FIG. 2. The same as Fig. 1, but for r,=1.
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D. Tadpole improvement

In this section we apply the tadpole improvement [31] to
the parameters of the anisotropic lattice action at the tree
level in order to partially include higher order corrections.
One first rewrites the lattice action using a more continuum-
like link variable (_7,-‘0: U;plu, . where u, ,=(U,,) is the
cxpectation value of the spatial or temporal link variable;
i.e., one replaces

Ui,()_’“s,lui.()v (26)

and then repeats the tree-level calculations. We will show
below how the tree-level values of bare parameters are modi-
fied.

1. Gauge action

By the replacement of Eq. (26). the anisotropic gauge
action Eq. (1) becomes

1 _ < =
~_PJA'+§()P,\I
0

6
Sg—v—z =
g

+ constant independent of T, |, 27

where 13,“.= fReTrU,,, and g* and £, arc given by

nHre
é-'_)_ g2 — gZ E —'ng - <Psl)§
- T s vn 0= TS0 LR
"3“1 (Pss’xp.u) Hs (Pss’)

Requiring space-time symmetry for the action, Eq. (27), in
the classical limit, one obtains the tree-level tadpole-
improved value of the anisotropy (denoted by an index
L‘T]?,)’

EM=E)=(u,/u,)&. (29)

In practice £™" in Eq. (29) agrees with the renormalized an-
- “q e 2

isotropy & within a few % accuracy at g~ ~ 1. Therefore one
can replace the factor (u,/u;) €, by £ in the following equa-
tions. This simplifies the tree level expression. Moreover, the
arbitrariness for the choice of anisotropy disappcars.

2. Fermion action

When the fermion action is rewritten in terms of U; and

U, instead of U; and U, the action keceps the same form
with

k,\

ukK.. K=uk,. (30)

- ~ ”
co=uwle,, ¢=uuic,. @3hn

5

Then {=K,/K; and the barc quark mass am, = 12K,
—(1+3r,/¢) are modificd to

=K, IR = (u,lu,)L, (32)
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~ 1 .
ago= 5~ (1+3r,/0)
!

agmg | 1 —u,
=—+——1+3r /{)—. (33)

u, u, u,
Using parameters with the tilde, one can repeat the deriva-

tion in the previous subscction, For a massless quark, one
obtains

. ~ R R
(=é=¢§ c=r,, ¢=—F —=—5—. (34

P

Therefore. tadpole-improved (TI) tree-level estimates are
£T|=("4\-/"1)EO=§0’ (35)

which indicates that non-perturbative { at 17:‘,0~0 is closer to
&, than to €. and

(-T'—r_" M= I 1+ (g fug) €ors _ 1 1+&r
B “3 B It ", ";_y 7 "J"; 3 .
(36)

As can be scen in Egs. (35) and (36), the tadpole improve-
ment climinates the uncertainty of choice of anisotropy (i.c.,
whether to chose &, or &) at tree level. Converting to the
{v,w.wy} convention, onc obtains

TI_ 1+ (e, lug)éors

r, 1

Ti_ TI_ *

vi=1, -, Wy =—5—

uf ugu, 2(u,lug)éo

w' =

(37

Note that »™" is normalized to 1 since » equals &, /¢ and not
£&/¢: hence, the former definition is practically more conve-
nient than the latter one. Note also that tadpole factors in ¢]'
and w]' are different because w, cquals ¢, »/& and not
¢, vlE.

Similarly. for massive quarks, tadpolc-improved tree-level
estimates become

= ~ 7
l/{Tl:ﬁ \/ "s’“o(zt'"o) +
", 4(1+my)

l“\ll.l()( 2+my)

mo(2+mg)
2(14,/11,\)2§(2,10g(] +my)

= (38)
4(1+my)
with »T'=¢,/¢™, and
M=2 39)
BT
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| (™= u ropt
c;rl= 2‘ + e §() K
1

o, L me(2+mg)  \Us/ 1+n,

4_(gi)z(§m})%§o(2+”§o)]’ )

g 4(1+mg)?

where mo=am .

I11. SIMULATIONS

We proceed to calculate the charmonium spectrum in the
quenched approximation as our first numerical study using
the anisotropic lattice. In this section we describe the com-
putational details of our quenched charmonium calculation.

A. Choice of simulation parameters
For the gauge sector, we use the anisotropic Wilson gauge
action given in Eq. (1). Throughout this paper, we employ
&=3, where £ is the renormalized anisotropy. In order to
achicve €=3, we tunc the bare anisotropy &,. using the pa-
ramectrization of p=§&/&; given by Klassen [29]:

N\ (&) 1+ag® ,
B)=1+1-c]— ", 41

where ay=—0.77810, ;= —0.55055 and

we 1.002503&3 +0.39100£%+ 1.47130£—0.19231
n E+0.26287¢2+1.59008£—0.18224

(42)

We perform simulations in the quenched approximation,
at four values of gauge coupling 8=15.70, 590, 6.10 and
6.35. These couplings correspond to a,=0.07-0.2 fm and
A eparm= 0.16-0.48 for m y,mn=1.4 GeV. The spatial lat-
tice size L is chosen so that the physical box sizc is about 1.6
fm, while the temporal lattice size T is always sct to be T
=2¢L=6L.

For the charm quark, we use the anisotropic clover quark
action, Eq. (7), with the conventional choice of the spatial
Wilson cocfficient, ,= 1, as mentioned in Sec. 11 C. We take
two values for the bare quark mass mo=(m).mg) at cach 8
in order to interpolate (or extrapolate) results in my to the
charm quark mass m{™™ . The charm quark mass mg™™ is
fixed from the experimental value of the spin averaged 1S
meson mass. In this procedure, we use both the pole mass
Mg and kinetic mass M\, for the 1S meson. For ¢, the
ratio of the hopping parameters, we adopt both the tree-level
tadpolc-improved value ¢™ and a non-perturbative value ¢N°
determined from the meson dispersion relation. We describe
our method of tuning ¢ in detail in Sec. 111 C. For the spatial
clover cocfficient ¢,, we employ the tree-level tadpole-
improved valuc for massive quarks, Eq. (39). Note that ¢,
has no mass dependence at the tree level. On the other hand,
we adopt the tree-level tadpole-improved value in the mass-
less limit, Eq. (36), for the temporal clover coeflicients ¢, .
We discuss possible systematic errors arising from our

PHYSICAL REVIEW D 65 094508

TABLL |, Simulation parameters. La, is calculated using u""’ R
the lattice spacing determined from r,.

B & & c, ¢ a@®[fm] L'XT  La, [fm]
570 3 2346 1966 2505 0.204 8% 48 1.63
590 3 2411 1.840 2451 0.137 12)’x72 1.65
6.10 3 2461 1762 2416 0.099 16* X 96 1.59
6.35 3 2510 1.690 2382 0.070 24X 144 1.67

choice of the parameters { and ¢, , in Scc. Il E. The tadpole
factors u, , in Egs. (36) and (39) arc cstimated by the mean
plaquette prescription:

"s=<Ps:’>IA7 u,=1. (43)

If we adopted the alternative  definition  u,
=(P )" I{P )" instead, u, would be greater than 1. We
use £ instcad of (u,/u;)€, in Eq. (36).

Gauge configurations are generated by a 5-hit pseudo heat
bath update supplemented by four over-relaxation steps.
These configurations are then fixed to the Coulomb gauge at
every 100-400 sweeps. On each gauge fixed configuration,
we invert the quark matrix by the BiCGStab algorithm to ob-
tain the quark propagator. We always perform the iteration of
the BiCGstab inverter by T times, where T is the temporal
lattice size. By changing the stopping condition for the quark
propagator, we have checked that this criterion is sufficient
to achicve the desired numerical accuracy. We accumulate
400-1000 configurations for hadronic measurcments.

Our simulation parameters are compiled in Tables I and
11. In Table 111, we compare some of the parameters used in
our simulation (labeled by “set A™) with those in the previ-
ous studies by Klassen (**set B” and “sct D’) [18,19] and by
Chen (*set C*) [24] for later references.

B. Meson operators

In this work, we calculate all of S- and P-state meson
masses of charmonia, namely 'So(7,), 3S,(J/w). 'P\(h.),
3Po(Xe0)s Pi(Xe1) and 3Ps(x.2). For this computation,
we measure the correlation function of the operators which
have the same quantum number as one of above particles. In
Table IV we give the operators for the S- and P-statc mesons.
There arc two types of operators: those of the form /T ¢ and
of YyI'Ays, where T represents a combination of y matrices
and A the spatial lattice derivative. We call them the T op-
crator and the T'A operator, respectively. The latter appears
only for the P-state mesons. Note that there are two lattice
representations for the 3P, state (E and T representations)
duc to breaking of rotational symmetry.

We measure the correlation functions of the T’ operators

Q&m=2<@ﬁwJ

X 219 l/710.()1‘ l//yo.ﬂ/;;— l(r/‘\‘o' 3'0> ° (44)
Yoo
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TABLE I[I. Simulation parameters continued. In fourth column, “NP** and **TI” denote the nonperturba-
tive and tree level tadpole improved values for £ respectively. ¢ pg v are the speed of light obtained from the
fit for the pseudoscalar ('Sy) and vector (3S,) mesons.

B L¥XT

A g I Sweep/conf  No. conf Cps cy
5.70 83%48 0.320 2.88 (NP) 100 1000 1.005(10) 1.008(11)
5.70 8*x 48 0.253 2.85 (NP) 100 1000 1.005(10) 1.008(11)
5.70 83x 48 0.320 3.08 (TI) 100 1000 0.962(9) 0.965(10)
5.70 83 x48 0.253 3.03  (TD) 100 1000 0.966(9) 0.969(10)
5.90 123% 72 0.144 2.99(NP/TI) 100 1000 0.991(8) 0.993(9)
5.90 12¥x72 0.090 2.93(NP/TI) 100 1000 0.991(8) 0.994(9)
6.10 16*X 96 0.056 3.01 (NP) 200 600 0.997(9) 0.997(9)
6.10 16X 96 0.024 296 (NP) 200 600 0.997(9) 0.997(9)
6.10 16* X 96 0.056 292 (T 200 600 1.017(9) 1.018(9)
6.10 16* X 96 0.024 288 (TD 200 600 1.017(9) 1.016(10)
6.35 243X 144 —-0.005 2.87(NP/TD) 400 400 1.006(11) 1.011(11)
6.35 243 % 144 —0.035 2.81(NP/TI) 400 400 1.007(12) 1.009(11)

where f3 is a source smearing function, and we always adopt
a point sink. We employ the point source (s=0) with f3~°
=3J,0 and an exponentially smecared source (s=1) with
fi=1=A,e BN where 4, and B, arc smearing parameters.
Therefore we have three source combinations, ss' =00, 01
and 11, for the I' operators. The smearing parameters 4, and
B, at each B arc chosen so that the effective mass of the 1S
meson for ss'=01 has a wide platcau.

To obtain the correlation functions of the I'A operators,
we measure

csin=3 (ﬁ,,ria,w‘.,

X 2 l/710,(] r‘ l/l."o-m.,\:z T"It(]_ yn> * (45)

¥0.50

where A = ey — Wy, is the discretized derivative at
the sink, and we cmploy a smeared derivative source (s
=2) given by

FIl= A B+ g o~ t=il (j=123)  (46)

with A and B, the same as those for s=1. For the 3P, state.
s
]
For the T'A operators, we have two source combinations,
ss'=02 and 12, In total, S-statc mesons have ss’=00, 01
and 11 source combinations, and P-statc mesons have 00, 01,
11. 02 and 12 source combinations except for *P,. Since
there is no T operator for 3P, it has only 02 and 12 source
combinations.

To calculate the dispersion relation of S-state mesons, we
measure correlation functions for four lowest non-zero mo-
menta,

'
for example, we calculate C§5,,0=2f_j=lC with T';=y;.

a;p=(27/L)x{(1,00), (1,1,0), (1,1.1). (2,0,0)},
@7

in addition to thosc at rest. Correlation functions with the
same value of |p| but different oricntations arc averaged to
increasc the statistics.

C. Tuning bare quark mass m, and fermion anisotropy £

Let us describe our method of tuning { and my in detail.

. . 2
We determine the input parameters myg (=m(',,m(,) and ¢
(=M. 28" as follows. First we fix {=£=3 and choose m(’)

TABLE I1I. Comparison of simulation paramelers in various anisotropic lattice studics of the ce spectrum, In the third to fifth columns,
Tl (m=0), TI (m=0) and NP respectively denote the tree level tadpole improved value for massive quarks, which are correct only in the
massless limit and the non-perturbative value. The sixth column shows which method is used for the estimation of the tadpole factors u,,

(the plaquette prescription u’

> or the Landau mean link prescription "), The seventh column shows which 1S mass is tuned to the

cxperimental value. The cighth column denotes quantities used for the scale setting. The final column is the continuum estimate of the

hyperfine splitting from the uf-linczn’ fit with the scale set by ry.

Set ¢ ¢ c, <, u,, M1 ) Scale input HFS (a,=0,ry)
(A) this work 3 Tim=0), NP Tlm=0) Tim=0) u” Mopote+ Miin ro, 1P-18, 28-18 ~75 MeV
(B) Klassen [19] 2,3 NP Ti(m=0) Tim=0) ut Mgt = My ro =75 McV
(C) Chen [24] 2 NP Tim=0)  Tim=0) u*  Mygd=Ms) ro =75 MeV
(D) Klassen [18,19] 2,3 NP Tim=0) Tlm=0) ut Mpgre(= Myiy) ro ~95 McV

094508-8



CHARMONIUM SPECTRUM FROM QUENCHED . ..

TABLE 1V. S- and P-statc operators. In the first and second
columns, the state is labeled by 25*'L, and J”¢ respectively. The
third column shows the particle name for the charmonium family.
In the fourth and fifth columns, we give the corresponding I op-
crator and I'A operator.

I+, J"¢ Name T operator I'A operator
ISO 0~ - A ';75'/’
1T I gy
'p, 1*- h. @r,-jt/l '/775’-\:"/’
*Py 0** Xeo vy YEyA W
ir, | I vyiysy Wy~ vty

P 27" Xe2 ';{'Yi‘-\i_ ;3,1 (E rep)

(/7{7,'—\,"*' ')'in}‘/’ (T rep)

and m;’, where the 1S meson mass roughly agrees with the
experimental value. Then we determine both the tree-level
tadpolc-improved value ¢ and the nonperturbative value
N at mg=mg, and m.

To obtain ¢™ at fixed m,, we usc Egs. (33) and (38). We
replace the factor w,/u, in Eq. (38) with &/ &g, using Eq. (29).
On the other hand, ¢M' is obtained by demanding that the
relativistic dispersion relation is restored at small momenta
for the 1S meson. The dispersion relation on a lattice is
given by

E(p)*=E(0)*+c*p*+0(a’p*) (48)
Mpo]\.
Mpol; M P + O(U‘P )s (49)

where ¢ is called the “speed of light,”” and M. and M, are
the pole and kinetic masses of the 1S meson. Throughout
this paper, a capital letter M denotes the meson mass, while a
small one m the quark mass. Generally ¢ is not cqual to one
duc to lattice artifacts. We cextract the speed of light ¢ by
fitting E(p)? lincarly in p? for three or four lowest momenta,
since the linearity of E(p)? in p? is well satisfied. We iden-
tify ¢~ with a point where ¢=1 or cqmvalcmly Meote
=My, for the 1S meson. To determine M, we perform
preparatory simulations and calculate ¢ for {=2.8, 3.0 and
3.2 at my=my and m3 using 100-200 gauge configurations.
Then we find ="', where ¢=1, from an interpolation of
£. As shown in Table 11, the speed of light ¢ at ¥ is indeed
cqual to 1 within 1%, which is roughly the size of the sta-
tistical error.

Production runs for the charmonium spectrum described
in Sec. IIIA are performed at my=(my.m}) and ¢
=™, NPy for cach B. Accidentally, for 8=15.90 and 6.35,
{™'=¢NP holds within our numerical accuracy, so we use the
same data for the analysis at these S.

Finally we lincarly interpolatc or extrapolate results at
my=(m, ,mf,) to thosc at m()—m(‘,h T with fixed ¢ (=M or
{NP). As alrecady mentioned, we ulumfy mS™™ with a point

PHYSICAL REVIEW D 65 094508

where the spin-averaged 1S meson mass M, ( | S_) in units of
a physical quantity Q),, is equal to the corresponding experi-
mental value:

M (1) _ Mo p(18) , (50)

Q lat chpl

with M (1 S_)—3067 6 McV for charmonium. In this
work, we adopt the Sommer scale 4 and the spin- -averaged
mass sphttmg_,s AM(]P lS) M1 P) M(1S) and

AM2S-18)= M(2S) M(IS) as the scale quantity Q. The
spin-averaged masses are defined by

M(nS)=[3M(n3S,)+ M(n'S,) /4, (51)

M(nP)=[3M(n'P,)+5M(n>P,)+3M(n*P,)
+M(n3Py)1/12 (52)

with n(=12,..
mental values of the mass splittings AM(1P-15) and

AM(25-18) are 457.9 McV and 595.4 MeV, respectively.
The experimental values of r, is not known, and we use a
phenomenological estimate o= 0.50 fm. For the definition
of the lattice meson mass My, in Eq. (50), we have two
choices in the case of {=¢{™': onc is the pole mass Mg and
the other is the kinetic mass Myy,. On the other hand, in the
case of =N, M g1e= My, should hold by definition. In
practice, there can be small deviations duc to the statistical
crror. Therefore we have 4 (=2X2) choices for (M,.{) in
total.

.) the radial quantum number. The experi-

D. Mass fitting

From meson correlation functions we extract the meson
mass (energy) by standard x? fitting with a multi-hyperbolic-
cosine ansatz (termed 2 g-cosh fit below)

M-

where ss’ represents the source combination (00, 01. ctc.), ¢
is the time scparation from the source, and #g, is the number
of states included in the fit.

We determine the mass of the ground statc and the first
radial excited state for each particle, and the mass splittings
such as AM(1P-15) and AM(25-15), from a 2-cosh fit
using several correlation functions with different source
combinations simultancously. Here we use the corrclation
functions of ss'=00, 01 and 11 sources for S states. while
00, 11, 02 and 12 sources are uscd for P states except for
3P1 For JP,, we use the correlation functions of 02 and 12
sources. The 2-cosh fit for each § state always gives the
ground state mass consistent with that from the 1-cosh fit. On
the other hand, for the P state. the 2-cosh fit is preferred over
the 1-cosh fit because the 1 P mass from the 1-cosh fit using
the correlation function of 11 and 12 sources occasionally
disagrees by a few o, due to excited state contaminations. To

=1

C;fm(t)= :Zo A" cosh
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0.88 T T T
0p=(0,0.0)
086 | 1's, 0p=(1,00) ]
' ©p-(1,1,0)
Ap=(1.1.1)
08 |~ dagqqqq S
@ 0.82
2%
p 0.80 |
0.78 F
0.76
0.74 > v .

FIG. 3. S-state effective masses at 8=5.90, am =
shows the 1'S, and 13§, masses for the source ss’ =00, 01 and 11.

determine the mass of the first excited state accurately, it is
better to adopt results from the 3-cosh fit. However, we do
not perform the 3-cosh fit systematically because of the in-
stability of it, and adopt results from the 2-cosh fit for the
first excited state mass. This may cause an overestimation of
the first excited statc mass due to a contamination from
higher excited states.

To determine the spin-averaged 1S mass and the 1§
cnergy at p#0, and thc spin mass splittings such as
AM(13S,-1'Sy) and AM(13P,-13Py), we perform a 1-cosh
fit (n5=1) using the source combination which gives the
widest plateau in the effective mass. We use the 01 source for
the S state and the 12 source for the P state. We always check
that the spin mass splitting from a simultancous 2-cosh fit
mentioned above agrees with that from the 1-cosh fit within
1g-20. We also check that the splitting AM(1°P,-13Pg)
from a 1-cosh fit using the 11 source agrees with that using
the 12 source.

In these analyses, we perform both the uncorrclated fit
and the correlated fit which takes account of the correlation
between different time slices and different sources. The un-
correlated fit is always stable and gives x*/Npp<0.5 (Q
~1). The correlated fit with 1-cosh ansatz is also stable and
produces results consistent with those from the uncorrelated
fit. However, the correlated 2-cosh fit is often unstable, either
failing to invert the covariance matrix or giving large
X2INpg>1 even if it converges. Therefore we adopt the un-
corrclated fit for our final analysis.

The fitting range [, Jfmax] fOr the final analysis is deter-
mined as follows. From an inspection of the effective mass
plot, we determine 7,,,, which roughly has the same physical
length independent of B. We repeat the 1- and 2-cosh fits for
each B, varying t;, with fixed 7., . and find a range of 1,
where the ground statc mass and the first cxcited state mass
(for 2-cosh fit) arc stable against 7.;,. We also check that it
has reasonable valuc of x*/Npg. The final ¢, is then cho-
sen from the region accepted above so that its physical
length is roughly cqual independent of S.

Typical examples of the effective mass plot and
tmin-dependence of the fitted mass are shown in Figs. 3, 4

aM
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0.81 1°s, 7
0.80 J
0.79 1
0.78 1
0.77
0.76 J
0.75 9
0.74 000

o001
0.73 011 1
0.72 v

30

0.144 and £=2.99. The lcft figure shows the 115, masses at p#0, while the right

and in Fig. 5, respectively. Our final fitting ranges are sum-
marized in Table V. Statistical crrors of massces and mass

‘splittings are estimated by the jackknife method. The typical

bin size dependences of jackknife errors for the ground state
masscs are shown in Figs. 6 and 7. We always adopt a bin
size of 10 configurations. i.c., 1000-4000 sweeps.

E. Scaling violation and the continuum limit

We discuss scaling violation for our action and how the
results at finite a, are extrapolated to the continuum limit
a,—0. Since we use the anisotropic Wilson gauge action
with nonperturbatively tuned &, the scaling violation from
the gauge sector starts at O(( (lx/\ocl)):).

For the quark scctor, we use the anisotropic clover quark
action with tadpole-improved clover cocfficients ¢, ,, and
cither the tadpole-improved value ¢™ or nonperturbative
value {™ for {. Since we adopt the tree-level tadpole-
improved value of ¢, for massive (a,m,=0) quarks. the
scaling violation arising from the choice of ¢, is

0.93
0.92
0.t
0.90
0.89
= 0.8
“ 087
0.86
0.85
0.84
0.63

o 1.

) Duv ey f—— |

o 01
s 11

A

10

FIG. 4. P-state (1'P)) effective masses at 8=5.90, am g
=0.144 and {=2.99. The left figure shows the masses from the I’
operator, while the right shows those from the I'A operator.
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02's, :
o 2381 i
0.940 J
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< 0.920
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FIG. 5. Fit range (/,,,) dependence of masscs at 8=5.90, a,m,,=0.144 and {=2.99. The legend denotes the state (fit ansatz, quark

source).

O((a;Aqcep)’) and O(aagAqgep)- On the other hand, for ¢,
we adopt the tree-level tadpole-improved value correct only
in the massless (a,m,=0) limit, which generates an addi-
tional O(a_TAQCD-asmq)=O(aﬁAQCDm,’) crror. Recall that
the a;m, (not only a,m,) dependence of the parameter re-
mains with our choice of the spatial Wilson coefficient ry
=1 at the tree level, as discussed in Sec. II. In the case of
£=NP, therefore, the scaling violations are 0((0,\/\an)2)

and O(uiAQCqu) at leading order, and O(aa;Aqcp) at
next-to-lcading order. The sizc of thesc crrors are cstimated
to be O((a,A gep)?)=7%~1%, O(a;Agepmy)=37%—-4%
and O(aa Agcp)=4%-1% for B=5.70-6.35 correspond-

ing to a,'~1.0-2.8 GeV. Herc wec took Agcp
=250 MeV (=A% ") and m,= 1.4 GeV (=mgn). and

the renormalized coupling constant « is cstimated from Eq.

TABLE V. Fit ranges we adopted. In the first column, AS and AP denote the S- and P-state spin mass

splitting respectively.

State Fit form Source Fit range (70 /tmax)
B=5.70 B=5.90 B=6.10 B=6.35
15,28 2-cosh 00+01+11 11/24 17/36 22/48 32/72
1P2pP 2-cosh 00+ 11402+ 12 7/18 11/25 15/35 21/50
1S,AS 1-cosh 01 13/24 19/36 26/48 38/72
1S(p#0) 1-cosh 01 13/22 20/32 26/45 40/66
AP I-cosh 12 11/18 17/25 23/35 33/50
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FIG. 6. Bin size dependence of jackknife crror of a,M(1'S,)
with p=0 and p#0 at 8=6.10, a,m_,=0:024 and {=2.88.

q0

(28). 1t is expected that the O(aagAqgep) errors are largely
climinated by the tadpolc improvement.

When the tree level tadpole improved value ¢ is used
instead of {"*, we have additional O(«) and O(aaym,) er-
rors, since the kinetic term is a dimension four operator. The
size of the additional crrors is estimated to be O(a)
=15%-12% and O(aam,)=22%—-6%. Again we expect
that the dominant part of this error is eliminated by the tad-
pole improvement.

In this work we adopt an af-lincar extrapolation for the
continuum limit, because the leading order scaling violation
is always O((a,Aqcp).aiAgepm,) irrespective of the
choice of {. We also perform an a,-linear extrapolation to
estimate systematic errors. In practice we use results at three
finest lattice spacings t.e., $=5.90-6.35 (aym,<1) for the
continuum extrapolation, excluding results at 8=5.70
(agmgy>1), which appear to have larger discretization crrors
as expected from the naive order estimate. Performing such
extrapolations for all sets of M= (Mg, Miin) and

0—01;80
0.70 } =S, P
P
,'//m/ /'/
~ /,,,/’/ m,»"
W 065 & - |
E-
P o
g et
0.60 |-~ 1
% P /9
e
0.55 . .
0.0 0.5 2 1.0
(a,p)
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FIG. 7. Bin size dependence of jackknife crror of a,M(1'P,) at
B=6.10, a,m,,=0.024 and {=2.88.

=(L", 8™, we adopt the choice which shows the smoothest
scaling behavior for the final value, and use others to csti-
mate the systematic errors.

IV. RESULTS

Now we present our results of the quenched charmonium
spectrum obtained with the anisotropic quark action. In this
section, we first compare results of ZN" with ¢™'. Second, we
determine the lattice scale, and study the effect of (M,.0)
tuning. We then show the results of charmonium masses and
mass splittings, and estimate their continuum limit.

A. Dispersion relation and ™

In Fig. 8. we plot a typical example of the dispersion
relation and the speed of light. As shown in the left figure,
the lincarity of E” in p? is satisficd well. Indeed the “effec-
tive speed of light,” defined by

E(p)*—E(0)?

calP= \| ———— (54)
01;23 ColP)
"
1.10 I D113; g.,(p) 4
_— 138' c
© 100 =g o
- 2
0.90 | J
0.80 L ” A
0.40 0.60 0.80 1.00
ap

FIG. 8. Dispersion relation (left) and speed of light (right) of the S state at 8=5.90, amn,,=0.144 and {=2.99. On the right, we show

the effective speed of light ¢ (p) and the speed of light ¢ from the fit.
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FIG. 9. The tadpole improved bare mass IEOEa,mZ(', versus v
=¢,/¢ at £=3. “TI” and “NP” denote the tree level tadpole im-
proved value and nonperturbative value respectively. Circles and
squares arc our data at my=my,mp (=m5™) for B=5.7-6.35.
The error bars for the circles denote the statistical uncertainty of
WP=£, /N We also plot Klassen’s data at my=mc™™ for 8

=5.5-5.8 as open diamonds.

has a wide plateau as shown in the right figure. Therefore we
employ the linear fit in p? to extract the speed of light ¢ from
E?. This figure also illustrates that the speed of light ¢ for
1S, agrees well with that for S, within crrors. This is in-
deed the case for all data points as observed in Table II. The
speed of light ¢ seems universal for all mesons as pointed out
in Ref. [24].

The nonperturbative value of Z, ¢NF, is obtained by de-
manding that the speed of light ¢ is equal to 1 within 1%. On
the other hand, the tree-level tadpole-improved value, {T',
gives ¢ deviating from 1 by 2%-4% i.c., 20—4 0 at most,
which is much smaller than the size of the O(a,aaum,)
error (12%-15%,6%—22%) estimated in the previous sec-
tion. This suggests that O(«a,aa,m,) errors associated with
{™ are almost eliminated by the tadpole improvement, as
expected.

In Fig. 9, ¥™=£,/{N? and »"'=¢,/¢™ at my=m, and
mj are plotted as a function of n7g= a,m;(l, . We find that vN°
(circles) and v™ (squares and solid line) agree within crrors

at my<0.3 but deviate from cach other at my=0.5 (B

PHYSICAL REVIEW D 65 094508

=5.7). The latter is one of the reasons why we exclude this
point in the continuum extrapolation. One also notices that
the slope of » approaching the value =1 in the continuum
limit is steep, and in addition, the difference ¥N*— v™ for our
data does not have a smooth dependence in a,m:([]. As dis-
cussed in Sec. V, these features of NP bring complications in
the scaling behavior of the hyperfine splitting.

B. Lattice scale

In this work, we determine the lattice spacing via the
Sommer scale ry [32], the 1P-1S meson mass splitting, and

the 25-18 splitting. We compare the results obtained with
these different scales, in order to estimate the quenching er-
rors.

1. Scale from the Sommer scale r,

In order to calculate the static quark potential needed for
the extraction of r(, additional pure gauge simulations listed
in Table VI are performed. Using La,=1.4 fm lattices, we
measure the smeared Wilson loops at every 100-200 sweeps
at six values of B in the range 8= 15.70-6.35. Details of the
smearing method [33,34] are the same as those in Ref. [35].
We determine the potential V(;:) at each B from a correlated
fit with the ansatz

W(r.i)=C(r)e"" ™, (55)

where #=r/a, and t=t/a, are the spatial and temporal ex-

tent of the Wilson loop in lattice units. The fitting range of
is chosen by inspecting the plateau of the effective potential

a,Voa(r,1)=log[ W(rD/W(r,i+1)). A correlated fit to V(r) is
then performed with the ansatz

- . 1
aV(r)y=aVy+(aao)r— (e/§)l—: +a,bV,

=l

where o is the string tension and [ 1/r] is the lattice Coulomb
term from one-gluon exchange:

(56)

a,év=1

TABLE VI. Simulation parameters and results for the Sommer scale r,. The fifth column shows the

number of smearing steps we adopted.

B8 rola, L3XT La, [fm] Smear No. Conf Sweep/conf
5.70 2.449(35) 123% 72 245 4 150 100
5.90 3.644(36) 12*% 36 1.65 5 220 100
6.00 4.359(51) 12*x 48 1.38 6 150 100
6.10 5.028(35) 16% X 48 1.59 6 150 100
6.20 5.822(33) 16 X 64 1.37 10 220 100
6.35 7.198(52) 243X 72 1.67 12 150 200
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FIG. 10. Results of ry/a,
result of a, /ry as a function of B and its fit curve, Eq. (59).

r = &’k cos(k- 1)
= =47Tf . (57)
F

-a(2 3
( )4Zsmuan)
We extract 1y /a, from the condition that

i=1

,d(V—38V)
! dr

/ c—e
rola,= faa.c (58)

with ¢=1.65. The error of ry/a, is estimated by adding the
jackknife error with bin size 5 and the variation over the
fitting range of r. Keeping to the ansatz, Eq. (56), we attempt
three different fits: (i) 2-parameter fit with e=a/12 and /
=0 fixed, (ii) 3-parameter fit with e= 7/12 fixed, and (iii)
4-parameter fit. We check that ry/a; from these three fits
agree well within errors (see Fig. 10). We adopt »y/a, from
the 2-parameter fit as our final value. Results of ry/a; at
cach B are summarized in Table VI.

Next we fit »y/a; as a function of 8 with the ansatz pro-
posed by Allton [36],

(a,/re)(B)=f(B)(1 +c2a(B)*+ csa( By,

(59)
£(B)
B

where 8,=6.00 and f(B) is the two-loop scaling function of
SU(3) gauge theory,

a(B)=7mv

1
> E y b /2b,
f(ﬁ 6/& bOé ) OCXP( ZbOg_)a (60)
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. The left figure shows typical fit range (r;,) dependence of r/a, and its averaged value. The right is the
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C@m T EmT
and ¢, (1=2,4) parametrize deviations from the two-loop
scaling. From this fit, we obtain that

¢p=0.01230(29), ¢>,=0.163(54), ¢4=0.053(22)

(61)

with ¥*/N,=0.51. As shown in Fig. 10, the fit curves re-
produce the d 1 very well. We use Eq. (61) in our later
analysis. Finally, we obtain a; from the input of r
=0.50 fm. The values of a, at each B are given in Table I.

2. Scale from charmonium mass splittings

The quarkonium 1P-1§ and 2S-1S splittings arc often
uscd to set the scale in heavy quark simulations since the
experimental values are well determined and they are
roughly independent of quark mass for charm and bottom.
Here we take the spin average for 1§, 1P and 2.5 masses, so
that the most of the uncertainties from the spin splitting can-
cel out. The lattice spacing at my=mi™™ is given by
(O=AM(1P—1S), AM(25-185)),

(62)

"5 =§Qlat/Qexpl

where Oy, denotes the value in the temporal lattice unit. We
use the data of (M q.-¢™) and check that other choices do
not change a; € sizably. In Table VII we summarize the values
of mghm™ and aQ for all Q including r, and plot the 8

dependence of a? in Fig. 11. We observe that a;™ lS<a"’

<u ’S 'S holds for B=5.70-6.35. To show this explicitly, on

IPIS/a 25- IS/(I

the nght we also plot the ratio «a, and a; ¢ as

. Deviations from unity are about —5%
for a, +(10-15)% for a'S'S/a

+(10-25)% for a“s"s/aw IS at our simulation points. The
major source of dlscrep'mcy among the lattice spacings from

a function ofa

17 1s/a"’ and hence
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TABLE VII. Bare charm quark mass m{™™ and lattice spacing a¥ for Q=ry, | P-15 and 25-18.
B ro 1P-15 25-15
mpgham a’® {fm] mham a)lﬁ-lsf[fm] e afs_'s_[fm]
5.70 0.2843(3) 0.2037(0) 0.2994(115) 0.2077(30) 0.3782(190) 0.2272(45)
5.90 0.1106(2) 0.1374(0) 0.0972(58) 0.1333(18) 0.1664(150) 0.1544(44)
6.10 0.0319(1) 0.0991(0) 0.0155(60) 0.0934(21) 0.0632(110) 0.1099(37)
6.35 =0.0179(1) 0.0697(0) —0.0301(43) 0.0650(18) 0.0115(84) 0.0808(30)

different observables is the quenching effect. Another source
is the uncertainty of input value of r,=0.50 fm, which is
only a phenomenological estimate. Other systematic errors

are expected for afs"s for the following reasons. Our fitting
for 28 masses may be contaminated by higher excited states.
In addition, the lattice size ~1.6 fm may be too small to
avoid finite size cffects for 25 masses. On the other hand, the
fitting for | P masscs arc more reliable, and we have checked
that the finite size effects are negligible for AM(1P-15) in
preparatory simulations (see also Ref. [24]). For these rea-

sons, we consider the scale a!”'S to be the best choice for
physical results on the spectrum. We present the results for
three scales in the following, however, to show the depen-
dence of the spectrum on the choice of the input for the
lattice spacing. In order to make a comparison with the re-
sults by Klassen and Chen, who employ ry to set the scalc,

. r
we usc the results with ¢ °.

C. Effect of (M, ,{) tuning

In Fig. 12, we plot the results of spin-averaged mass split-
tings and spin mass splittings for each choice of (My,,{).
The upper two figures show the spin-averaged splittings

AM(IF—IS_) and AM(ZEIS_), while the lower two show

0.25 r r '
b} er, input

\'x._ \ n 1uP—1S input ]

0.20 } X €4 2S-1S input ]

E o015 |
o
0.0 }
0.05 ; . '
5.6 5.8 6.0 6.2 6.4
B

the S-state hyperfine splitting AM(13S,-1'Sy) and the
P-state fine structure AM(13P,-13P,). Numerical values for
each choice at 8=6.1 are given in Table VIII. Here we set
the scale with r, because it has the smallest statistical error.

For all of mass splittings in Fig. 12, the results for
(Mp(,lc,{,’N")':(Mkin.{Np) well agree  with those for
(M, L™, suggesting that the mass splittings are indepen-
dent of the choice of ¢ whenever the M, tuning is adopted.
This can be understood as follows [11]. Setting the measured
kinetic mass to the experimental value M= M, for the
meson roughly corresponds to setting my=m gq,m, for the
quark, where the kinetic mass for the quark m» is given by
Eq. (13) at the tree level. Since the spin-averaged splitting is
dominated by ma, setting m>=m g, for ecach { results in
the same valuc for this splitting. With our choice of the spa-
tial clover coefficient ¢,=r,, mg=m, also holds indepen-
dent of ¢ at the tree level. Hence the spin splitting takes
approximately the same value because it is dominated by the
magnetic mass my given by Eq. (14).

As a result, we practically have only two choices for
(M, ), iey (Mpgiei8™) and (Mg, 8N =(Myin, &™)
=(My;,,{™). As observed in Fig. 12, however, the results
for (Mo ,{™) agree with thosc for the other choices at three
finest a,, within a few o for the hyperfine splitting and 1o

1.20 } { :
1190 } E { E ;
e £=3
o 1.00 i
o E []
0.90 f BQ=1P-1S |
4Q=2S-1§
0'80 A i A 1
0.00 0.05 0.10 0.15 0.20
a,°[fm]

FIG. 11. The lefi-hand side shows the B dependence of the lattice spacing. The solid line is the fit curve, Eq. (59), while dotted and

-

dashed lines are spline interpolations to square and triangle symbols respectively. On the right-hand side u: ""S/uz“ and a;s"slu:“ as a

function of ¢’° are plotted.
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FIG. 12. Comparison of results for various (M\,,{) tunings. The scale is set by ry. The data points are slightly shifted along the

horizontal axis for distinguishability.

for other mass splittings. This shows that the choice
(Mm,e,gT') is as acceptable as any other, with our numerical
accuracy. for the lattices we adopted. Since the hyperfine
splitting for the choice (M,,o,c.g“) has a smoother lattice
spacing dependence (at £25.9) and a smaller error than that
for other choices in Fig. 12, we decide to usc the data with
(Mpok,{ﬂ) for the continuum extrapolations. The results for
other choices are used to estimate the systematic crrors. A
slight bump in the lattice spacing dependence of the hyper-
fine splitting for (M,,o,c,g""’) is in part ascribed to the statis-
tical crror of ¢ itself, as discussed in Scc. V.

D. Charmenium spectrum

The results for charmonium spectrum, obtained for
(Mpdc,{ﬂ). for the three choices of scale are plotted in Fig.
13 together with the experimental values. and numerical val-
ues are listed in Tables IX—XI. As observed in Fig. 13, the
gross features of the mass spectrum are consistent with the
experiment. For example, the splittings among the x, states
are resolved well and with the correct ordering (x.0<Xe1
< X.2). Statistical errors for the 1S, 1 P and 2§ state masscs
are of 1 MeV, 10 MeV and 30 MeV, respectively. When we

TABLE VIil. Comparison of mass splittings for different choices of (My,,,¢) at 8=6.10. The results arc

presented in units of MeV, and the scale is set by 7.

AMI3P,-13Py)

(My8) AM(IP-1S) AM(25-15) AM(13S,-1'Sy)
(Mpgre &™) 426.7(104) 676(30) 71.6(07) 57.3(37)
(Moot &™) 423.1(096) 671(29) 68.8(06) 55.3(34)
(M, ™) 424.1(097) 671(31) 69.2(14) 55.2(38)
(M 1) 423.6(097) 672(30) 69.2(13) 55.7(37)
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sct the scale from the 1 -15(2518_) splitting, the spin

structure and the 25-15 (1P-15) splittings arc predictions
from our simulations.

E. S-state hyperfine splitting

We now discuss our results for the S-state hyperfine split-
ting AM(13S,-1'8,), which is the most interesting quantity
in this work. The hyperfine splitting (HFS), arising from the
spin-spin interaction between quarks, is very sensitive to the
choice of the clover term, as noticed from Eqs. (11) and (14).
Since the clover term also controls the lattice discretization
error of the fermion scctor, the calculation of the HFS is a
good testing ground for the lattice quark action.

In Fig. 14 we plot our results for the S-statc HFS with
(Mpo,c,g“) for each scale input by filled symbols. From the
aZ-lincar continuum cxtrapolation using 3 points at 8
=5.90-6.35. we obtain

AM(135,-1'S,)
72.6(0.9)(+ 1.2)(—3.8) McV
85.3(4.4)(+5.7)(—2.5) MeV
53.9(5.8)(— 1.5)(—2.0) McV
117.1(1.8) MeV

(ry input),
(1 Pl S—inpul),
(2.57- 1 S'_input),
(experiment),

(63)

where the first crror is the statistical error. The second error
represents the ambiguity in the continuum extrapolation, cs-
timated as the difference between the a2-lincar and the
ag-linear fits. The third crror is the systematic error associ-
ated with the choice of (M,.{). We estimatc it from the
maximum difference at the continuum limit between the
choice of(Mpo,L.,gT') and the other three choices. Our esti-
mate of the S-statc HFS is smaller than the experimental

value by 27% if the 1 P-18 splitting is used to set the scale.
A probable source for this large deviation is quenching ef-
fects.

In this figure, we also plot previous anisotropic results by
Klassen (set B in Table 1) [19] and Chen (sct C) [24] at £
=2 and 3 with the same choice of the clover coefficients ¢, ,
and using ro to sct the scale. The difference between our
simulation and theirs is the choice of ¢ and the tadpole factor
for ¢, . as noted in Table I, We use ¢'' and the tadpole
factor estimated from the plaquette #”. while they used ¢N°
and tadpole estimate from the mean link in the Landau gauge
u®. As shown in this figure, our result in the continuum limit
with ry input agrees with the results by Klassen [19] and
Chen [24]. The results with a different choice of the clover
cocfficients ¢, , by Klassen (set D) will be shown in Sce. V,
where we will study the effect of ¢, to the HFS.
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FIG. 13. Charmonium spectrum at finite 8. The scale is fixed
from r,, AM(1P-18) and AM(2S-1S).

F. P-state fine structure

Results for the P-state fine structure are shown in Figs. 15
and 16. The value of the P-state fine structure in the con-
tinuum limit and the systematic crrors arc estimated in a
similar manner to the casc of the S-statc HFS. For
13P -1} P, splitting, we obtain
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TABLE IX. Results of charmonium masses M and mass splittings AM in units of McV at £=Z"" using the pole mass wning, The scale

is set by rg.

State B=5.70 B=5.90 B=6.10 B=6.35 a,—0 Expt.
1'S, 3020.9(7) 3013.8(8) 3014.0(10) 3012,7(9) 3012.7(11) 2979.8
138, 3082.0(7) 3083.1(8) 3085.1(8) 3083.7(8) 3084.6(10) 3096.9
1'p, 3526.6(79) 3506.7(57) 3489.7(66) 3483.8(83) 3474.2(94) 3526.1
1°pP, 3496.0(94) 3462.4(65) 3438.7(58) 3420.2(86) 3408.5(95) 3415.0
13p, 3526.7(84) 3506.6(61) 3490.5(62) 3480.8(80) 3472.3(91) 3510.5
3Py 3555.2(106) 3515.6(116) 3509.8(199) 3506.7(219) 3503.6(250) 3556.2
1P,y 3555.0(100) 3512.4(115) 3508.9(179) 3502.5(213) 3501.2(238) 3556.2
1S 3067.6(0) 3067.6(0) 3067.6(0) 3067.6(0) 3067.6(0) 3067.6
1P 3536.0(85) 3506.7(73) 3494.0(104) 3487.3(120) 3480.4(137) 3525.5
1'P,-15 459.9(79) 440.9(59) 422.4(67) 417.8(84) 407.2(95) 458.5
1*Py-18 429.2(93) 396.7(66) 371.3(61) 354.2(87) 341.2(97) 3474
1°P,-1§ 459.9(84) 440.9(62) 423.2(64) 414.9(81) 405.2(93) 4429
1*P.-15 488.5(106) 449.9(117) 442.5(198) 440.7(218) 436.6(249) 488.6
1P-1S 469.3(85) 441.0(74) 426.7(104) 421.3(121) 413.4(138) 457.9
13S,-1'8, 61.9(4) 70.4(6) 71.6(7) 72.0(8) 72.6(9) 117.1
13P,-1°P, 32.3(34) 46.7(34) 57.3(37) 62.7(42) 68.4(50) 95.5
13P,-13P, 18.1(43) 18.2(41) 20.4(68) 30.4(72) 31.1(84) 45.7
13Py-13Py —-0.8(23) —2.3(28) —2.6(33) —2.0(41) —2.2(47) 0.0
1'P,-13p -6.0(18). -3.5(21) —0.7(29) —3.5(36) — 1.4(40) 0.9
1BPy-13P, 0.56(13) 0.39(9) 0.36(12) 0.49(11) 0.47(14) 0.48
1*P-13P,

2's, 3719(22) 3700(28) 3699(32) 3746(40) 3739(46) 3594
235, 3767(20) 377327) 3758(31) 3786(34) 3777(40) 3686
2'p, 4248(68) 4411(70) 4214(70) 4161(79) 4053(95) -
23p, 4175(93) 4226(89) 4148(94) 4049(100) 4008(122) -
23p, 4228(75) 4388(77) 4256(90) 4140(84) 4067(105) -
2P, 4238(109) 4254(99) 4190(144) 4023(148) 3992(175) -
2P, 4230(111) 4281(100) 4223(157) 4082(146) 4047(177) -
25 3755(20) 3755(27) 3744(30) 3776(34) 3768(40) 3663
2P 4233(74) 4324(68) 4209(86) 4089(86) 4027(105) -
2P2S 478(73) 569(70) 466(90) 313(88) 256(107) -
235,-2'S, 48(9) 74(16) 60(17) 40(22) 34(25) 92
215,-1'S, 698(22) 686(28) 685(32) 733(40) 726(46) 614
235,-135, 685(20) 690(27) 673(31) 702(34) 692(40) 589
2'p,-1'p, 721(68) 904(69) 724(69) 678(79) 579(94) -
23p,-13P, 679(95) 763(90) 709(95) 629(103) 601(124) -
23p,-13p, 701(76) 881(77) 766(90) 659(84) 595(105) -
23p,-13p, 683(109) 738(93) 681(129) 516(136) 490(160) -
25-1S5 688(20) 689(27) 676(30) 710(34) 701(40) 595
2P.1P 697(75) 817(66) 715(81) 602(83) 547(100) -

AM(13P,-13Py)

68.4(5.0)(+11.8)(—3.0) MeV  (ryinput),

79.2(6.6)(+16.5)(—2.4) MeV  (1P-1Sinput),
50.5(6.2)(+7.9)(—2.2) MeV

95.5(0.8) McV

Note that the systematic errors from the choice of the fit
ansatz (sccond crror) are rather large here, due to the large
scaling violation seen in Fig. 15. The result with the 1P-1S
input yiclds a 17% (2.50) smaller value than the experi-

(28-1Sinput), ment. Our result with the ry input is consistent with the
{(experiment). previous results by Klassen [19] and Chen [24].
(64) For 13P,-13P, splitting, we obtain
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TABLE X. The same as Table IX, but the scale is sct by II’_-I.-S'_‘spIitting.
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State B=5.70 B=5.90 B=6.10 B=6.35 a,—0 Expt.
1'S, 3023.0(16) 3010.3(16) 3007.1(27) 3004.3(33) 3003.0(35) 2979.8
135, 3081.4(8) 3084.0(10) 3087.1(12) 3086.0(12) 3087.5(14) 3096.9
1'p, 3515.6(29) 3523.3(46) 3520.7(88) 3519.9(98) 3518.6(106) 3526.1
13P, 3486.6(49) 3476.2(51) 3464.0(91) 3446.4(92) 3441.6(104) 3415.0
3P, 3515.8(35) 3523.5(44) 3522.3(96) 3516.8(102) 3516.8(112) 3510.5
13Pyg 3543.2(40) 3532.9(60) 3541.3(128) 3544.9(139) 3548.9(151) 3556.2
3Py 3543.0(38) 3529.3(69) 3539.8(122) 3540.0(155) 3546.0(160) 3556.2
15 3067.6(0) 3067.6(0) 3067.6(0) 3067.6(0) 3067.6(0) 3067.6
1P 3524.7(7) 3523.4(7) 3525.0(9) 3523.4(8) 3524.1(9) 3525.5
1'P,-1S 448.8(29) 457.8(46) 453.6(89) 454.3(100) 452.0(108) 458.5
13P,-15 419.8(47) 410.6(51) 396.9(93) 380.9(95) 375.2(106) 3474
13P,-15 448.9(34) 457.9(44) 455.3(98) 451.3(104) 450.3(114) 4429
13P,-1§ 476.4(40) 467.4(58) 474.2(126) 479.4(136) 482.4(148) 488.6
1P-1S 457.9(0) 457.9(0) 457.9(0) 457.9(0) 457.9(0) 457.9
138,-1's, 59.2(18) 74.921) 80.4(34) 82.7(42) 85.3(44) 17.1
13P-13p, 30.6(37) 49.9(39) 64.6(45) 72.6(65) 79.2(66) 95.5
1°P,-13p, 17.4(41) 19.2(43) 22.3(75) 34.7(81) 35.0(90) 45.7
3Pyr-13P5 —0.8(22) —2.5(30) —-3.2(39) —2.1(51) —2.7(53) 0.0
1'p-13p —5.9(17) -3.7(22) —~0.8(35) -3.7(44) —1.5(46) 0.9
BPy-1°P, 0.57(12) 0.39(9) 0.35(13) 0.48(12) 0.45(14) 0.48
13P\-1°P,
2's, 3704(22) 3722(30) 3746(39) 3801(45) 3806(50) 3594
23S, 3749(21) 3800(29) 3811(41) 3847(43) 3849(49) 3686
2'p, 4217(70) 4458(75) 4294(79) 4238(87) 4159(100) -
23p, 4146(95) 4260(95) 4222(105) 4121(124) 4114(138) -
23p, 4196(78) 4434(83) 4339(100) 4222(96) 4179(114) -
23P. 4203(107) 4303(96) 4263(145) 4096(155) 4091(173) -
23Psr 4194(111) 4329(98) 4287(163) 4147(153) 4131(177) -
25 3738(21) 3781(29) 3794(39) 3836(42) 3839(47) 3663
2P 4200(76) 4371(68) 4286(81) 4165(88) 4132(100) -
21P25 462(72) 590(72) 492(95) 329(97) 290(112) -
235,:2's, 45(9) 78(18) 65(20) 47(27) 43(29) 92
2'S,-1'S, 681(23) 712(30) 738(40) 797(46) 803(51) 614
238,138, 668(21) 716(29) 723(40) 762(43) 762(48) 589
2P -1'p, 701(69) 935(73) 773(76) 718(84) 641(97) -
23P,-13P, 659(96) 783(96) 758(106) 674(122) 671(137) -
23p,-13pP, 681(77) 910(82) 817(99) 705(94) 662(111) -
23p.-13p, 660(107) 770(93) 722(135) 551(147) 543(164) -
2515 671(21) 715(28) 727(39) 770(42) 772(47) 595
2P-1P 675(76) 847(68) 761(81) 641(87) 608(100) -

AM(13P,-13P))

31.1(84)(+8.1)(—1.0) MeV
35.0(9.0)(+9.6)(—0.7) McV
23.7(6.1)(+5.6)(—0.8) MceV
45.7(0.2) McV

(rg input),
(IP_-I S_inpul).
(2ST-I§—input),

(experiment),

(65)

where we use the result from the E representation operator
for 3P3. As observed in Tables 1X~XI, the mass difference
AM(13Py~13P,g) is always consistent with zero, suggest-
ing that the rotational invariance for this quantity is restored
well in our approach. The value of AM(13P,-13Py) is
smaller than the experimental one by 23% (1) with the

1 P-1S8 input. There is no lattice result from the anisotropic
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TABLE XI. The same as Table X, but the scale is set by Z.ST-IS-splining.

State B=5.70 B=5.90 B=6.10 B=6.35 a,—0 Expt.
I 'SO 3032.3(21) 3026.4(30) 3024.9(33) 3028.6(38) 3027.4(45) 2979.8
1 3S, 3079.1(8) 3079.8(10) 3082.0(13) 3079.5(12) 3080.5(15) 3096.9
1'p, 3467.1(113) 3446.7(139) 3440.5(158) 3415.3(170) 3412.6(208) 3526.1
lJPo 3445.3(112) 3412.8(124) 3398.6(130) 3370.2(128) 3361.5(165) 3415.0
l’l’l 3467.8(117) 3446.1(142) 3440.1(158) 3412.4(168) 3409.7(207) 3510.5
3P, 3490.4(124) 3453.4(153) 3460.0(198) 3433.8(200) 3437.7(244) 3556.2
1*P, 3490.1(120) 3451.6(155) 3460.0(185) 3431.2(180) 3435.3(226) 3556.2
1S 3067.6(0) 3067.6(0) 3067.6(0) 3067.6(0) 3067.6(0) 3067.6
P 3475.2(114) 3446.5(140) 3445.0(164) 3418.5(170) 3418.2(209) 35255
1 'P,-IS— 399.7(114) 380.2(141) 372.8(159) 348.5(172) 345.1(210) 458.5
|3P0-| S 377.9(113) 346.4(126) 330.8(131) 303.4(131) 294.2(168) 3474
|31Jl 1S 400.4(118) 379.7(144) 372.3(159) 345.6(171) 342.2(210) 4429
13P5-1 S 423.0(126) 386.9(155) 392.2(199) 367.0(202) 370.4(246) 488.6
1P-1S 407.8(116) 380.1(142) 377.3(164) 351.7(173) 350.8(212) 457.9
138,-1'S, 47.4(25) 54.4(38) 57.7(43) 51.5(48) 53.9(58) 117.1
1*p-1? Py 23.2(29) 35.2(35) 45.8(46) 43.9(54) 50.5(62) 95.5
13p,-13p, 14.1(32) 14.4(30) 17.3(51) 22.2(52) 23.7(61) 45.7
13Py-13Pyg —1.0(15) - 1.7(17) —1.6(23) —1.9(24) - 1.8(29) 0.0
1'pPi-13p —5.4(12) —2.7(14) —-0.6(21) —-3.0(23) - 1.5(26) 0.9
|3',02.13PI 0.60(12) 0.41(8) 0.38(11) 0.50(10) 0.49(13) 0.48
1*Py-1°P,
2'S, 3637(6) 3618(8) 3624(10) 3641(11) 3644(13) 3594
235, 3671(2) 3676(3) 3676(3) 3669(4) 3669(4) 3686
2! P, 4078(59) 4241(69) 4087(70) 4015(76) 3930(95) -
23p, 4020(77) 4103(76) 4031(80) 3914(88) 3877(108) -
23P| 4057(66) 4222(73) 4125(82) 3985(81) 3929(103) -
231’35 4049(85) 4078(85) 4076(120) 3884(106) 3872(134) -
23P2T 4037(87) 4109(84) 4120(128) 3958(104) 3948(133) -
25 3663(1) 3662(1) 3663(1) 3662(1) 3663(1) 3663
2P 4056(61) 4157(65) 4087(79) 3945(73) 3900(93) -
2P285 393(61) 495(65) 424(79) 283(73) 237(93) -
235,-2'S, 34(7) 59(11) 52(13) 29(14) 26(17) 92
2'8,-1'S, 605(5) 592(8) 600(10) 612(10) 616(13) 614
235,138, 592(2) 597(3) 594(3) 590(3) 588(4) 589
2'p-1'P, 611(57) 794(63) 647(64) 600(73) 517(88) -
23pP,-13P, 575(717) 690(74) 633(79) 543(86) 514(105) -
23P,-] P, 589(64) 776(67) 685(78) 573(76) 520(96) -
23p,-13p 559(85) 624(77) 616(109) 450(104) 443(128) -
2515 595(0) 595(0) 595(0) 595(0) 595(0) 595
2P0P 581(60) 710(58) 642(72) 526(70) 487(87) -
Next we consider the ratio of the two fine structures. 3 3
AM(13P5-13P)/AM(13P,-13Pg). In Fig. 17, we plot the AMP,-17P))
lattice spacing dependence of this ratio. As shown in this ~ AM(1°P,-12Pg)
figure, the scaling violation of the ratio is smaller than that )
fogr the individuafspliltings (Figs. 15 and 16). Morcover, re- 0.47(14)(+06)  (r input).
su'lts‘ arc always consistent \'vn‘h the experimental va!uc 0.45(14)(+05) (1 P-1S input),
within errors. Presumably this is in part due to a canccllation = — (66)
of systematic crrors such as the discretization cffect and the 0.49(13)(+06)  (25-1S input),
quenching cffect in the ratio. Our continuum cstimate of this 0.48(00) (experiment).

ratio is
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T T

* Expenmenl

20
0§3C u fy

mor -3, 07, 1P-1S

«&=3, Cmsu 258-18

o§-3§ ,u ry (Klassen)
§-2§ u r, (Chen) i

AM(1°S,-1'S ) [MeV]
3 8
4]
B
1o e

60 + E OQ i
50 F I-i—l -

40 L 1
0.00 0.02 » (%04 0.06
2, [fm’]

FIG. 14. S-state hyperfine splitting AM(135,-1'S,). Results
obtained with E)=u§c,=l are collected here. Our results are
shown by solid symbols for each input, while results by Klassen
(set B) and Chen (set C) with the r, input are shown by open
symbols. In the legend, we give the choice of the anisotropy &, ¢
tuning, tadpole factor and scale input. These captions also apply to
the figures that follow.

Our results agrees well with the experimental value. We omit
the systematic crror arising from the choice of (M,,{),
which is found to be much smaller than others.

Another intcresting quantity is the P-state hyperfine split-
ting, AM(1'P,-1°P), where M(13P)=[5M(1°P,)
+3M(13P,)+ M(13Py)1/9. This should be much smaller
than the S-statc hyperfine splitting because the P-state wave
function vanishes at the origin. The lattice spacing depen-
dence is shown in Fig. 18 and the continuum estimate is

110 T '

100 * Expenment J
og-st; u f

20 l§-3§ u 1P-18 )

80 <&=3, C o, 28 1S 4
o§=3t; u , I, (Klassen)

A= 2§ g r, (Chen)

AM(1°P,-1°P,)[MeV]

0.00 0.02 ’ g.04 0.06
a, [fm’]

FIG. 15. P-state finc structure splitting AM(13P,-13P,).
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60 ¢ v r v
% Experiment
@, input )
50 | 1P-1S input
<4 2S-1S input
3 4 .
=
&= 30 ]
I
D_N
"’: 20 4
3 ¥
<
10 1
0 | A L 1 '
0.00 0.02 0.04 0.06

2 2
a.? [fm’]
FIG. 16. P-state fine structure splitting A M(13P,-13P)).

AM(1'P,-13P)
- 1.4(4.0)(+0.6) McV
- 1.5(4.6)(+0.7) MeV
- 1.5(2.6)(+0.3) McV
+0.9(0.3) MeV

(ry input),

(1 IT-lS_inpul),

(25-1Sinput),

(experiment).
(67)

The sign is always negative at finite ¢, and in the continuum
limit, but within errors the continuum valuc is consistent
with the experimental value. We do not observe sizable dif-
ferences between results using different scale inputs for this

quantity.

1.0 T T T
~ 08} .
'I_'-
(9. 4
s
g
’?_' % Experiment ]
o @, input
e = 1P-1S input i
= <425-1Sinput
<

0.0 L ' 'S

0.00 0.02 . g.04 0.06
a. [fm"]

FIG. 17. Fine  structure  ratio

AM(1}P-13P,).

AMQ13P,-13P))/
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20 Y Y Y
¥ Experiment
®r, input
8 1P-1S input
10 «€25-1S input 1

#

AM(1'P,~1°P)[MaV)

, Q04 0.06
a, [fm]

FIG. 18. Splitting AM(1'P,-13P).

0.02

20
0.00

G. 1P-1S splitting

The mass splittings between the orbital (radial) exited
state and the ground state such as the 1 P-15 (25-18) split-
" ting are dominated by the kinetic term in the non-relativistic
Hamiltonian, Eq. (11). Since the dependence on the choice of
(M. ) is small compared to the statist 1l crror, as shown
in Fig. 12, we ignore the systematic error from the choice of
(M), &) in this and next subsections. Results of the spin-
averaged and spin-dependent 1 P-18 splittings are shown in
Figs. 19 and 20. In the continuum limit, the spin-averaged
1 P-18 splitting is

AM(1P-18)
413(14)(=15) MeV  (r input),
={ 351(21)(—20) MeV  (25-15 input),

458(01) MeV (experiment).

(68)

The spin-dependent 1P-18 splitting deviates from the ex-
perimental value by 0%-10% (10-50) with the ry input
and 15%-25% (30-50) with the 25-15 input, as shown in
Fig. 20. The result of the 1'P,-15 splitting with the r, input
agrees with the result by Chen within a few o in the con-
tinuum limit.

H. 25-18 and 2P-1P splittings

In Figs. 21 and 22, we show the results of the spin-
averaged and spin-dependent 2S-15 splittings. In the con-
tinuum limit, these splittings deviate from the experimental
values by ~20% (2.50) with the r input and ~30% (4 o)
with the 1 P-1S input. For the spin-averaged 2S-1.8 splitting,
we obtain
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500 |
480
460
440
420
400
380
S 360

340

320

300
0.00

M(1P-1S)[MeV]

% Experiment
@ r, input ]
425-1S input

0.04 0.06

a, [fm’]

0.02

FIG. 19. Spin averaged IP_«ISTspliuing. In the figures, we al-
ways omit the bar for the spin average.

AM(25-15)
701(40)(+13) McV  (ryinput),
={ 772(47)(+35) McV  (1P-1Sinput),

595(01) MeV (experiment).

(69)

Besides quenching effects, possible sources of the deviations
are finite size cffects and the mixing of the 2§ with higher
excited states, Figure 23 shows the result for 2P-1P split-
tings. Note that there is no experimental value for this split-
ting at present. Our results of 25-15 and 2 P-1 P splittings
are consistent with previous results by Chen. We also calcu-
late mass splittings such as AM(235,-2'S,) and
AM(2P-28S), but these suffer from large statistical and sys-
tematic crrors. We leave accurate determinations of the ex-
cited state masses for future studics.

1. Charmonium spectrum in the continuum limit

We summarize the continuum results for the charmonium
spectra obtained with the data of (Mpo,c,gﬂ) and the
a;-lincar fit ansatz in Fig. 24, where the scale is set by

1 P-18 splitting. Numerical values for three scales are listed
in Tables IX-XI, where the errors arc only statistical. Among
three different scales, results with the 1P-1S input arc the
closest to the experimental value for the ground state masses.
The spin splittings such as the hyperfine splitting
AM(138,-1'S,) and the fine structure AM(13P,-13P) arc
always smaller than the experimental values irrespective of
the choice of the scale input, which is considered to be
quenching cffects.

V. EFFECT OF THE CLOVER COEFFICIENT
FOR HYPERFINE SPLITTING

We now come back to the issue of the hyperfine splitting.
In Scc. 1V E, we have shown that our result of the HFS (sct

094508-22



CHARMONIUM SPECTRUM FROM QUENCHED . ..

AM(25-1S)[MeV]
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FIG. 20. Spin dependent IP-IS_spliltings.
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FIG. 21. Spin averaged 2S_-|S—Splitting.

A in Table IIT) agrees with previous results by Klassen (set
B) and Chen (sct C) in the continuum limit, with the same
choice of the clover cocfficients Egs. (39) and (36). How-
cver, as mentioned in the Introduction, when Klassen made a
different choice of the clover coefficients (sct D), he obtained
apparcntly different values of the HFS in the continuum

limit. This choice is given by® ¢,=1/v where the tilde de-
notes the tadpole improvement, Z\.=ufc_\.. Since v—1 as
a,m,—0, it agrees with the correct choice c,=1 in the limit
a,—0 with fixed m,,, but is incorrect at finite a, . The quark
action then generates an additional O(uf/\QCDrm,) CITO.
Even with such a choice, if'a.m, is small enough, the result
should converge to a universal value after the continuum
extrapolation. However, in Refs. [18,19], Klassen obtained

“This choice corresponds 10 =1 in the mass form notation, Eq.
(3), while the correct choice ¢,=1 corresponds to @= 1w,
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FIG. 22. Spin dependent 2S-18 splittings.
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FIG. 23. Spin dependent 2 P-1 P splittings.
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FIG. 24. Charmonium spectrum in the continuum limit. The
scale is set by 1P-15 splitting.

HFS (a,=0.r,input)=~95 MeV with ¢,=1/v, which is
much larger than the result HES (a,=0,ry input)=75 MeV
with ¢;=1 both by Klassen and in the present work.

A possible source of this discrepancy is a large mass-
dependent error of O(a,Aqcp-(agm,)") (n=12....) for

the results with ¢,=1/v. In fact, Klassen adopted rather
coarse lattices with a,m,~1-2, for which such errors may
not be negligible. Because the HFS is sensitive to the spatial

clover term, the choice of ¢;= 1/v may then result in a non-
linear a; dependence for the HFS. In the following, in order
to study the effect of the choice of the spatial clover coeffi-
cient ¢, to the HFS, we make a leading order analysis moti-
vated by the potential model [37] and compare it with nu-
merical results, which will give us a better understanding of
the above problem of the HFS.

The potential model predicts that, at the lcading order in

both @ and 1/m, .

HFS, ~ EANES ¥ (0)|? 70
cont m * I ( )lcl)np ( )

q mg

where m =m for the quarkonium, S, -~arc quark and anti-
quark spins, and W(0) is the wave function at the origin.
HFS_,. is the hyperfine splitting in the continuum quenched
(1,=0) theory, which is not necessarily cqual to the experi-
mental value. In non-relativistic QCD, the S, - S interaction
arises from the 2. B term for quark and anti-quark. Giving a
non-relativistic interpretation to our anisotropic lattice ac-
tion, we expect that the lattice HFS is effectively given by

s\ (S .
HFSI:\(~(_)'(—)lq’(o)'ﬂu- (7])

mpg meg

where m g is the magnetic mass, Eq. (14), in the cffective
Hamiltonian. Therefore, in our approach, HFS is dominated
by the magnitude of 1/m3, which depends on the spatial
clover coefficient ¢, . The ratio
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HFS,, (h) W (0)]i o)

HFS |W(0)|?

cont

cont mg

gencerally deviates from 1 at finite ¢, , and should approach 1
as a,—0. At the leading order in a, [‘l'(())lzomxmq , while
|‘I’(0)|,2m0<mg with m, the kinctic mass, Eq. (13). Since m,
docs not depend on the spatial clover cocfficient ¢ at the tree
level, we neglect the lattice artifact for [W(0)|f, and sct
[ (0)|5/1W(0)|2,,=1 in the following, which is sufficicnt
for the present purpose. Now we define

2 )
m am
— q - 1"y
Ryps=\ =—| =|—=]) . (73)
mg ampg

as a measure of lattice artifacts for the HFS, where the tilde
denotes the tadpole improvement. In the continuum limit,

Ryps=1. Since m, is constant indcpendent of a,, we iden-

tify m, with m, for the pole mass tuning (i.c., when sctting
the measured pole mass to the experimental value Mg,
=M, for thc meson) and with m> for the kinetic mass
tuning (M= M 0.

At the tree level with the tadpole improvement, the pole
mass m,, the kinctic mass m~ and the magnetic mass g for
the quark are given by

(I,I;,= log(1 +r§0), (74)

] 207 &r.v

—= —+ —, (75)
ams mo(2+mgy) 1 +mg

1 247 §Z_\ v

—== —+ ——, (76)
ampg me(2+my)  1+my

where v=¢§,/¢, Z,=u_':’cx. and 15(,=u,n~1‘10 is given by Eq.
(33). To obtain Egs. (75) and (76), we use the formula £
=&,=(u,/u,)&. In the following we present the agmy de-
pendence of Ry in the case of ¢,=1 (sets A,B.C) and c,
=1/v (sct D), and comparc them with the corresponding
numerical data for the S-state HFS. For the definition of { (or
v}, there arc two choices adopted so far: the tree level tad-
pole improved value {7 and nonperturbative onc ™. At ¢
=", my=m, for the quark, but M, # My, for the mea-
sured meson. On the other hand, at {=¢N?, m,#m, though
M= My, Thus in the case of {=¢N, ie., M= M,
tuning. the identification of m, (=m, or my) in Rygs. Eq.
(73). mentioned above is ambiguous. Although such an am-
biguity should vanish in the continuum limit, we present
R 1 With both mq=n~1, and m‘,=n~12 to check consistency.
For actual numerical data of the HFS, we focus on the results
with the r, input because Klassen has adopted r, for the
scale setting.
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20 T v T
©&=3, my=m,
Ag=2, m~m,
© &=3, m =m,
Ag=2, m=m, © B

RHFS
N

1.0 A

c,u,°=1/v. ¢’ (Klassen)

0.0 2.0 . 4.0
(a;m,)

FIG. 25. Rygs with ¢,= 1/v and {={™ at £=3 and 2. The thick
symbols are the results with mq=:§,, while the thin symbols are
those with m,,=/713. The results with ¢,= /v but =" (where

mq=;5, =r712) are also shown by the dotted line (£§=3) and dashed
line (£=2).

A. Case of c,=1/v

First we consider the case of ES= 1/v (set D), which is
correct only for a,m,= 0 at the tree level. In Fig. 25 we plot
the (asm‘,)2 dependence of Rypg at £=3 and 2 for ¢,= /v
with v=NP= ¢, /¢NP, Numerical values of #N' were taken
from Ref. [19]. Because of the ambiguity for m, mentioned
above, we show the results with mq=1§, and mq=1712: the
difference between them decreases as a,—0, as expected.
We have checked that plotting Ryps as a function of a7,
instead of (axm,,)z, does not change the figure qualitatively.
We also plot the results with ¢, =1/v but v=p"'=¢,/¢",

where m,;=m> holds, as a dotted line (¥=3) and a dashed
line (£=2) for a guide to the eye. As shown in this figure,
Rugs has a non-lincar af dependence toward the continuum
limit (= 1), indicating that the mass dependent crror is large
for the region a = 1-2. Here Ry is larger than 1 even at
(agg)*~1, which suggests that the actual HFS should rap-
idly decrease toward af—»O, and data at (a\.m,,)2<l are
needed for a reliable continuum extrapolation for the HFS.
Now let us compare Rygg with numerical results of HFS.
In Fig. 26, we plot corresponding results of HFS by Klassen
for ¢, = 1/v [19]. The results at £=3 for ¢,= 1/ arc clcarly

larger than the results for ¢, = | (see the solid circles in Fig.
14), and the results at £=3 and 2 appewr to converge to
=95 MeV in the continuum limit with an uz-lincar scaling.
However, comparing Fig. 25 and Fig. 26, we find that the
lattice spacing dependence of the numerical data of HFS
qualitatively agrees with that of Rypg: for both HFS and
Ryps, data at £=3 arc larger than data at §=2, and the
difference between §=3 and 2 decreases as ¢,— 0. From an
af-linear extrapolation of Ry using the finest three data
points, we obtain Rypg=~1.2—-1.3 at a,=0. Because the cor-
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120 4
o&=3 ¢
1o | 4&=2 5 ¢ .
PP 4 ]
3
o 90 fTee 1
I N
- 8o} “Eeo ]
m: ‘~£~\\ )
s 70F &
o | c,u. =1, ', 1, input (Klassen) ]
50 1 1 'l 1
0.00 0.02 0.(2)4 . 0.06 0.08
a, [fm’]

FIG. 26. Klassen’s results of S-statc hyperfine splitting
AM(138,-1'Sy) with ¢,=1/v and {={"" (sct D). The scale is sct
by rq. Lines denote a’-linear extrapolations.

rect continuum limit of Ry is 1, this suggests a 20%-30%
overestimate from the neglect of non-linear dependence of

Ryps on af. Hence the result with ¢,=1/v, HFS (a,=0)
~95 McV, reported in Refs. [18,19] is likely an overesti-
mate by 20%—30%.

These analyses indicate that the origins of this overesti-
mate are, first, the choice for the spatial clover coefficient
c,=1/v (=1/v""), and sccond, the usc of coarse lattices
with aun,>1. As shown in Fig. 9, v (= 1/c, in this casc)
should cventually start to move up to | lincarly around
a,mﬂ)s 0.3, which corresponds to (a“l)?q)250.6 in Fig. 25,
but Klassen’s data of ¥NF (open diamonds) do not reach such
a region. We conclude that the continuum extrapolation for
the HFS should not be performed using the data on such
coarse lattices, and results at finer lattice spacing are re-
quired.

B. Case of ¢, =1

Next we consider the case of ¢,=1 (sets A, B and C),
which is correct for any am, at the tree level. In this case,
there arc two choices for £, {™ and {™'. As mentioned in

Sec. IV C, 1= m~ holds for both choices of ¢, with ¢,=1.
In the case of £=¢"", which has been adopted only in our

work (set A) so far, Ryps=1 is always satisfied, since m,
=my=my by definition. This suggests that the scaling vio-
lation of HFS for ¢,= 1 should be much smaller than that for

¢,= 1/v. The numerical result for the HFS with the pole mass
tuning has alrcady been shown in Fig. 14 and re-plotted in
Fig. 28 by solid circles, which gives our best estimate,
HFS(a,=0)=73 MeV.

We next consider the case of {= ¢, where Mpoe= Myin
for the measured meson. When we identify III‘I=I712, Ryrs
=1 is always satisfied again because m,=my even at {
=¢NP, When we identify 1n,l=n~l, , Ryps# 1 in general, due
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20 . :
0:-3,¢"
* &'3; Q:: C’U’3—1
| o3, ¢ (Kiassen)
AE=2, 0 (Chen)
15} A ;
| <
£ A °
o * o
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1.0 Fag—a—e
»*
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FIG. 27. Ry with ¢,=1. Here m,’,=1;,. The stars are slightly
shifted along the horizontal axis for distinguishability.

to the deviation of ZNP from ™. The results of Ryyps with
mq=ﬁ;, at {=¢NP are shown in Fig. 27, and corresponding
numerical results for the HFS are shown in Fig. 28. Compar-
ing Fig. 27 with Fig. 28 we again note that the lattice spacing
dependence of the HFS qualitatively agrees with that of
Ryrs; i.e., for both HFS and Rygg, data at £=3 by Klassen
(open diamonds, set B) and those at £=2 by Chen (open
triangles, set C) arc close to each other and larger than our
data at {={"". An aZ-lincar extrapolation using the finest
thrce data points gives HFS=70-75 MeV and Rygg
~0.9-1.0 at a,=0. The latter confirms that a continuum
estimate of HFS with ¢, =1 is more reliable than that with
c,=1/v.

Concerning our results at £=3, as shown in Fig. 27, Ry
for £=¢"P (stars) docs not scale smoothly around (a,m,)

120 t n -
®&=3, CNP 3 .
110 b *8=8, QNP cu, =1, ryinput i
O E=3, ;NP (Klassen)
> | a&-2, ¢ (Chen)
@ 100 :
=,
v 3
L
&5 i
n‘_
s 4
<
60 | . 1
50 'l 1 A 2
0.00 0.02 0.(2)4 ) 0.06 0.08
a, [fm’]
FIG. 28. The results of S-state hyperfine splitting

AM(138,-1'S,) with ¢,=1, The scale is sct by r,.
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<1, while that for {={™ (solid circles) is always unity. This
behavior is caused by the fact that the difference, NPT s
not monotonic in agm, (secc Fig. 9). Correspondingly the
numerical valuc of the HES, displayed in Fig. 28, also shows
a slightly non-smooth lattice spacing dependence near a_f
~0, which qualitatively agrees with the (u_\mq)2 dependence
of Rys in this region. A possible source of this behavior is
the statistical error of {™ itsclf, because HFS (Ryrs) is also
sensitive to the value of £ as well as ¢, . Due to this reason,
we have not used the results with ¢ = ¢ for our main analy-
sis in Scc. IV.

Vi. CONCLUSION

In this article, we have investigated the properties of an-
isotropic lattice QCD for heavy quarks by studying the char-
monium spectrum in detail. We performed simulations
adopting lattices finer than those in the previous studies by
Klassen and Chen, and made a more careful analysis for
0(((1‘\,:;1‘1)") crrors, In addition, using derivative operators,
we obtained the complete P-state fine structure, which has
not been addressed in the previous studies.

From the trce-level analysis for the effective Hamiltonian,
we found that the mass dependent tuning of parameters is
essentially important. In particular, with the choice of r,
=1 for the spatial Wilson coefficient, an explicit a g de-
pendence remains for the parameters ¢ and ¢, even at the tree
level. Morcover, we have shown in the leading order analysis
that, unless the spatial clover cocfficicnt ¢, is correctly tuncd,
the hyperfine splitting has a large O((a,m,)") errors, which
can cxplain a large value of the hyperfine splitting in the
continuum limit from rather coarse lattices in the previous

calculation by Klassen. On the other hand, if ¢, is mass-
dependently tuned, the continuum extrapolation is expected
to be smooth for the hyperfine splitting.

Based on these observations, we employed the anisotropic
clover action with »;=1 and tuned the parameters mass-
dependently at the tree level combined with the tadpole im-
provement. We then computed the charmonium spectrum in
the quenched approximation on £=3 lattices with spatial
lattice spacings of a,m ,<1. A finc resolution in the temporal
direction cnabled a precise determination of the masses of S
and P states which is accurate enough to be compared with
the experimental values. Our results arc consistent with pre-
vious results at £=2 obtained by Chen [24], and the scaling
behavior of the hyperfine splitting is well explained by the
theoretical analysis. We then conclude that the anisotropic
clover action with the mass-dependent parameters at the
tadpolc-improved tree level is sufficiently accurate for the
charm quark to avoid large discretization crrors due to heavy
quark. We note, however, that a,m, <1 is still necessary for
a reliable continuum extrapolation.

We found in our results that the gross features of the
spectrum arc consistent with the experiment. Quantitatively,
however, the S-state hyperfine splitting deviates from the ex-
perimental value by about 30% (70), and the P-state fine
structure differs by about 20% (2.50), if the scale is set from

the IP_~IS_spIitting. We consider that a major source for
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these deviations is the quenched approximation.

Certainly further investigations are necessary to conclude
that the anisotropic QCD can be used for quarks heavier than
the charm. In particular it is important to determine the
clover coefficients as well as other parameters non-
perturbatively, since the spin splittings are very sensitive to
the clover coefficients. It is also interesting to calculate the
spectrum with = 1/¢ and compare the result with the cur-
rent ong in this paper, since the notorious a;m,, dependence
vanishes from the parameters with this choice at the tree
level. Finally full QCD calculations including dynamical
quarks are needed to establish the theoretical prediction
without systematic errors for an ultimate comparison with
the experimental spectrum.
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APPENDIX: DERIVATION OF THE HAMILTONIAN
ON THE ANISOTROPIC LATTICE

The lattice Hamiltonian A is identified with the logarithm
of the transfer matrix 7"

H=—logT. (A1)

T and H for the asymmetric clover quark action on the iso-
tropic lattice have been derived in Ref. [11]. An extension to

the anisotropic lattice is straightforward. Using the fields ¥
and ¥ =Wy, which satisfy canonical anti-commutation re-

lations, the Hamiltonian in temporal lattice units A for the
anisotropic quark action is given by

. {ra; . )
H=\17[a,m| - 2(Tmo)(rsD"+1cs§:- B)—ilgf (my)a,®

— Gfa(mg)al®? ¥+ 0(p’al), (A2)
where (Zi,a)=(—z€05,—i0y,), (B, ,E))
=(y€;F k. Fo;) and

am;=log(1+my), (A3)
1
®=i('y-D+§(l—c,)a,a~E s (A4)

and
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N 2(1+x)log(1+x)
Silx)= BT

) (AS)
Silx) 1

S = Ty 2ty

Therefore the lattice Hamiltonian in physical units is given

by

1. {réoa ,
Eﬂz‘ﬁ’"l - z(;_i_—omlo)("sl)"*'icsz' B)—ilef1(mgy) €0
= L3 fa(my) a,0 |F + O(p*a?) (A6)

=¥im —&(r'Dz-Hc'Z-B)—i{'f (my)0
b2(1+mg) T s wTe

—{E2 fr(my)a,0? (A7)

¥ +0(p*al),

where

g]’7= §0 gF s l‘; = §0r.v s C.\{ = g()cs . (A8)
Note that Eq. (A7) for the anisotropic lattice is the same as
that for the isotropic lattice except for use of {a,,{f,r. ,c.}
instead of {a,{p,r,,c,}. Thus one can repeat the derivation
of the tree level value of bare parameters (¢ and ¢, ,) in Ref.
[11] even for thc anisotropic lattice, after replacing
! ! !

{a’{F s ’cs} by {[I, ,{]: Iy ’Cs}'

When the lattice Hamiltonian is expressed in more
continuum-like form

1. -
;H=‘I’[b0mq+b| v-D+a,b,D’+iabyS-B+abga-E
!

+a;by,vol 7 D,y-El+ -1, (A9)
the coefficients b are given by
bo=my/mg, (A10)
b= Lpf1(mo), (Al1)
b _ l.;gf’: + 12 ) (A]Z)
2T 2(1 +’"O) gF fZ('n() s
by s (o) (A13)
B 2(1+my) ge'f20mo),
1 .
bEZE(l_Cl)frfl(mo), (Al4)
1 '
b.m: - 5(] _c()gF-f2(’nO)- (A]S)
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In order to determine tree level parameters, the lattice Hamil-
tonian should be matched to the continuum one to the dc-
sired order in a;. The continuum Hamiltonian to which the
lattice one is matched is either the Dirac Hamiltonian

I:IDimc=a,‘I’(mq+ y-D)¥ or the non-relativistic Hamil-
tonian  Hyg= a Y (my+ yodo— D2/2mq+ . )‘If Both
choices give the same tree level parameters.

In the Hamiltonian formalism, the unitary transformation
U is possible because the eigenvalues of A are invariant
under it. For cxample, consider a unitary transformation

Yoyuw, Pogty! (A16)

with
U=exp(—a,0,y-D—a: Oga-E), (A7)

where 6, and 6 are parameters. This is called the FWT
transformation, whose element is a spin off-diagonal matrix.
After this transformation the coefficients b become
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b¥=b,, (A18)
b{=b,—2mabe0,, (A19)
bY=b,—2b,0,+2m,a,b,0;, (A20)
by=bp—2b,0,+2ma,by0;, (A21)
bg=bg—0,—2m ab,0, (A22)
bY=b,— ;—0%+b50| +b,0g

—2mgyab0,0g. (A23)

The transformed Hamiltonian AY with bV is matched to ci-
ther A, or Ay s0 as to obtain tree level parameters.
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