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Monte Carlo simulations arc performed in a five-dimensional lattice SU(2) Yang-Mills theory with a

compactified extra dimension, and scaling la、、,s arc studied. Our simulations i一一dicatc that, as the compactifi-

cation radius R decreases, the confining phase spreads more and more to the 、veak coupling regime, and the

effective dimension of the theory changes gradually from five to four. Our simuliitions also indicate that tllC

limit a4-0 with Rl`;4 kept fixed exists in both tl-e confining and deconfining pi-ascs i川/a4 is small enough,

where `;4 is the lattice spacing in the four-dimensional direction. We argue that tl-ere exists a maxima一 radius

above which the color degrees of freedom are not confined. Comments on deconstructing extra dimensions are

given.
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I. INTRODUCTION

Since Kaluza and Klein [1] found that the electromagnetic

and gravitationa一 forces can be unified by introducing a fifth

dimension, their idea has attracted attention for many de-

cades. Recently, there has been a lot of rcilewed interest itl

field theories with extra dimensions, in which the length

scale of the extra dimensions can be so large that they could

be experimentally observed [2-4j. It is assumed that, for

distances larger than the compactincation size, the massive

Kaluza-Klein excitations decouple so tllat tl-ese theories be-

have as a four-dimensional continuum theory at low ener-

gies. Since, however, Yang-Mills theories in more than four

dimensions are nonrenormahzable, it is not at all clear tllat

the in五nite tower of the Kaluza-Klein excitations decouples

even if each nlassive excitation is suppressed: A naive expec-

tation of their colltribution wou一d be ∝ ・ 0.

In four dimensions, the color degrees of freedom are con-

fined even for a weak gauge coupling. How can a con石rung

four-dimensional Yang-Mills tlleory emerge from a higher-

dimensional Yang-Mills theory which is deconnning in the

weak coupling regime [5-7]? Although the assumption of

the decoupling of the Kaluza-Klein excitations sounds physi-

cally correct, it is by no means trivial to show that they

nonperturbatively decouple in such a way that the color con-

nnement takes place even at weak gauge coupling. Recently,

we [8] started to address related problems in a concrete e苧I
ample, namely, the pure lattice SU(2) Yang-Mills theory in

five dimensions with one dimension compactified on a circle.

We observed [8] that the compactification changes the nature

of the pi-ase trai-sition, and that a second order phase transト

tion, which docs not exist in the uncompactified case, occurs.

tllus confirming tllc long-standing expectation ofLang, Pilch,

and Skagerstam [6J. The phase is defined by the Polyakov

loop that extends into the fifth dimension, and the phase

transition is expected to be of second order, becatise tlle COIm

pactined SU(2) lattice gauge theory in five dimensions be-

longs to tl-e universality class of the Z2 spin model in four
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dimensions. For the first time, we [8] computed the lattice β

function in a Yang-Mills theory in more tllan four dimen-

sions, and verified nonperti汀batively the power-law running

of the gauge coupling constant [4,9-1 1J.

In tllis paper we would like to extend tllc analyses of[8].

We斤rst observe tllat if tlle compactification radius becomes

smaller and smaller, the confining phase spreads more and

more to the weak coupling regime. At the same time we

compute the effective dimension [12,13], and sec that the

tlleory behaves more and more as a four-dimensional Yang-

Mills theory. Based on this result, we argue that the color

degrees offreedom arc confined only for R<RmM. The con-

fining phase is defined by the string tension between two

static quarks that are separated in the four-dimensional sub-

space. This definition of phase should not be con丘Ised with

tlle definition by the Polyakov loop that extends into the fifth
dinlension, which was nlentioned above.

Our calculations of the potential between two static

quarks separated n- tllc fouトdinlensional subspace show that

the decon丘ning pilase is a Coulomb phase. We then discuss

the nature of the transition from the deconfining phase to the

confining phase for fixed values of R/a4, where (v4 is the

lattice spacing in the fouトdimensional direction. We con6m

that ifR/aA is small enough, it is consistent with a second

order transition. Combined with the resu一t of [8], we there-

fore come to the conclusion that, as we decrease tlle value of

RA, the丘rst order transition for large values ofRA changes

to a crossover transition, and finally becomes of second or-

dcr.

We give some nonperturbative comi-「ents on deconstruct-

ing extra dimensions [14] in tlle Conclusi0--.

II. EFFECTIVE DIMENSION

In order to take into account the compactification effects

in this theory, it is crucial to uヲe anisotropic lattices [15]

which have different lattice spacingsォ4 and fJ in tllc four

dimensiona一 directions and in the fifth direction. For definite-
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ness we employ tl-c Wilson action for pure SU(2) lattice

gauge theory:

s-号葺ト]-RcTrUp ¥+βγ買ト^RcTri/^
(2.1)

where Upi denote plaquette variables in the four-

dimensional sublatticc・ and Up- arc tl-osc that are extended

into the鮒h dime一一sion. The gauge coupling constant g5 -aS

the dimension of ¥Jci4, which is related to [5 by

a4g5 2-β/　　　　　(2.2)

at the tree level. Periodic boundary conditions are imposed in

all directions・ and we use a lattice size of tl-c form A^4×N5

(we mostly use yV4- 12 and yV5-4). The compactification

radius is defined as R-f′5^5/2万irN〆U>Ns`v5 is satisfied,

and the correlation-anisotropy parameter is defined as 」

=a4/a5. The tree level re一ation γ-」 will be ll10dificd at the

quantum level [15]、 and throughout this paper we assume

that the f-γ relation obtained in [8] is satisfied in both the

con丘ning and dcconfining phases. Simulations arc pcrfon-1Cd

for

where we have used Ns-4 above. We cllosc this range of
2汀R/a,

[8] that the limit 2ttRIcja-0 may exist, and we observe

some scaling behavior.

To define the pilysical scale in the confining phase, we use

the string tension a between two static quarks that are sepa-

rated in the four-dimensional subspace. Since the string ten-

sion is a physical qua一一tity, the lattice string tension crL

should behave like `/蝣J as a4-0, where `v4 can be related by

the β function to the dimensionless bare gauge coupling

芸・　　　　(2.5)

where we have identified A with　2汀/(/4　because　4

×(7T/a4)2-(277-/`14)-. Since we expect that tl-C.一一nassive
Kaluza-Klcin excitations will decoilpic increasingly as

lttRIqa decreases, the lattice β function β/, cannot assume a

purely five- or four-dimensional form. Instcこid, we expect a

continuous cl-angc of its form. This is quantitatively ex-

pressed by the so-called effective dimension Dcfr, which is a

function of2tt尺/ォ4 ['3J. So we assume that (SL can be writ-

ten as
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FIG. 1. 、五-、石versus β al γ-5.0. The fillcd symbols are
obtained from山e Creutz ratio (3.1) and the open ones are obtained

from the static potential (3.2).

wllcrc b-22/3-2/3-20/3. Therefore, the evolution equa-

tion forg- can be easily integrated in the case that lirRIa^

is kept fixed wlllie aA changes. We obtain for this case

・石～`蝣一芸嘉一」877 !/ォ0,.ff-4) (2.7)

It IS lmportant to notice that as Dc汀-4 、ve obtain the loga-

nthmic form

8 --β/8汀-(2A/167T2)ln〟4+const.　(2.8)

Tllat is, if we can show tllat the effective dilllcnsion Deff in

the confining phase vanes froil1 5 to 4 as 2irR/a4 decreases

from a larger value to a slllaller value, we show the continu-

ous decoupling of the Kaluza-Klein excitations, and the con-

fining pilasc spreads more and more to the weak coupling

regime as R decreases.

111. CONFINING PHASi二

Now we come to the results of our Monte Carlo simula-

tions on a 】2Jx4 lattice. We use the Creutz ratio x(∫,J)

obtained什on=he rectangular Wi一son loops IV(JJ) with

lengths of/ and J in the four-dimensiona一 subspace. We as-

sumc tllat the Crcutz ratio takes the foml

xv,J)-xo-xi¥品+読)

and we identify ¥u with the lattice string te?sion ai. We
generated 2500 configurations for each simulation point after

thcrmalizalion. and the Wilson loops "′crc measured every

five con6gurations for tllc calculation of a Crcutz ratio. Er-

rors were cstilllatcd by thejackknifc method. The filled sym-

bo一s in Fig. 1 arc the result obtained from tl-c Monte Carlo

simulations with γ-5.0, wllere the verticとil axis stands for
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FIG. 2. The scaling behavior of (′I for different values of γ.

The solid lines are drawn by using Eq. (2.7), where Dc汀is taken

from Table I. The data lvith a fil一ed symbol are used for the fit.

・后- J石and tI-c horizontal axis stands for β. We ha、′c
also calcu一ated crL什om the statlc potential to make sure tllat

ctl obtained from the Creutz ratios is reliable.I The static

potential we have assumed has the fonll

The open symbols in Fig. 1 correspond to the result obtained

from the static potential. Comparing the two results in Fig.

we see that the lattice string tensions obtained from the

Creutz ratios agree with those obtained from the static po-

tential. We made the same comparison for different values of

γ and found the same result. So in tl-e following analyses

we use only the lattice string tensions什om the Creutz ratio,

because we have more data for this case and we do not lvant

to mix data obtained by two different met!1ods.

We see from Fig. 1 that above β≧3.0 the square root of

tl-c lattice string tension >/石first decreases linearly until β
-3.3, and山en its slope becomes -1nildcr. The tail for large β

is certainly due to the finite latticc size effects, but the

change from the linear decrease of 、石to a 1-1日dcr one
around β -3.3 ---ay indicate that tl-c thcorctical expectation

(2.7) is correct. Although it is in principle possible to check

by increasing the lattice size how much finite lattice size

effects may be contai一一cd in the tail of晶it is impossible
to do this at the lllOll1Ctlt bccaLIse of tlle liillitatiolls of tlle

We give more details of calculating the static potenti'aI in Sec. V

when calculating the potentiiil in the Coulomb phase.
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FIG. 3. The effective dimension as a function of the numbern of

data points that arc used for a fit. We increase /; starting from 4 until

the value of(Dcn-4)~　becomes stabilized.

computing faci一ity givell to us. Below we sketch holv we

confirm Eq. (2.7) and compute DelT.

The effective dimension can be obtained by fitting the

function (2.7) to tllc data. To this end, we first choose four

neigllboring data points that lie around the middle of the data

set for a given γ, and using these points, we fit the function

(2.7) to obtain the effective dimension. (In the case of γ

-5.0, for instance, we use the data points at　β

- 3.20,3-22,3.24, and 3.26.) Then we increase the number of

the data points to be used by 2 by including the next neigh-

boring data poi一一t o一一botll sides. In doing so, we obtain tl-c
つ

effective dimension and also ¥~　Per degree of freedom

(DOF) as a function of number n of the data points that arc

used for the fit. We rcpeとit the same analysis for the different

values of2万Rlai given in Eq. (2.4). The results are shown

in Figs. 2 and 3 and in Table I. In Fig. 3, the vertical axis

stand for (Def{-4)　and the error bar is computed什om

x2/DOF. We see that as /; increases the error bar decreases

and the central values converge. The results are summarized

in Table I, and we sec that the effective dimension D,汀de-

creases gradually fiom 4.7057(55) to 4.5230(82) as γ in-

creases from 3.6 to 5.0, ¥vllich means as 2万RlaA decreases

斤om 0.72 to 0.5 [sec Eq. (2.4)].

The β in Table I is the value at wllich (tl and hence (J4

should va-lisll ir tllC thcorctical assunlption (2.7) is co汀CCt

and is extrapolated for larger values of /3 (see also Fig. 2).

We emphasize thとit our results indicate tl-at the limit aA-0

with R/a4 kept fixed exists in the confining phase at finite β.

TABLE I. Effective dilllension for different values of γ (A

-2tt/a一).

3.6 0.72 4.7057(55 (2.30 :2.76) 0.525 3.007(23)

4.0 0.64 4.6456(54 (2.50 :2.96) 0.438 3.286(22

4.6 0.55 4.5695(55 2.80 :3.26 0.778 3.726(36

5.0 0.50 4.5230 82) (3.00 :3.46) 0.598 4.057(43)
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IV. THE MAXIMAL RADIUS

The sanlC al-alysis in real QCD in Sec. Ill 帆,ould constraiil

the size of the compactification radius in QCD, vvhicl- wc

would like to estimate without detailed caIdilations. Our cs_

timate below is based on many assumptions that cannot be

justified at present, and so the number we obtain should not

be taken serious一y. But it is u′ortllWMe to do tllis to see wllat

kinds of problems are involved if one would like to do a

more reliable estimate.

To see that there exists a maximal radius for color con-

nnement in the four-dimensional subspace, we recall tl-c re-

suits obtained in the previous section and those from tllc next

section:

g2≧(=s)(De汀-4)( 16tt2/2b)　　(4.1)

for the (de)confining phase. Tllercfore, for a given value of

Dcfr, there should exist a smallest value ofg- for color con-

finement to occur, which is -(Deff-4)(16汀コ/2b). The
l　　　.　　・　.　　.　　　　　　　..　　1

question is how g- can be related to the gauge coupling gik

of Kaluza-Klcin theory, the four-dimensional theory with a

Kaluza-Klein tower. At the tree level, it is gEk

-r(2汀R^)-　but in higher orders this relation w= rc-

ccive quantum CO汀ections, wl-ere we I-ave used A-

-(TT/a4yX4. To answer the question, we first assume that

DeG{RA)-4 (5) as RA-0 (冗), and we consider a redefi-

nition ofg- according to [12,13]:

gL- 7}-](R¥)g2, J7(/)-cxp/:'(it'-[Dcfl</')-4].
(4.2)

Note that the β ninction ofg己becomes

β --{2bl¥6if)ヮ(RA)glk.　(4.3)

Since the function rj{R¥) becollles proportional to RA as

Ju-∝,2 t一一e new gauge coupling describes a power-law

behavior [4,9-1 1]. Furthermore, we see from Eq. (4.2) that
1

gEk approaches g- as RA approaches 0. Recalling now the

assumption that De汀approaches 4 as RA approaches 0 and

Eq. (2.8), we see that the renonnalization group flow of the

new gauge couplinggj^ for small RA takes exactly the same

form as the one for the e恥ctivc, four-dimensiona一 theory

without the Kaluza-Klein tower. Therefore, we assume tllat

gik is the gauge coupling of the four-dimensional theory with

tllc Kaluza-Klein tower.

Now, suppose that QCD results fro-1i a five-dimensional
つ

QCD. As we llavc argued above, g- becomes g^k at low

energies, and we then identify 2ttIcia with the physica一 scale

A of the effective theory, rather than with the ultraviolet

cutoff. Since g^(A/z)/477-0.12 in QCD and b-7, the con-
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straint (4.1) can be converted to tllat of an effective dimen-

sion, i.e., Def^RMz)≦4. 1 3. Therefore, if we know the func-

tion Dt.n{/) exactly, we can calculate the range oft for wllich

the inequality (4.1) is sとitisfied. Fro一一日hc results given in

Table I we find that the effective dimension as a function of

/ can be written as Dt.n{1)-4+/. Assuming that this function

can be used even for slllall t, we then obtain RA≦0.13,

which would imply tllat MR≧0(1). TcV silould be satis-

ned for the color degrees offreedom in QCD to be con伝ncd.

There are various problems involved in our estimates

above, apart from the main assumptions that Eq. (2.6) is

correct in QCD, the effective dimension 」>efl(0 can be ex-

trapolatcd for smaller values oft although we know it only

for 0.5=」/≦0.72, and the form Dcfl<0-4+/ remains tllC

same in QCD. One is the identはcation 2万/a4-A, and the

other is g(A)-g/?(/*-2万/aA), wl-crc gaifJ.) is a renormal-

ized gauge coupling with the renormalization sealc fi in a

certain renormalization scheme. The first one comes什om the

assumption that we arc very close to a continuum theory that

possesses a four-dimcilsional rotational invariancc. The sec-

ond one comes from the fact that Alltlil-,. and A¶冨arc not

very much different in QCD so that the value of the bare

lattice gauge couplingg(A) is approximatcly equal to that of

the renormalized gauge coupling gR(fi= A). In order to jus-

tify these assumptlons and obtain more reliablc rclations

amoヮg them, we first of all -ave to refine and extend the γ一g
relation given in Eqs. (2.3) and (2.4), which were obtained

only for β< 1.8 for the 5(7(2) theory in [8]. More important

is that, apart from the fact that we have to do the calculations

in the case ofSU(3), we should consider the continuum

limit with the compactifcation radius R kept fixed. This will

be necessary to introduce a real physical scale and to relate

the string tension to R.

Therefore, our estimate ofRmax above silould not be taken

seriously. However, simillations on hvc-dimensional, com-

pactined 5(7(3) lattice gauge theory would go beyond tllC

scope of the present paper, and we would like to leave this

problelll to future work. The crucial point is that there exists
a lllaxmlal radius.

V. COULOMB PHASE

The con負ning phase shrinks as R decreases, whicl- wc

have already seen above. Next we would like to show that

the dcconfining phase is a Coulomb phase. To begin with, we

consider the Wilson loop lV(x,t) at the tree level in con-

tinuum perturbation theory. The static potential can be ob-

taincd什om

K(.v)- lim[In W(.r,/)]//
;一一コ:

-The proportionality constant depends on Dc汀as a fu一一ction of /,

which, however, depends on the regularization used [ 13]. Therefore,

the lattice regulari/-ation does not reproduce the saillc cocmcicnt 【8]

obtained in 【4].

036002-4



SCALING LAWS AND EFFECTIVE DIMENSION IN ‥.

FIG. 4. The Coulomb potential (5.2). The filled symbols are山e

ra＼v data points, and the dotted line is V(X) of Eq. (5.5) with Co

=0.3230( 14) and C, -0.1086(30). The open symbols stand for the

rotationally invariant data points.

We have the usual Coulomb potentia一 for x/2R>] , and we

see that the dimensionless gauge coupling g, normalized for

four-dimensional Yang-Mills theory at the tree level, is given

by g-軍5 /耳諒, a亨is well known [3,4]. The corresponding
expression on a lattice is

VL(X)- lim In W{XJ)IW{XJ+ 1 ),　(5.2)
r一蝣*蝣

where W(X,T) is a lattice Wilson loop. The lattice distances

vYand Tare made dimensionless by dividing by aA. We are
interested in the potential between two static quarks that are

separated in four dimensions, and therefore X and T are sup-

posed to be in the four-dimensional sublattice. Since in tlle

actual calculations we cannot take tlle lilllit γ-⇒∝, we con-

sider also off-axis loops and use the standard smearing tech-

niqucs [16] to improve the convergence of approxiinants

with increasing T. Our smearing procedure consists of itera-

tively replacing each spatial (three-dimensional) link by the

sum of itself and the neighboring four spatial staples with a

weight parameter ど:

U,{x,y)-U (x,y)

-*W)K/,(-vvv)+e S F/yU,v) (5.3)

FiJ(x,y)- UJ{x,y)Ui(x+j,y)U](x+ i,y)

+ U](x- i,y)U,(x-i,y)Uj(x-i+j¥y),

where Vsu(2) denotes a projection operator back onto the
SU(2) manifold.

We generated 10000 con6gurations for each simulation
point after then一一alization, and the smeared Wilson loops

were measured every 100 configurations for tlle calculation

of the static potential. We iterated Eq. (5.3) 60 times with

e-0.1 in the case of the confining phase, 100 times witll E

-0.2 in the case oftllc Couloillb pllase. h Fig. 4 we silOW

the result (別ed symbols) for tl-e lattice potential VL{X) as a

function ofXat β-5.0 and γ-5.0 (which is equivalent to

2irR/aA=0.5). The condition x/2R>¥ to obtain a l/A'po-
tcntial becomes Xf> !2万in this case, and we assume that the

lattice potential VL(X) takes the fonll

VL(X)-Co-C]-+C2 -- 1x　(5.4)

Where [ 1/Aj (the three-dimensional Coulomb potential on a

lattice) is given in Eq. (3.3). The first tenll ofEq. (5.4) is the

unphysical self-energy, the second term is the rotationally

invariant part of the Coulomb potential, and the third term is

tl一c most dominant part of its breaking. From a ¥-伝t we find

tllat C(I-0.3230( 14),C1 -0.1086(30), and C,-0.0776(27).

The fitted lattice potential with the C2 ten一一in Eq. (5.4) sup-

pressed, i.e.、

is the dotted curve in Fig. 4, while the open symbols stand

for the rotationally -nvanant data points. We see that tlle data

justify tl-e assumption that tlle dccoI捕ning pilase is a Cou-

1011ib phase.

VI. NATURE OF THE PHASE TRANSITION

As the next task we consider tlle nature of tlle transition

斤om tlle confining phase to the Coulomb phase. In the con-

fining phase our data indicate that the limit a4-0 with R/a4

kept fixed exists at丘nite β If we can show that a4 also

vanishes at the same va一ue ofβ in tlle Coulomb phase, the

transition from the confining phase to the Coulomb phase is

of second order.

To this end, we have to define the scale in the Coulomb

phase. In the naive continuum theory there are two dimen-

sional quantities, the gauge coupling g5 and the compactin-

cation radius R. Therefore, we assume that R and the low-

energy value ofg5 are independent physical quantities at the

quantum level, too. We then consider the limit a4-0 with

2TrR/a4 kept fixed, which is the sa。le limiting process we

have considered in the confining phase. In this limit, the

quantity #5/2ttR [the coc用cicnt C, of the tree level Coil-

10---b potential (5.4)] has to diverge because R-0 while g5

sllould remain finite by assumption. So naively one expects

the scaling law C, -/?-ォ4-(β-β'), where β* is the

critical value ofβ at which a^ -cii vanishes. In Fig. 5 we

plot C, versus β for different values of γ [or 2ttR/ci4 of

Eq. (2.4)]. We see that Cr linear】y decreases, and make

therefore a theoretical ansatz for tllc scaling law:

crl-β。-β-β　　　　　(6.1)

For γ-4.6, for instance, a xヱfit yields that D0-9.16(36)

and D, -3.894(77). If the tree level equation (5.1) were cor-

rcct at the quantum level, too, then it would mean that aJ

vanishes at β-D。/D,-2.35(14) in the decon月ning phase.

This would contradict the assumption that in the con伝rung

036002-5



S川NJI EJIRI, SHOUJI FUJIMOTO, AND JISUKE KUBO

FIG. 5. Cr versus β fordifferent γ's, where C, isdefined in

Eq. (5.4). The graph shows the scaling behavior in the Coulomb

phase. The lines correspond to the linear function (6.1), where Do

andD¥ are given in Table II.

phase the lattice spacing (∫4 approaches zero as 〟 approaches

-3.7 for γ-4.6 (sec Table I). This docs not necessarily

mean that the transition from the deconfining phase to the

confining one is a first order transition or a crossover transi-

tion. It may be well possible that the tree-level fonll (5.1)

receives quantunl CO汀ectioils in sucll a way tllat tllc transi-

tion is indeed of second order. Therefore, we consider pos-

sible quantum corrections to C, that arc consistent with the

scaling law in Fig. 5 and the value offi in the confining

phase (given Table I). Since C, , being dimensionless, can

depend only on the combination R/g}, the correction can

ollly be a constant, i.e.,

In Table III we give tllc results of the fits, from wllich we

find that the ansatz for tllc nonperturbativc quantuill correc-

tion to the coemcient of the Coulomb potential (5.4) is con-

sistcnt with our data, and we conclude tllat

where we lave not included tllC血ta for γ-5.0 in Eq. (6.3),

because the error for this case is very large compared with

others. This indicates that tllc assumption that the transition

from the confining to the decon伝ning pilasc is a second order

transition is consistent witll llle data. Note tllat tllc trallsition

TABLE II. Fit for C, defined in Eq. (6.1).The fitted lines in Fig.

5 intersect 、vith the β axis at β-β。!βい

3.6　9.48(31)　4.827(80) (3.20:4.60)　0.103　1.965(97)

4.0 10.08(30) 4.603(74) (3.40:4.80)　0.0957　2.1900)

4.6　9.16(36)　3.894(77) (4.00:5.40)　0.0998　2.35(14)

5.0　8.39(57)　3.47(ll) (4.20:5.80)　0.175　　2.41(24)
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for sillall values of γ, or large values ofRA, is offirst order

[6,8]. We expect tl-at the first order tra誓ition for large values
of RA cl-angcs to a crossover trai-S-tion, and finally to a
second order trallsition, as we decrease the value ofうR^.

The nonperturbative correction (6.2) means that the tree

level relation g2-g-5/2irR shou一d be一一一odificd to

Since a is large, the correction is not sl11aI1. The Coulomb

phase may be ofpilenomenologlcal importallce, because the

color degrees of什eedom do not need to be always confined.

The SU(2) part of the standard model, for instance, could

result什om a highcr-dimensiona一 Yang-Mills theory in the

Coulomb phase. Then an equation such as Eq. (6.4) defines

the matching condition.

VII. CONCLUSION

In this paper we performed Monte Carlo sin-ulations in a

fivc-dimcnsional lattice SU(2) Yang-Mills theory, where we

colllpactificd one extra dilllcnsion. We found that, as the

cot一一pactification radius R decreases, the con丘ning phase

spreads more and more to the weak coupling regime, and the

effective dimension of the theory gradually changes from

five to four. Our data indicate that there exists a maximal

radius above vvllich the color degrees of什ccdom are not

confined. An actual computation of the nlaximal radius in

QCD will give an important phenomenological constraint for

model building based on Kaluza-Klein theories. Our data

also indicate tllat for fixed R/a4 the transition from the de-

confining p!-asc to the Coulomb phase is of second order if

R/a4 is small enough.

Thc paramctcr regime we -avc considered in tl-e preset-I

work corrcspoilds to the rcgin- in wl-ic1日hc Kaluza-Kleir-

idea is expected to be realized: At si-ort distances we -aVC

the five-dilllcnsional rotational invariancc, and at long dis-

tanccs, the Kaluza-Klein excitations decouple so that the

lolv-energy effective theory is a four-dimensional Yang-Mills

thcory. We found no indication tl-at would contradict this

picture. Moreover, the compactified five-dimensional theory,

which is pcrturbatively nonrcnorn-alizablc, 1-as predictive

polvcr (unless examined at very short distances), as we con-

In the case of the phase transition i-leasurcd by the Polyako、・ loop

thとit extends il1to tllc fifth dimension, tlle Ctl・Lmgc frolll first to scco-ld

order happens at a certain value of γ [8].
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elude from the scaling laws we observe. (Readers are also

invited to see [17].)

The parameter regime that corresponds to deconstructing

extra dinlensions [14] is llot the saille as above [18]; the two

phases are nonperturbatively separated [8,1 8]. In the phase

for the conventional Kaliはa-Klein theory, the vacuum expec-

tation value of the Polyakov loop (which extends into the

鮒h dimension) is noヮzero [8], wl-ilc it vanishes [18] in tl-c
phase for deconstructing extra dimensions. (The pilasc for

deconstructing extra dimensions is the one in wllich tlle layer

structure in伝vc-dn一一ensional gauge tllcones can be realized

[19].) Although it is not at all clear tllat the five-dimensional

rotational invariance at silort distallccs is recovered, it looks

at the moment as if two different confining four-dimensional

Yang-Mills theories could result from two different phases

PHYSICAL REVIEW D 66, 036002 (2002)

(one from each) of a five-dimensional theory. The difference

is purely nonperturbativc. It will be very exitlng to investi-

gate this difference in more detail, especially lll supersym-

metric cases, where one already has analytic results, and it is

shown that the hve-dimcnsional Lorentz invanance is recov-

ered [20].
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