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Monte Carlo simulations are performed in a five-dimensional lattice SU(2) Yang-Mills theory with a
compactified extra dimension, and scaling laws are studied. Our simulations indicate that, as the compactifi-
cation radius R decreascs, the confining phase spreads more and more to the weak coupling regime, and the
cffective dimension of the theory changes gradually from five to four. Our simulations also indicate that the
limit a,—0 with R/a4 kept fixed exists in both the confining and deconfining phases if R/a, is small enough,
where ay is the lattice spacing in the four-dimensional direction. We argue that there exists a maximal radius
above which the color degrees of freedom are not confined. Comments on deconstructing extra dimensions are

given.
DOI: 10.1103/PhysRevD.66.036002

I. INTRODUCTION

Since Kaluza and Klein [1] found that the electromagnetic
and gravitational forces can be unified by introducing a fifth
dimension, their idea has attracted attention for many de-
cades. Recently, there has been a lot of renewed interest in
field theories with extra dimensions, in which the length
scale of the extra dimensions can be so large that they could
be experimentally observed [2—4]. It is assumed that, for
distances larger than the compactification size, the massive
Kaluza-Klein excitations decouple so that these theories be-
have as a four-dimensional continuum theory at low ener-
gies. Since, however, Yang-Mills thcorics in more than four
dimensions are nonrenormalizable, it is not at all clear that
the infinite tower of the Kaluza-Klein excitations decouples
cven if each massive excitation is suppressed: A naive expec-
tation of their contribution would be =-0.

In four dimensions, the color degrees of freedom are con-
fined even for a weak gauge coupling. How can a confining
four-dimensional Yang-Mills theory emerge from a higher-
dimensional Yang-Mills theory which is deconfining in the
weak coupling regime [5-7]? Although the assumption of
the decoupling of the Kaluza-Klein excitations sounds physi-
cally correct, it is by no means trivial to show that they
nonperturbatively decouple in such a way that the color con-
finement takes place even at weak gauge coupling. Recently,
we [8] started to address related problems in a concrete ex-
ample, namely, the pure lattice SU(2) Yang-Mills theory in
five dimensions with one dimension compactified on a circle.
We observed [8] that the compactification changes the nature
of the phase transition, and that a second order phase transi-
tion, which does not exist in the uncompactified case, occurs,
thus confirming the long-standing expectation of Lang, Pilch,
and Skagerstam [6]. The phasc is defined by the Polyakov
loop that cxtends into the fifth dimension, and the phase
transition is expected to be of second order, because the com-
pactified SU(2) lattice gauge theory in five dimensions be-
longs to the universality class of the Z, spin model in four
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dimensions. For the first time, we [8] computed the lattice 8
function in a Yang-Mills theory in more than four dimen-
sions, and verified nonperturbatively the power-law running
of the gauge coupling constant [4,9-11].

In this paper we would like to extend the analyscs of [8].
We first observe that if the compactification radius becomes
smaller and smaller, the confining phase spreads more and
more to the weak coupling regime. At the same time we
compute the effective dimension [12,13], and scc that the
theory behaves more and more as a four-dimensional Yang-
Mills theory. Based on this result, we argue that the color
degrees of freedom are confined only for R<R,.. . The con-
fining phase is defined by the string tension between two
static quarks that are separated in the four-dimensional sub-
space. This definition of phase should not be confused with
the definition by the Polyakov loop that extends into the fifth
dimension, which was mentioned above.

Our calculations of the potential between two static
quarks separated in the four-dimensional subspace show that
the deconfining phase is a Coulomb phase. We then discuss
the nature of the transition from the deconfining phase to the
confining phase for fixed values of R/a,, where ay is the
lattice spacing in the four-dimensional dircction. We confirm
that if R/ay is small enough, it is consistent with a second
order transition. Combined with the result of [8], we there-
fore come to the conclusion that, as we decrease the value of
RA, the first order transition for large values of RA changes
to a crossover transition, and finally becomes of second or-
der.

We give some nonperturbative comments on deconstruct-
ing extra dimensions [14] in the Conclusion.

I EFFECTIVE DIMENSION

In order to take into account the compactification effects
in this theory, it is crucial to use anisotropic lattices [15]
which have different lattice spacings a4 and a5 in the four-
dimensional dircctions and in the fifth direction. For definite-
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ness we employ the Wilson action for purc SU(2) lattice
gauge theory:

B 1
S= > % {I =~ FReTrp,

|
+3y; [ I~ SRe TrUPSJ.
' 2.1

where Up ~ denote plaquette variables in the four-
dimensional sublattice, and Up, arc those that are extended
into the fifth dimension. The gauge coupling constant g5 has
the dimension of Va,, which is related to B by

asgs =Pl

at the tree level. Periodic boundary conditions are imposed in
all directions, and we use a lattice size of the form N3X N
(we mostly use Ny=12 and Ns=4). The compactification
radius is defined as R=asNs/27 if Nyay,>Nsas is satisfied,
and the corrclation-anisotropy parameter is defined as ¢
=ay/as. The tree level relation y= & will be modified at the
quantum level [15], and throughout this paper we assume
that the &-y relation obtained in [8] is satisfied in both the
confining and deconfining phascs. Simulations are performed
for

(2.2)

¥=3.6,4.0,4.6,5.0, (2.3)
which is equivalent to [8]
27R }\,5115 4
= = 2.4)

+=0.72,0.64,0.55,0.50,
a, ay 3

where we have used Ns=4 above. We chose this range of
27R/ay because we expect from the previous calculations
[8] that the limit 27R/a;—0 may cxist, and we observe
some scaling behavior.

To define the physical scale in the confining phase, we use
the string tension o between two static quarks that are sepa-
rated in the four-dimensional subspace. Since the string ten-
sion is a physical quantity, the lattice string tension o
should behave like ai as a4—0, where a4 can be related by
the B function to the dimensionless bare gauge coupling

g =7=/\g§. (2.5)

where we have identified A with 27/ay because 4
X(wlag)?=(27lay)’. Since we expect that the massive
Kaluza-Klcin excitations will decouple increasingly as
2aR/ay decreases, the lattice B function B, cannot assume a
purely five- or four-dimensional form. Instcad, we expect a
continuous change of its form. This is quantitatively ex-
pressed by the so-called effective dimension D g, which is a
function of 2 wR/a4 [13]. So we assume that 8, can be writ-
ten as

028 D2 nRIay - a1g— 2
B.= ‘”du,,_[ e{27R/ay) lg I(m_gg,

(2.6)
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FIG. 1. JX_(,=\/;Z versus B at y=5.0. The filled symbols are
obtained from the Creutz ratio (3.1) and the open ones are obtained
from the static potential (3.2).

where 5=22/3-2/3=20/3. Thercfore, the evolution equa-
tion for g can be casily integrated in the case that 2 wR/a,
is kept fixed while a4 changes. We obtain for this case

2b 1 B ) MD.g=4) o)

\//0'_,*-(14“- o

' 167° Deq—4 87
It is important to notice that as D g—4 we obtain the loga-
rithmic form

-2

g7%=BI87=(2b/167*)In ay+ const. (2.8)
That is, if we can show that the effective dimension D g in
the confining phase varies from 5 to 4 as 2 7R/a, decreases
from a larger value to a smaller value, we show the continu-
ous decoupling of the Kaluza-Klein excitations, and the con-
fining phase spreads more and more to the weak coupling
regime as R decreases.

111. CONFINING PHASE

Now we come to the results of our Monte Carlo simula-
tions on a 12*X4 lattice. We use the Creutz ratio x(/,J)
obtained from the rectangular Wilson loops H(/.J) with
lengths of / and J in the four-dimensional subspace. We as-
sume that the Creutz ratio takes the form

1 1
X(/,J)=X0_Xl(]([_ 1)+ J(J—1 ))

!

and we identify y, with the lattice string tension o, . We
generated 2500 configurations for each simulation point after
thermalization, and the Wilson loops were measured every
five configurations for the calculation of a Creutz ratio. Er-
rors were estimated by the jackknife method. The filled sym-
bols in Fig. 1 arc the result obtained from the Monte Carlo
simulations with ¥=35.0, where the vertical axis stands for
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FIG. 2. The scaling behavior of o} for different values of y.

The solid lines are drawn by using Eq. (2.7), where D g is taken
from Table I. The data with a filled symbol are used for the fit.

Vxo= Vo, and the horizontal axis stands for 8. We have
also calculated o, from the static potential to make sure that
o, obtained from the Creutz ratios is reliable.' The static
potential we have assumed has the form

X |X

1 1
V(X)=CO—C,X,+C2(——— )+C3X, (3.2)
where [ 1/X] is the three-dimensional Coulomb potential on a
lattice, and is given by

3 cxp{iz X,-sin(p,-/2)]
T d°p i

]
szf—n(zw)l

The open symbols in Fig. 1 correspond to the result obtained
from the static potential. Comparing the two results in Fig. |
we see that the lattice string tensions obtained from the
Creutz ratios agree with those obtained from the static po-
tential. We made the same comparison for different values of
v, and found the same result. So in the following analyses
we use only the lattice string tensions from the Creutz ratio,
because we have more data for this case and we do not want
to mix data obtained by two different methods.

We see from Fig. 1 that above 8=3.0 the square root of
the lattice string tension Vo, first decreases lincarly until 8
~3.3, and then its slopc becomes milder. The tail for large B8
is certainly duc to the finite lattice size cffects, but the
change from the lincar decrease of Vo, to a milder one
around 8~3.3 may indicate that the theoretical expectation
(2.7) is correct. Although it is in principle possible to check
by increasing the lattice size how much finite lattice size
effects may be contained in the tail of o, it is impossible
to do this at the moment because of the limitations of the

T (3.3)
21 sin’(p,/2)

'We give more details of calculating the static potential in Sec. V
when calculating the potential in the Coulomb phase.

PHYSICAL REVIEW D 66, 036002 (2002)

25

s+ v=5.0
* y=4.6
» ¥=4.0
- 3.6

(D4

3 1 0¥ %

IIITIIx
i

24l
]

tof

b o ey

RS TN  S

0 5 10 15 20 25
n
FIG. 3. The effective dimension as a function of the number # of

data points that arc used for a fit, We increase # starting from 4 until
the value of (D ;—4)" ' becomes stabilized.

computing facility given to us. Below we sketch how we
confirm Eq. (2.7) and compute D, .

The effective dimension can be obtained by fitting the
function (2.7) to the data. To this end, we first choose four
neighboring data points that lic around the middle of the data
set for a given 1, and using these points, we fit the function
(2.7) to obtain the effective dimension. (In the case of y
=5.0, for instance, wec usc the data points at S
=3.20,3.22,3.24, and 3.26.) Then we increasc the number of
the data points to be used by 2 by including the next neigh-
boring data point on both sides. In doing so, we obtain the
effective dimension and also x* per degree of freedom
(DOF) as a function of number » of the data points that are
used for the fit. We repeat the same analysis for the different
values of 27R/ay given in Eq. (2.4). The results ar¢ shown
in Figs. 2 and 3 and in Table 1. In Fig. 3, the vertical axis
stand for (D.g—4)” "' and the error bar is computed from
x°/DOF. We sce that as #n increases the crror bar decreases
and the central values converge. The results are summarized
in Table I, and we sce that the effective dimension D de-
creases gradually from 4.7057(55) to 4.5230(82) as v in-
creases from 3.6 to 5.0, which mecans as 2 wR/ay4 decreases
from 0.72 to 0.5 [scc Eq. (2.4)].

The B* in Table [ is the valuc at which o and hence ay
should vanish if the theoretical assumption (2.7) is correct
and is extrapolated for larger values of B (sec also Fig. 2).
We emphasize that our results indicate that the limit ay;—0
with R/ay kept fixed cxists in the confining phase at finite 8.

TABLE I. Effective dimension for different values of y (A
=27lay).

Y RA Duj] (ﬁmin :ﬂrmx) XZ/DOF B*
3.6 0.72  4.7057(s5) (2.30 :2.76) 0.525 3.007(23)
40 0.64 4.6456(54) (2.50:2.96) 0.438 3.286(22)
46 055 4.5695(55) (2.80:3.26) 0.778 3.726(36)
5.0 0.50 4.5230(82) (3.00 : 3.46) 0.598 4.057(43)
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IV. THE MAXIMAL RADIUS

The same analysis in real QCD in Scc. 1T would constrain
the size of the compactification radius in QCD, which we
would like to estimate without dctailed calculations. Our cs-
timate below is based on many assumptions that cannot be
justified at present, and so the number we obtain should not
be taken seriously. But it is worthwhile to do this to see what
kinds of problems are involved if one would like to do a
more reliable estimate.

To sec that there exists a maximal radius for color con-
finecment in the four-dimensional subspace, we recall the re-
sults obtained in the previous section and those from the next
section:

2 Z(S)HDg—4)(167°/2b) @.1)
for the (de)confining phase. Thercfore, for a given valuc of
D, there should cxist a smallest valuc of g* for color con-
finement to occur, which is ~(D.g—4)(167/2b). The
question is how g can be related to the gauge coupling g,
of Kaluza-Klein theory, the four-dimensional theory with a
Kaluza-Klein tower. At the tree level, it is gik
=g*(2mRA)™", but in higher orders this relation will re-
ccive quantum corrections, where we have used A2
=(1r/a4)3><4. To answer the question, we first assume that
D g(RA)—4 (5) as RA—0 (=), and we consider a redefi-
nition of g* according to [12,13]:

2 2 ’1”
gu=7""(RANg  n()=cxp L‘I—,[Dunﬂ’)—ﬂ-
4.2)

Note that the 8 function of gik becomes

Bu=—(2b/167) n(RA)g},. 4.3)
Since the function m(RA) becomes proportional to RA as
RA—=? the new gauge coupling describes a power-law
behavior [4,9-11]. Furthermore, we see from Eq. (4.2) that
g1 approaches g® as RA approaches 0. Recalling now the
assumption that D approaches 4 as RA approaches 0 and
Eq. (2.8), we scc that the renormalization group flow of the
new gauge coupling g7, for small RA takes exactly the same
form as the onc for the effective, four-dimensional theory
without the Kaluza-Klein tower. Therefore, we assume that
gik is the gauge coupling of the four-dimensional theory with
the Kaluza-Klcin tower.

Now, suppose that QCD results from a five-dimensional
QCD. As we have argued above, g° becomes gik at low
energies, and we then identify 2 w/ay with the physical scale
A of the effective theory, rather than with the ultraviolet
cutoff, Since gi(Mz)/47.'=0.l2 in QCD and h=17, the con-

The proportionality constant depends on D g as a function of ¢,
which, however, depends on the regularization used [ 13]. Therefore,
the lattice regularization does not reproduce the same coefficient [8]
obtained in [4].
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straint (4.1) can be converted to that of an effective dimen-
sion, i.c., D g{ RMz)=<4.13. Therefore, if we know the func-
tion D qo(¢) exactly, we can calculate the range of 1 for which
the incquality (4.1) is satisfied. From the results given in
Table 1 we find that the effective dimension as a function of
f can be written as D 4(7) =4+ 7. Assuming that this function
can be used even for small 7. we then obtain RA=<0.13,
which would imply that 1/R=0(1). TeV should be satis-
fied for the color degrecs of freedom in QCD to be confined.

There are various problems involved in our cstimates
above, apart from the main assumptions that Eq. (2.6) is
correct in QCD, the effective dimension D g(f) can be ex-
trapolated for smaller values of 1 although we know it only
for 0.5<r=<0.72. and the form D g(r)=4+¢ remains the
same in QCD. One is the identification 2 w/a,= A, and the
other is g(A)=gp(pu=2m/ay), where gg(u) is a renormal-
ized gauge coupling with the renormalization scale u in a
certain renormalization scheme. The first one comes from the
assumption that we arc very close to a continuum theory that
possesses a four-dimensional rotational invariance. The sec-
ond one comes from the fact that Ay, and Agg are not
very much different in QCD so that the value of the bare
lattice gauge coupling g(A) is approximately equal to that of
the renormalized gauge coupling gx(x=A). In order to jus-
tify these assumptions and obtain more reliable relations
among them, we first of all have to refine and extend the y-¢
relation given in Eqgs. (2.3) and (2.4). which were obtained
only for $<1.8 for the SU(2) theory in [8]. More important
is that, apart from the fact that we have to do the calculations
in the case of SU(3), we should consider the continuum
limit with the compactifcation radius R kept fixed. This will
be necessary to introducc a real physical scale and to relate
the string tension to R.

Therefore, our estimate of R, above should not be taken
seriously. However, simulations on five-dimensional, com-
pactified SU(3) lattice gauge theory would go beyond the
scope of the present paper, and we would like to leave this
problem to future work. The crucial point is that there exists
a maximal radius.

V. COULOMB PHASE

The confining phase shrinks as R decreases, which we
have already seen above. Next we would like to show that
the deconfining phase is a Coulomb phase. To begin with, we
consider the Wilson loop W(.;J) at the tree level in con-
tinuum perturbation theory. The static potential can be ob-
tained from

V(x)=Ilim[In W(.\:,I)]/I

1 X
3, 47752 (ﬁ<l ’
=—4—g3>< | | N 5.1)
2@R 4mx (ﬁ>l
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FIG. 4. The Coulomb potential (5.2). The filled symbols are the
raw data points, and the dotted line is V(X) of Eq. (5.5) with C,
=0.3230(14) and C,=0.1086(30). The open symbols stand for the
rotationally invariant data points.

We have the usual Coulomb potential for x/2R>1, and we

sec that the dimensionless gauge coupling g, normalized for
four-dimensional Yang-Mills theory at the tree level, is given

by g=gs/\2 7R, as is well known [3,4]. The corresponding
cxpression on a lattice is

Vi(X)=limin WX, T)/W(X,T+1), (5.2)

T—=x

where W(X,T) is a lattice Wilson loop. The lattice distances
X and T are made dimensionless by dividing by a4. We are
interested in the potential between two static quarks that are
separated in four dimensions, and therefore X and T are sup-
posed to be in the four-dimensional sublattice. Since in the
actual calculations we cannot take the limit T—o, we con-
sider also off-axis loops and use the standard smearing tech-
niques [16] to improve the convergence of approximants
with increasing 7. Our smearing procedure consists of itera-
tively replacing each spatial (three-dimensional) link by the
sum of itself and the neighboring four spatial staples with a
weight parameter e:

Uilx,y)—= U} (x,y)
3
=Psy)| Uilx.y)+e€ > l17,-j(x,y) , (5.3)

J(#h=

Fi(x.y)=U(x.y)Uix+jy)Uj(x+1.y)
+ U;(x— iNU(x— f,y)Uj(x— i+iy),

where Pgyy5) denotes a projection operator back onto the
SU(2) manifold.

We generated 10000 configurations for each simulation
point after thermalization, and the smeared Wilson loops
were measured every 100 configurations for the calculation
of the static potential. We itcrated Eq. (5.3) 60 times with
€=0.1 in the case of the confining phase, 100 times with €
=0.2 in the casc of the Coulomb phase. In Fig. 4 we show
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the result (filled symbols) for the lattice potential ¥, (X) as a
function of X at 8=5.0 and y=5.0 (which is equivalent to
27R/ay4=0.5). The condition x/2R>1 to obtain a 1/X po-
tential becomes X> 1/2 in this casc, and we assume that the
lattice potential ¥ (X) takes the form

| 1 1
VL(X)=C(,—C,;‘—,+C3(}—[X,]), (5.4)
where [ 1/X] (the three-dimensional Coulomb potential on a
lattice) is given in Eq. (3.3). The first term of Eq. (5.4) is the
unphysical self-energy, the sccond term is the rotationally
invariant part of the Coulomb potential, and the third term is
the most dominant part of its breaking. From a x° fit we find
that C,=0.3230(14),C,=0.1086(30), and C,=0.0776(27).
The fitted lattice potential with the C, term in Eq. (5.4) sup-
pressed, i.c.,

1
V(X)=Cy—C, < .
(X) C() C] Xa (5 5)
is the dotted curve in Fig. 4, while the open symbols stand
for the rotationally invariant data points. We see that the data
justify the assumption that the deconfining phase is a Cou-
lomb phase.

VI. NATURE OF THE PHASE TRANSITION

As the next task we consider the nature of the transition
from the confining phase to the Coulomb phase. In the con-
fining phase our data indicate that the limit a;—0 with R/a,
kept fixed exists at finite 8. If we can show that a, also
vanishes at the same value of 8 in the Coulomb phase, the
transition from the confining phase to the Coulomb phase is
of second order.

To this end, we have to define the scale in the Coulomb
phase. In the naive continuum theory therc are two dimen-
sional quantities, the gauge coupling g5 and the compactifi-
cation radius R. Therefore, we assume that R and the low-
energy value of g5 are independent physical quantitics at the
quantum level, too. We then consider the limit a;—0 with
2@wR/ay kept fixed, which is the same limiting process we
have considered in the confining phase. In this limit, the
quantity g3/2@R [the cocfficient C, of the tree level Cou-
lomb potential (5.4)] has to diverge because R—0 while g;s
should remain finite by assumption. So naively onc expects
the scaling law C;'~R~a,~(B— B*), where B* is the
critical valuc of B at which aln-vcu vanishes. In Fig. 5 we
plot C7' versus B for different values of 7y [or 27R/a, of
Eq. (2.4)]. We see that C;' lincarly decreases, and make
therefore a theoretical ansatz for the scaling law:

Ci'=Do—D,\B. (6.1)
For y=4.6, for instance, a x° fit yiclds that Dy=9.16(36)
and D =3.894(77). If the tree level equation (5.1) were cor-
rect at the quantum level, too, then it would mean that a,
vanishes at B=D,/D;=2.35(14) in the deconfining phase.
This would contradict the assumption that in the confining
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FIG. 5. C;' versus 8 for different y’s, where ¢y is defined in
Eq. (5.4). The graph shows the scaling behavior in the Coulomb
phase. The lines correspond to the lincar function (6.1), where Dy,
and D, are given in Table 11,

phase the lattice spacing a4 approaches zcro as £ approaches
~3.7 for y=4.6 (sec Table I). This does not necessarily
mean that the transition from the deconfining phase to the
confining one is a first order transition or a crossover transi-
tion. It may be well possible that the tree-level form (5.1)
receives quantum corrections in such a way that the transi-
tion is indeed of sccond order. Therefore, we consider pos-
sible quantum corrections to C; ' that arc consistent with the
scaling law in Fig. 5 and the value of B8* in the confining
phase (given Table I). Since C; ', being dimensionless, can
depend only on the combination R/gs, the correction can
only be a constant, i.c.,

g5

Ci'~2@Rlgi+a or Cj~————.
: gs : 27R+ ag;

6.2)

In Table III we give the results of the fits, from which we
find that the ansatz for the nonperturbative quantum correc-
tion to the coefficient of the Coulomb potential (5.4) is con-
sistent with our data, and we conclude that

a=5.1*+0.7, (6.3)
where we have not included the data for y=5.0 in Eq. (6.3),
because the error for this casc is very large compared with
others. This indicates that the assumption that the transition
from the confining to the deconfining phasc is a second order
transition is consistent with the data. Note that the transition

TABLE II. Fit for C, defined in Eq. (6.1). The fitted lines in Fig.
5 intersect with the B axis at 8=D,/D,.

Y DU DI (Bmin:ﬁmax) leDOF DU/DI
3.6 9.48(31) 4.827(80) (3.20:4.60) 0.103 1.965(97)
4.0 10.08(30) 4.603(74) (3.40:4.80) 0.0957  2.19(10)
46 9.16(36) 3.894(77) (4.00:5.40) 0.0998  2.35(14)
50 839(57) 347(11) (420:5.80) 0.175 2.41(24)
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TABLE Ill. 7y independence of a.

Y @
3.6 5.03(66)
4.0 5.05(64)
4.6 5.35(78)
5.0 5.7(11)

for small values of 7, or large values of RA, is of first order
[6.8]. We expect that the first order transition for large valucs
of RA changes to a crossover transition, and finally to a
second order transition, as we decrease the value of® RA.
The nonperturbative correction (6.2) mcans that the tree

level relation <g‘r2=g§/27.'R should be modified to

2 24 -
~_ 85 £s
g —-———(]+(1'2’_‘R) .

(6.4)

Since « is large, the correction is not small. The Coulomb
phasc may be of phenomenological importance, because the
color degrees of freedom do not need to be always confined.
The SU(2) part of the standard model, for instance, could
result from a higher-dimensional Yang-Mills theory in the
Coulomb phase. Then an equation such as Eq. (6.4) defines
the matching condition.

Vil. CONCLUSION

In this paper we performed Monte Carlo simulations in a
five-dimensional lattice SU(2) Yang-Mills theory, where we
compactified one extra dimension. We found that, as the
compactification radius R decreases, the confining phase
spreads morc and more to the weak coupling regime, and the
cffective dimension of the theory gradually changes from
five to four. Our data indicate that there cxists a maximal
radius above which the color degrees of freedom are not
confined. An actual computation of the maximal radius in
QCD will give an important phenomenological constraint for
model building based on Kaluza-Klein theories. Our data
also indicate that for fixed R/ay the transition from the de-
confining phase to the Coulomb phase is of second order if
Rlay is small enough.

The parameter regime we have considered in the present
work corresponds to the regime in which the Kaluza-Klein
idea is expected to be realized: At short distances we have
the five-dimensional rotational invariance, and at long dis-
tances, the Kaluza-Klein excitations decouple so that the
low-energy effective theory is a four-dimensional Yang-Mills
theory. We found no indication that would contradict this
picture. Morcover, the compactified five-dimensional theory,
which is perturbatively nonrenormalizable, has predictive
power (unless examined at very short distances), as we con-

31n the case of the phase transition measured by the Polyakov loop
that extends into the fifth dimension, the change from first to second
order happens at a certain value of y [8].
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clude from the scaling laws we observe. (Readers are also
invited to sce [17].)

The parameter regime that corresponds to deconstructing
extra dimensions [14] is not the same as above [18]; the two
phases are nonperturbatively separated [8,18]. In the phase
for the conventional Kaluza-Klein theory, the vacuum expec-
tation value of the Polyakov loop (which extends into the
fifth dimension) is nonzero [8], while it vanishes [18] in the
phase for deconstructing extra dimensions. (The phase for
deconstructing extra dimensions is the one in which the layer
structure in five-dimensional gauge thcories can be realized
[19].) Although it is not at all clear that the five-dimensional
rotational invariance at short distances is recovered, it looks
at the moment as if two different confining four-dimensional
Yang-Mills theories could result from two different phases

PHYSICAL REVIEW D 66, 036002 (2002)

{(one from cach) of a five-dimensional theory. The difference
is purely nonperturbative. It will be very exiting to investi-
gate this difference in more detail, especially in supersym-
metric cascs, where one already has analytic results, and it is
shown that the five-dimensional Lorentz invariance is recov-
cred [20].
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