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QCD thermal phase transition in the presence of a small chemical potential
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We proposeこi new method to investigate the them-al properties of QCD ＼vitlHl SIllaIl quark chenlical

potcntiこil fx. Derivatives of quark and gluonic observables ヽvith respect to /i are computedこit fx-O for two

flavors of pA improved staggered fermions with ma-0.1,0.2 0n a 163×4 lattice, and used to calculate the

leading order Taylor expansion in /x of the location of tt-e pseudocritical poiiltとIboul J▲-0. This expansion

should be well behaved for the small values of /! /Tc・-0.1 relevant for BNL RトIIC phenomcnology, and

predicts a critical curve T'(/j.) in reasonable agreement with estimates obtained using exとid relveighting. In

addition, we contrast the case ofisoscalar and isovector chenlical potentials, quantify Ulc effect of/x.≠ 0 on the

equとition of state, and comment on the comp一ex phase of the fermion detenllinとinl in QCD with /j.≠0.
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1. liNTRODUCT10N

The study oftl-c phase structure ofQCD at nonzero tern-

pcraturc and baryon density is one of the most interesting

topics in contemporary physics. Heavy-ion collision experi-

ments arc running at BNL and CERN with the goal of the

expenillental production of a i-cw state of lllatter, the quark-

gluon plasma [1J. On the theoretical side, novel color super-

conducting and supcrfluid phases have been conjectured at

high baryon densities [2]. For these reasoヮs the need for
numerical studies of the QCD phase transition using lattice

gauge theory simulations, currently the most powerful quan-

titative approacl- to QCD, with both temperature T≠O and

quark cl-emical potential /▲q≠0, is more urgent than ever.

Precise theoretical inputs from simulations in the vicinity of

the QCD pilase transition are indispensable to the Lmdeト

standing of llcavy-ion collision cxpennlCtltS.

Over tlle last several years, tlle llumencal study of lattice

QCD has been successful at a zero chemical potential and

lligh temperature [3J. In contrast, because the quark detenlli-

nant is colliiplex at 〝≠O and Monte Carlo sinlulation is not

directly applicable, studies at nonzero jn are still largely ex-

ploratory. Recent developments with /⊥≠O can be classified

iヮtwo categories [4J. At the low temperatures and high den-
sities where the new phases are expected, studies of model

field theories such as two-color [SU(2)j QCD and the

Nambi卜Jona-Lasinio (NJL) illodel lave been made. The

simulation is possible because in both cases the quark deter-

minant is positive definite so that conventional Monte Carlo

metJlods can be used. Tllc otllcr case is lligh temperature and

low density, which is phenomenologically more important

for the BNL Rclativistic Heavy Ion Collider (RHIC), since

the QCD phase transition both in the early universe and in

the interesting regime for heavy-ion collisions is expected at

ratllcr low density, c-g-- Pq～15 McV {/iJTt・-0.1) for the
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RHIC [5J. In this region the rewcighting method, in which

observablcs at J⊥≠O arc conlputcd by performing Simula-

tions at Re(/*)-0, is applicable [6J. Using this method, the

first results on the phase structure in the (ii,T) plane were

recently obtained by Fodor and Katz [7J. Unfortunately, al-

though in principle with infinite statistics this method is ex-

act, rather general arguments suggest that in practice the re-

gion of applicability of tI-e revveigl-ting t一一ethod becomes

narrower as the lattice vo一ume is increased. Another e用cient

method at low density is via a Taylor expansion obtained by

computing the derivatives of physical quantities with respect

to /A at 〟-0. Tllis approacll is not restricted to small lat-

ticcs, because it requires only the expectation values of local

fenllion bilinears; tllcsc arc measured effectively on large

systems using stochastic methods, and might even be ex-

pected to self-average as the volume increases. Since analy-

ticity is required, however, tl-e values of fi that can be

reached must be bounded by, e.g., the critical point expected

in the (/J,,T) plane for QCD with two light flavors. Pioneer-

ing work in sue!l a什amework Ilas been done by developing

expansions for free energy, yielding quark number suscepti-

bility [8,9], for hadroi-ic screening masses [10], and in the

context of the three-dimensional effective theory [1 1].

In this study, we investigate the transition temperature Tc

as a function ofjjl^O. In Sec. II, we propose a new method

to compute derivatives of physical quantities with respect to

/i. Details of our simulations performed on a 16 ×4 lattice

with quark masses /;;-0.1,0.2 arc presented in Sec. III. In

Sec. IV we check tllc feasibility of the method by calculating

the derivative of tllc transition point with respect to m. Our

main result, the calculation of the second derivative of βc

with respect to /x for two-flavor QCD, is given in Sec. V.

Using data on the lattice beta function, we are then able to

translate this result into physical units, yielding an estimate

for the pilasc transition line Tr(/jl). We also discuss the re-

sponsc of the pressure p( T) and energy density e(T) to non-

zero /A, alld cstullate their ＼′ariation along tlle critical line.

Finally, in this section we discuss tl-c problem oftl-e com-

plcx phase of the quark determinant, and show that the sign
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prob一em is mild in the region of the phase diagranHclevant for RHIC physIcs. Section VI prcscnls our conclusions.

II. REWEIGHTING八1ETIIOD FOR THE// DIRECTION

Ferrenberg and Swendsen's rcwcigl-ting method is a very useful teel-I-iquc to invcstig'ate critical pi-cnomcna [12]. h QCD

the expectation value of an observab】c 0(β./n,/x) can u- principle be computed by sH一一illation at　βO.'"O.〝o) using the

following identity:

Here M is the quark matrix. SR the gauge action, JVf the
number of月a、′ors, and α- I or 1/4 for Wilson or staggered

lattice fermions, respectively. The cllcmical potential param-

cter At-/iqォ・ where a is the lattice spacing. Because

detM(fji) is complex for Re(/i)≠O, the expectation values

in Eq. (2) can only be estimated by conventional Monte

Carlo importance sampling if the simulation is performed for

/jlo zero or purely imaginary. Most of the attempts to calcu-

一ate at 〝≠O have used variants of tllis nlCtllod [6j. The re-

weighting factor for the gauge part is easy to compute by

measuring the plaquetle Pォ,., since

for the standard Wilson action. and extensions for improved

actions are easy to derive. However, to compute the fenllion

part, the calculation of the ferrmon determinant is required

for each point (m,fi) we want to study. Such a caIdilation is

qulte expensive and difficult to perform in practice. Fodor

and Katz have performed sucl- calculations, alld by re＼veigllt-

ing in both /x and β have succeeded in tracing out tl一c critical

line (3c(/jl) and locating the critical end point on small lat-

ticcs [7J. Their method exploits tllc fact tllat tllc overlap be-

tween ensembles at different points along the coexistence

line separating hadronic and quark-gluon p一asma phases re-

mains reasonably 一arge on finite systems.

Another problem of the rewcighting method is the sign

problem, vvhicll Wil一 be discussed in detail later. As ji in-

creases斤om zero, tl一c calculatiot- of Eq. (2) bcc0日1CS I一一OrC

di用cult due to飢ictuations in the phase of the denominator.

To avoid these problems, we restrict ourselves to calculating

derivatives of physical quantities witl- respect to ji, which

can be done at /ll-O. This yields estimatcs o川1e phys】caI
quantity as a conti-luous function of/z in a narrow range of

〟, but tlle rcglOIl of applicability is llot restricted to the

immediate ncigllborhood of the phase transition. This per-

nuts the dcvclopi一一cnt ofa Taylor expansion ofobservablcs in

powers offi-fit,a: strict一y speaking, in f<'lC川Ic physically

relevant expansion paraillctcr which ultimately must go＼′cm

convergence is the fugacity fxJT-N,fi. The Taylor expan-

sion for tllc fermionic part of the rcweighting factor around

〟-Ois

We simi一arly expand fcrmionic obscrvablcs such as tl-e chiral

col1dcllsate,

where the lattice size is /V:×/V,, once again obtaining a

continuous function for small ix. Using tllc ionllula

expressions for S"(¥ndc¥M)/∂蝣fi" alld ∂′'(tr ATl)/∂fj. in

terms of traces over products of local operators and inverse

matriccs can be deve一oped:
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We apply the randolll noise method to calculate the denva-

tivcs ofIndctMとind trM , whicl- enables us to c0---pute

on rather large voluillcs in comparison lvith the usual studies

ofQCD with 〝≠0. Using 〃　sets ofrandoi一一noise vectors

り. which satisfy tl一c condition linn、・nー=(!/# )∑霊.砿qaj

- Sjj, we rewrite the trace of products of∂〟/〟/j. and M~]
a_q

A/"177.∫…-v and M~¥rJM/∂p)-ワ`,≡.v are obtained by

solving Mx-ワ`, or M.x-(∂M/∂p)-ワ　and we compute

the rigllトhand side (RHS) of Eq. (9) with伝nite Nn. The

error for estimates of physical observables made什0--- N...。nf

configurations is expected to decreとusc as (AVVconf)- "-. Fur-

ther notes on tl-e叩plication of the noise method are given in

tllc Appendix.

By using the den、′atil′cs of both the reweighting factor

and fernlionic observable up to Hth order in /x, we can obtain

the correct answer tor tllc cxpcctatiol1 value up to /;th order,

・HYSICAL REV】HW D 66, 074507 (2002)

whicl- can be easily checked by perfon一一1--g a Taylor cxpan-

sion of the expectation value, Eq. (1), directly for each physi-

cal observable. Of course, for a pure gluonic observable such

as the Polyakov loop L only the expal1sion of lndetM is

needed. Furthermore, lvc should note tllaIとit /z-0 the odd

order dcri、,ativcs of both IndctM and trM are purely

imaginary and the even order derivatives are real. This prop-

erty is prol′cd using the identities for the fenllion matrix:

Using this propertyと111d the fact that Z is ii real function of

β, /;;, and fi, we can explicitly confinll thとit, if the operator

has the property tllat even order derivativesとire real and odd

order derivatives are purely imaginary at yn=0, e.g., (仰)
or its susceptibility, then all odd order derivatives of the ex-

pcctatio一一value ofa pilyS】cal qLIantity arc zero at 〟-0, as

we expect from the symmetry under clli川ging /i to -jjl. Tl-c

derivative oftlle expectation value can be written as a sum of

products of expectation values col一一posed of the operator, tllC

rewcighting factor, and their derivatives, and tllc total num-

ber of differentiations in eとICll tCnli has to be odd for an odd

order denvatil′c. Hence a‖ tcmls for odd derivatives contain

at least one expectation value ofa purely imaginary operator

and llcncc vanish, since tl-e expectation value of a purely

imaginary operator is zero. Therefore tl-e first nontnvia】 or-

dcr of corrections to, e.g., (仰) or its susceptibility, tl-at we
compute m tllis study is O(jjl-); the trui-cation errors, so far

unquこmtificd, are O(fi ).

074507-3
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In order to be lllore specific, let us define the Tay】or ex-

pansion of an operatorby ∑　(0 n" Tl-en to 0(/x-) the

expression (2) for (0)(Am- can be rewritten

Where expectation values on tllc RHS arc n-casurcd willl rC-

spcct to an ensemble generated at (β0,0). Extcnsioi- of this

formula to combined data from several ensembles using mul-

tihistogramming is straigl-tforward [12]. Further details on

the evaluation ofEq. (14) using the noise lllethod for ferrn卜

onic operators are given in tllc Appendix.

In order to determine tllc pseudocritic乙il point. we calcu-

一ate the Polyakov loop sLisceptibility

'HYSICAL RliVIEW D 66, 074507 (2002)

We define the transition point fSc(fi) by the peak position of

these susceptibilities for each fi:

If we compute ∂x/∂β correctly up to /;tl- order in //., we can

dctcnlllllc the mh derivative of βL, with respect to /jl. For

c聖mplc, if we dctcrn一me f3c(/J.) using an operator such as

(H>). Which is re呈il and whose first derivative at /z-0 is

purely imaginary, then tllc first derivative βc(fi) vanishes

because as argued above the first den、・ativc of the susccpti-

bility is zero in this case.

Finとilly、 note that we can also estimate the 111agnitudc of

fluctuations of the pilasc of dct M, because on eacll configu-

ration this phase can be expressed in terllls oft!lc odd tenllS

of the Taylor expansion ofI一一dct A/; this will be discussed in

more detail in Sec. VC.

III. SIMULATIO.NS FOR Nf-l川PROVED STAGGERED
FERれ110NS

We employ a c0-llbination of the Sylllanzik improved

gauge and two flavors ofihc p4 improved staggered fenllion

actions [13.14]. The partition function is defined by

Note that we calculate only the discon一一cctcd |-こirt of tl一c complete chiral susceptibility.

074507-4
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TABLE I. Simulation point (m,β) and number of configurations

Nc。n[ for mass re、、eighting and fi reWeighting.

用　　　　　　　β　　　　tfcn.小11ass)　　　N…ld FL)

0.I 3.640 38000 20000

3.645 15000

3.650 58000 38000

3.655 6800

3.660 55 )00 40000

3.665 7800

3.670 30000 30000

0.2 3.740 5000

3.750 30000 20000

3.755 15000

3.760 52000 34000

3.770 48000 32000

3.780 son。

F

Tllc coefficients arc β-6/g-, c¥-- 1/12, c。-l-8c,, c

-3/8, cS- l/96, and c0-0.2. The呈-ction is derived sue!- that

rotational invanancc of the什cc fcrmion propagator is re-

stored up to O{〆). It is known tllat ttlis action makcs tlle
discretization error of the equati0-- 0f state pressure p(T)

small as T一cc, and Tc obtained by this action is consistent

with that obtained using in-proved Wilson fermions [14,15.
To incorporate tllc chemlcal potential, we generalize tlle

standard prescription of treating /A as an imaginary gauge

potential A^ [16] by multiplying the terms generチting /;-step
llops in the positive and negative temporal directions by e"**

and e-"*、 respectively.-

We investigated the transition points for quark masses m

-0.1 and 0.2. The corresponding pseudoscalar and vector

meson mass ratios arc nipslwv和0.70 and 0.85 [14]. We

computed tl-e Polyakov loop, cl-iral condensate, alld their

susceptibilities. Tllc simulations llrere performed on a

l63×4 lattice for seven values of β∈[3.64.3.67] for m

-0.1 and six values ofβ∈[3.74,3.80] for m-0.2, using tllC

-Note that for any in-proved action involving tem-～ in 、、hich ¢

and ¢ are scparこitcd by more山an a single link, there is no longera

local conserved bLjryon number current bi】inear jfl(x) such that

∑′▲UJ▲(v)-y,,(v-/o)-0 for nonzero lattice spacing.

PHYSICAL REVIEW D 66, 074507 (2002)

hybrid R algorithm. We adopted a step size Ar-0.25×用

and a molecular dynamics trajectory length t- 0.5. For each

trajectory ten sets ofZ2 noise vectors were used to calculate

the rcwcighting factor and tl-c derivatives of ¢¢ up to sec-

ond order in JA.

For thc calculation of mass rcwcighting surveyed in Sec.

IV, we took a total of 220600 trajectories at m-OA and

155000 trajectories at m-0.2. For the study with /j.≠O de-

scribed in Sec. V. we used 128000 trajectories at 〝7-0.】 and

86000 trajectories at m- 0.2. The details are summarized in

Table I. The multihistogram method of [12] was used to re-

weight in the β direction using data from scvera】 va一ues of

0745 07-5
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β　Errors were estimated using the jackk一一ifc method witl-

bin size 100 trajectories.

IV. REYVEIGHTING FOR QUARK MASS

Before calculating derivatives witll respect to JA, It IS

worthwhile to calculate the derivatives with respect to quark

mass in, which is not only potentially important for the cl-iral

extrapolation, but also a good demonstration of the rewcight-

mg technique for a parai一一eter appcこini一g in the fermion ac-

tion. Because we cannot compare the result obtained by re-

weighting in the J▲ direction witll the result of an actual

PHYSICAL REVIEW D 66, 074507 (2002)

simulation at ytt^O, this test is a necessary check of the

reliability of our method. The reweighting formula for quark

ワIass is easily obtained from Eq. (4) and Eqs. (7) by replac-
ing ff'MI∂/z." with ∂M/∂m- 1 and ∂''M/∂111′∫-0 for n≧2.

In the case of the revveigl-ting for /;;, we compute tlle fenlli-

omc rewcighting factor up to second order, and the chiral

condensate up to first order, i.e.,

Hence, ule e汀or of the Polyakov loop susceptibility is

O[(m-mo) ] and that of the chiral susceptibility O[(m

一mo)-]. Figures 1 and 2 show¥l and Figs. 3 and4 show

xijitfi f-r different m as functions of β for simulation m竺Sヲes
w0-0.1 and 0.2. These figures sho、、′ tllat the peak position

moves to smaller β as m decreases, as expected. Moreover,

we find tl-at as /;; decreases the peak height becomes lower

for xl and -ighcr for xijiiji- These behaviors are consistent

since the Polyakov loop is an exact order parameter only in

the limit m一cc, while the chiral condensate is an order pa-

rametcr only for /;;-0. Tl-e phase transition is known to be

a crossover for two-flavor QCD with m >0. We calculate the

slope oftlle transition point ββC/∂m assuming that βc(m) is

denned by the peak position oftl-c susceptibility whenever a

clearpeak is obtained. Figures 5, 6, and 7 show /3c(m) for

Because tl-c peak ",id山ofxl 's t0- 、、idc for the smaller一一一ass

/;;=0.1, ＼＼e do not dctcrnlme the pscudocritical point for L in this

case.

074507-6
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each mQ. We fitted the data by a power series expansion

about rn。, i.e., βぐ(′'1)-β`,("'。)+∑ニr空c,,(m-m。)", with fit

range |(//;-m。)/mo| SSO.05 or 0.1. The results are presented

in Table II. We find a lincar fit to be adequate with the de-

pcndcncc on clloicc of 〟-・Iess tllan 3%; tllc discrepancy

斤om the choice offit range is less than lO%. Both uncer-

tailltics lie well wi山ill lllc statistica一 error. We denote the

fitted line for Nt]l- 1 and |(w一mo)/mo¥≦0.1 by a dashed

line. In Fig. 8 we colllpare the predicted variation ofβc(m)

with previously existing data [14]. Filled sylllbols are the

results of the current study. The short lines denote the upper

and lowerbounds on the slope β　From this figure, we find

that reweighting yields results whicll are quite consistent

with those of direct simulation, and hence infer tllat re-

weighting tllc fcrnuonとiction using the technique we have

outlined works well.

PHYSICAL REVIEW D 66, 074507 (2002)

V. RElVEIGHTING FOR CHEMICAL POTENTIAL

A. Chemical potential dependence of the transition temperature

Next we tunl our attention to rell,cighting with respect to

jx, with tl-c Taylor expansion made about the simulation

point /i-0. First we calculate the derivatives of the transi-

tioll poult Wltll respect to J上目lllc region ofsnlall 〟 relevant

totl-eRHIC. In Figs. 9, 10, ll, and 12, weplot¥l andxh

at w-0.1 and 0.2 for various /jl. As outlined in Sec. II, we

compute consistently up to O(fi-) and expect the results to

contain errors at O(/jl ). Strictly speaking, the O(/j.j) term

does not vanisll for L since it is complex (see Sec. II). How-

ever, we expect tllat xl and xi/ufi yield the same β (see

below) with error O(/x ). The figures show that the position

of the susceptibility peak moves lower as /x increases, whicll

means (llat the cntical temperature becomes lower as jjl in-

creases. As we obtained well-locとUized peaks for xl at

TABLE II. Quark mass dependence of transition point deternlincd by LこInd (¢¢). The fitting function is

β`,-β.('サ())+∑′,= l・、'缶.C.,(m-′M。)". TJle truncation error is contained in cs fr0m仰.

^　　　　O.I　3.6492(22)　1.05(14)　　　-　　　　-0.0!<//; -/サ<0.01

3.6492(22)　1.03(13)　[ -9.( 14) ]　　-0.OK//;-/;;,,<0.01

3.6492(22)　1.07(19)　　　　-　　　　-0.005</;;-/サ<0.005

3.6492(22)　1.07(19)　「 - 17.(26) ]　-0.005</ォー/ォ<0.005　　つ

0.2　　3.7617(36)　　0.896(90)　　　　-　　　　　-0.02<サ;-/サ<0.02

3.761 7(36)　0.894(89)　[5.( 13)]　　- 0.02</// -/サo<0.02

3.761 7(36)　0.970(168)　　　-　　　　　- 0.0 1 </;; - //サ<><0.0 1

3.7617(36)　0.999(180)　[18.(39)]　　-0.01<mi-ォio<0.01

Polyakol　　　0.2　　3.7639( 19)　0.838(64)　　　-　　　　　- 0.02<m一用,,<0.02

3.7639(19)　0.835(63)　　- 2.7(4.5)　　- 0.02<m - m()<0.02

3.7639(19)　0.883(106)　　　-　　　　　-0.0¥<m-/ォ<0.01

3.7639(19)　0.885(106)　-4.7( 10.0)　　-0.OKm-サ;,,<0.01

074507-7
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in-0.2 and ¥^at w-0.1 and 0.2, we use tl-csc peak posi-

tions to determine tllc transition point β as a fuIICtlOII Of/Li-

in Figs. 13. 14, al-d 15. Note tl-at because tl-c Polyakov loop

is interpreted as an external quark current running in the

positive time direction, positive and negative J⊥ give differ-

ent contributions to both L and xi.* and wc tnsp'乙Iy botl-

cases. Figures 13, 14, a一一d l5 a一so display tl-c valLic of〝

-0.17¥. relevant for tllc RHIC. Tl-c shift β.(/*)-0,(0) is

found to be small at this pou-I.

Because the first derivative is expected to be zero as dis-

cussed above, we fitted the βc data by a straigllt line in J▲2.

fixing β　at fi-O. in ranges /z-≦0.008(0.014) for /;;

-0.1(0.2), respectively, In whicll tllC phasc problc一一i is not

PHYSICAL REVIEW D 66, 074507 (2002)

serious (sec Sec. VC below). We obtain d-βc/d/M2-

- 1.20(44) and - 1.02(56) atm-0.1 and 0.2 from thechiral

susccptibiIity and d-β./dfi--- I.01(23) at w-0.2 from

thc Polyakov loop susceptibility. Dot-dashed lines in Figs.

13, 】4, and 15 are the fitted lines. To investigate the fit range

dependence and the fitting function dependence, we also

tried the range /ul-≦0.005(0.01) for m-0.1(0.2), and using

a quadratic fit function. Table ‖ summarizes the results. We

may conclude that ¥d-βJd/i2¥-¥.¥ with 30-50% error.

and any quark mass dependence ofcfβ'/dfi- is not visible

within the accuracy of our calculation.

Of course, it is desirable to translate these observations

into physical units. The second derivative of Tc can be

074507-8
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where a is the lattice spacing. The beta function may be

obtained斤om tl-c string tension data in Ref. [14]. We com-

pute it by differentiating the int叩olation function of tllC
string tension with an ansatz [17]

PHYSICAL REVIEW D 66, 074507 (2002)

FIG. 14. Phase transition point β。(fi) determined by x++ at
用-0.I.

Where R(β) is tl-c usual t、vo-loop scとiling function, a

=R(β)/*(β) and β-3.70. co.c2. and c4 arc fit parameters

Wit]l c-0- 0.0570(35), c2 - 0.669(208),　and cA

--0.0822(1088) at w-0.1. We get a~¥daldβ)

--2.08(43) at (β、〝/)-(3.65,0.1). We then find

r,(∫/2T-/`Jv-;,)--0.14 at ;;;-0.1. We sketch the phase

transition line with 50%　error in Fig. 16 assuming Tc

-170 MeV. In tl-c figure we also i一一dicatc the line fiq/γ

- 0.4, corresponding rougl-ly to the range over which the fits

to the leading order bellavior of Tc(fi) shown in Figs. 13 I

15 arc llladc. Of course. one Ilas to expect that fugllcr-ordcr

ten-is in the expansion become relevant for filT-O{ 1 ). To
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TABLE III. β. and its second derivative witll respect to fi. We

fitted the data with tl-e function β,(/*)-β`(0)+≡;?'竺llC′,FLヱ〝,

where d-β, /<//T - 2c,.

3 .6 4 9 7 ( 16 ) - 1.1 9 (5 4 )

3 .6 4 9 7 (ー6 ) - 1.2 1( 7 9 )

0 .2 3 .7 6 4 1 3 7 ) - 1.0 2 (5 6 )

3 .7 6 4 1(3 7 ) - 1.1 0 (6 8 )

3 .7 6 4 1(3 7 - 1.3 4 ( 10 3

P o ly a k o v 0 .2 3 .7 6 5 ー 16 ) - 1.0 1(2 3 )

3 .7 6 5 1( 16 ) - 1.0 7 (2 4 )

3 .7 6 5 1(ー6 ) 一 .2 1( 3 ー)

quantify this we will -ave to analyze higl-er-ordcr contribu-

tions in the expansion in the future. To indicate the present

systematic uncertainty in the transition line for hrgcr jll/γ

we show this region as a dotted line in Fig. 16. We stress tllat

the errors shown arc statistical only and reflect the uncer-

tainty of the coefficient of the O(/jl-) term in the expansion

of Tc(/i). On the assumption that the transition line is para-

bolie all the way down to γ-0, then this curvature is too

small to be consistent with the phenonlenological cxpccta-

tion that at T-0 a transition from hadronic to quark matter

occurs for /jlc some 50-200 McV greater than tllc onset of

?uclear matter at fi.,,とmN12>-307 MeV [1 8j. Tl-is tendency

is also supported by the result of Fodor and Katz [7], and

hints at contributions什olll lllgheトorder derivatives, or even

PHYSICAL REVIEW D 66, 074507 (2002)

nonanalytic bellavion, at larger values of J上. Despite the large

errors we can see that our result gives us useful information

about the phase diagram, at least for small J上. because tllC

first derivative is zero.

Another point worth noting is the screening effect of dy-

llanlical alltiquarks at 〝<0. A negative cl一cmical potential

induces the dynamical generation of antiquarks, which in

co一一trast to qLIarks can coi-iplctcly.scree一一a一一cxternal color

triplet current. Thus the free energy ofa single quark is re-

duced, especially in the con丘nement pilasc, and the singular-

ity at tl-c pllase transition point is weakened due to tl-e re-

duction in the range of current-current interactions. This

effectcanbeseen inFigs. 9, 10, 17, and 18, wherewedenote

tlle Polyakov loop and its susceptibility at 〝<O by doトdoト

FIG. 16. Sketch of the phase diagram, as estimated using our

value of the cur¥!aturc ofβC.(fx- O). The errors sholvn arc statistical

only and re月ect the uncertainty of the coefficient of the O(/x-) ternl

in the expansion of Tc(fi). Dotted line is jj,/T-QA. The diamond

symbol is the end point of the first order phase transition obtained

by Fodor and Kate [7J.
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FIG. 19. Difference between ¥x and ft/ for (3c determined by ¥l

at JI7-0.2.

dashed and dot-dash-dashed lines. We see that L at fi<O is

larger than that at /▲>0, which means that the free energy at

fi<O is smaller. Moreover, as seen in Fig. 10, tllc peak

I-eight ofxl becomes smaller for /z<0, while the position of

the pseudocritica川nc in Fig. 13 is almost tllC Samc betweell
positive and negative fx. The screening effect only seems to

make the phase transition singularity weaker without shifting

thc pseudocritical line. Because tl-e 0--1y source of asy一一一me-

try between [i and -ji is due to the correlation between the

imaginary parts of tl-c fcrmion determinant and L, these

imaginary contributions help to decrease the susceptibility at

〝<0. In this way, we can see that the explicit breaking of

time reversal symi-ictry by exchange offx with - fi helps to

highlight an interesting托ature of dynamical quarks in full

QCD.

Finally, if instead we were to impose an isovector cl一cmト

cal potential /A having opposite sign for // and d quarks

[9,19], then the quark determinant would become real and

positive, enabling sul-ulations using standard Monte Carlo

methods [20]. This motivates a comparison between systems

with the usual isoscalar chemical potential J▲ and the isovec-

tor chemical potential /jl,. In the framework of the Taylor

expansion, tern-s even in !▲ are identical for both // and a

quarks, but odd terms cancel for the case /j./≠0, meaning

that terms proportional to O¥ Jl.¥ shou一d be set to zero in Eq.

(14). We analyzed tllc transition point βc{lアi) for w-0.2;

the results are shown in Fig. 19 for /3C determined by xl ar>d

Fig. 20 for that by x#<p- The solid line shows βL・ as a nine-

tion of/i/, the dashed line βc(yLt). The second derivative of

βc with respect to fj.t is found to be -0.96(19) for xl and

-0.93(52) for x^,- Dot-dashed lines in Figs. 19 and 20

show the fits. Within errors there appears to be no significant

difference between isovector and isoscalar diemical poten-

tials for small /A A similar analysis for ¥,j^, at 〝7=0.1 IS

shown in Fig. 21; llcrc the second deriv'ativc of β。. is

-0.71(16), vvhicll is smaller than the isoscalar case. How-

PHYSICAL REVIEW D 66, 074507 (2002)

FIG. 20. Difference between J▲ and (jLt for β。 determined by

xw at m=0.2.

ever, this result is also smaller than that obtained at m

- 0.2, whicll is pilysically unacceptable sn-ce the second de-

rivative si-ould approach zero as //;-∝. Hence the differ-

ence between /j.j and /A at w-0.1 is most likely due to

statistical error.

The terms we lave dropped arc associated with月uctua-

tions in tl-c phase ofdet〟, Which arc small in the reg-on of

small 〟, as will be demonstrated i一一Sec. V C below. This is

perhaps not unexpected on physical grounds-increasing /i,/

is predicted to induce the onset of l一一atter in the form of a

pion condensate at a critical /i/o空mpsl2 [19], and indeed

evidence for this scenario in the fonll ofa negative curvature

for nips(fjLi) in the low-T phase is reported in [10]. However,

FIG. 21. Difference between yu. and /x{ for βc. determined by

xw at/;;-0.1.
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FIG. 22. Quark number susceptibilities %s and ^Ns atサ?-0.1.

Ax=xs-AfNS-

even for /;/-0.1 0n this lattice this scale is roughly 0.92、后

-390 MeV [14]、 which is a little larger than the isoscalar

onset threshold /i.`,≦用v/3. The curv′ature with rcpcct to /▲I

should dominate as the chiral limit is approached aI-d pion

and nucleon mass scales become separate. Ifthis tunls out to

be the case, then it is interesting to note that phase correla-

tions between observable and measure actually decrefise tlle

physical effect of raising fi; this has also been observed in

simulations of two-color QCD witl- a single flavor of stag-

gered adjoint quark [21], in whicll inc一uding the sign of the

fermion determinant has the effect of postponing the o一一sct

transitl0n.

B. Quark number susceptibility and equation of statmt /L≠O

The energy density e and pressure p at the critical point

are interesting quantities for heavy-ion collision experii一一ents.

In this section, we discuss the !▲ dependence of tllc equation

of state which describes them. If we employ the integral

method based on the homogeneity of the system [22], we

obtainp-(TIりIn2; derivatives ofp with respect to fj. are

then related to the quark number density nq (via a Maxwell

relation) and the singlet quark nulllber susceptibility xs

-∂nq/∂M- [8J:

Here ′　^s, and also (he nonsmglct susceptibility ,ynsこlrC

given in pi-ys-cal units by

PHYSICAL REVIEW D 66, 074507 (2002)

FIG. 23. Quark number susceptibilities Xs and　*NS at

川-0.2.

TJlc quark number density is zero at /jl-O so once again the

leading correction is O(/j.-). The susceptibilities xsa- anc^
1

XNS(I-とire plotted in Figs. 22 and 23 for w-0.1 and 0.2.

Because ,ys`r-0.0433(3) and 0.0306(2) form-0.1 and 0.2

at β- in Table = (<//・//), we obtain T-メ(prr*)/a/i'2,

-0.693(5) (m-0.1) and 0.490(4) (m-0.2) at β`‥ Tllcdis-

crcpancy of pfP at the interesting poii-t for tl-c RHIC,

/Vr`蝣0.1, from its value at /x=O is about 0.0035(0.0024)

for m-0.1(0.2); since PIV-0.27　とIt　β　for (/-)

-(0.1,0)日4] this is a l% effect, and hellcc quitesmall. We

cとlnとilso obtain cstimitcs of tllc quark number density viとl
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m.

〝X-/j,qaXscr, with results nq/T3-0.693(5)fi^lT and

0.490(4)/xq/r for用=0.1 and 0.2　whicll assuilling T

-170 MeV translates into roughly 9% and 6% of nuclear

I-natter density at the RHIC point. Clear一y these values will

need careful extrapolation to the chiral limit before a mean-

ingful comparison witll experiment can be made.

Moreover, the energy density 6 can also be estimated via

tl-c equation for the conformal anoilnaly:

Here we estimate e in the chiral limit, where fJ∂m/∂a can be

neglected. We find

with second derivative

Because the quark mass dependence of tlle equation of state

seems to be small in Ref. [23], we estimate tl-c derivative

using the value of xs at '"-0.1 and 0.2. Using the formula

♂(0)/∂β-(0(-∂S/∂β))-(O){-∂S/∂β), we obtain

〟(xs"-)/∂β-1.ll(5) andO.82(4) atβ　form-0.1 and0.2.

Then the second derivative of e-3p is estimated to be

γ2∂¥(e-蝣Sp)iT*y∂FL芸-8.5(I.8) at //i-0.1, wl-crc we use
tl-e same value of tl-e beta-function as in Sec. V A. Finally,

we obtain T2∂2(e/T*)/d/i芸- 10.6(1.8). The discrepancy of
i/P at

again, because /が-6 at βc for (w,/*)-(0.1,0) [24], this

is a l% effect, suggesting that the /zq dependence of the

equation of state is sn-al一 in the regime ofrelevai-ce for tl-e

RHIC.

Next we discuss the relation between the equation of state

and the pilase transition line. It is of great interest to inves-

tigate whether the values of the pressure p(rc(/xq),/Ltq) and

energy density e(7'(.(Atq),Atq) along the transition line are
constant or not. To this end, consider the line of constant

pressure in the (T,/J.q) plane, i.e.,

PHYSICAL REVIEW D 66, 074507 (2002)

together with a similar relation for Ae, and compare it witll

the phasc trai-SltlOI- line. Tl-c slope of tl-e coi-stant pressure

line is tllell gIVCIl by

where (・ ・ I)0 means the expectation value evaluated at T

-0 for normalization. Using the data of Rcf. [14], PIT

-0.27(5), ♂(p/n!∂β-4.5(9) at γ` for m-0.1, together
witll tllc beta function in Sec. VA, we obtain

T(∂{piry∂r>ir-3`-2.2(6) for w-0.I. Noting also that

〟(p/T4)/♂(/*;)-( !/2)[〆抄/r4)/〟/x-]-0.347(3)/r2, we

find that the slope of the constant pressure line emerging

from tl-e critical point on the T aやis γ(dTldifi芸))
≡-0・】07(22). A simi一ar argument using the data of [24]

gives the slope of the constant energy density line

T(dT/d(fi-))- -0.087(23). Because the slope of the tran-

sition line in terms of (jl芸is Te(dTc/d(/i芸))

-(I/2)Tc{d-Tc/dfi昌)--0.07(3), we deduce that the

variations ofp and牀along the phase transition line are given

by

p(Te{fj.q),fi^-p(Tc(O),O)-At昌7^(0)×0.12(1 1),

E(γ。、(Mq)^q)- e(Tc{O),O)- fJ.'2.T三(o) × 1.0(2.2), (37)

the dominant source of uncertainty in each case being the

location of the phase transition line itself. Within our errors,

therefore, both pressure and energy density appear constant

along tllC pllasc transition line.

C. The phase of the determinant at//≠O

Finally we discuss tl-e region of applicability of generic

rewcighting approaches. If the rewcigllting factor in Eq. (1)

changes sign什cquently due to tl一c complex phase of the

quark deterlllinant, then both numerator and denominator of

Eq. (1) become vanishingly small in the thermodynamic

limit, typically bcl-aving -e~一＼′、it亡with the lattice size N、ilc

-N'sN,. This makes control of statistical errors in the calcu-

lation of the expectation value very dimcult. Of course,

チrg(dct M) starts at zero at fi-0 but grows as /A increases. It
is important to cst'ablish at wl-ich value of/jl the sign prob-
lcm becomes severe.
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TABLE IV. Average of (1m叫(∂M/∂〃)A/-']), averとigc of its

error for each configuration ((t・)), standard deviation (STD), ai-d

)nlproved standard deviation [STD(Illlp.)].

0 .1 3 .6 4 ー 1. 15 × 10 ' 0 .0 0 19 9 0 .0 0 2 3 3 0 .0 0 1 10

3 .6 5 .0 2 × 10 ー5 0 .0 0 ー9 4 0 .0 0 2 2 3 0 .0 0 0 9 9

3 .6 6 - 3 .0 6 × 10 ' 0 .0 0 18 9 0 .0 0 2 12 0 .0 0 0 8 5

3 .6 7 - 1.4 0 X 10 - 5 0 .0 0 18 5 0 .0 0 2 0 6 0 .0 0 0 7 7

0 .2 3 .7 5 .0 3 X lO " 0 .0 0 】4 】 0 .0 0 】6 8 0 .0 0 0 8 5

3 .7 6 0 .9 3 × 10 - 5 0 .0 0 14 0 0 .0 0 1(ゝ 1 0 .0 0 0 7 2

3 .7 7 - 4 . 17 × 10 " 0 .0 0 13 8 0 .0 0 15 5 0 .0 0 0 6 1

As discussed in Sec. II, the phase can be expressed using

the odd terms of the Taylor expansion of IndetM. If we

≠rite detM-|dctA/|e', then

For smaH II. thc first tern- αNfT-叫M~l(∂Md/j.)]/j. is
dominant. Now, because (MsN,)~1 t小1-I(∂M/∂jア)] is the
quark number de一一sity. its expectation value lllust be real and

in fact vanishes at /jl-O. Although the average of the phase

is zero, its月uctuations remain important. We investigated tl-c

standard deviation of (N^N,) 'Im叫M~l{dM/dfi)] and
present the results in Table IV. We 伝nd values of about

2.2×10"3 at βC(〝7-0.1) and 1.6×10~3 at βc(w-0.2).

The standard deviation o川-c leading term ofEq. (38) there-
fore has a magnitude of about 18/A for /;/-0.1 and 13/i for

m=0.2 in the vicinity of the transition. Consequently the

phase problem appears from >Lt-0.09(0.12), i.e., /J-q/Tc

-0.4(0.5) for //;- 0. 1(0.2), since the pllasc problem arises if

the phase fluctuation becomes of 0( 1 ). We notice that tlle

va一ue of/a for which the phase fluctuations become signifi-

cant decreases as cither m or (3 decreases. Roughly speaking,

the numerator and denominator of Eq. (2) decrease in pro-

portion to the average of the phase factor (Rc(e'")). We

show this factor for various β and /;/ in Fig. 24, where it is

c一ear that the average becomes small around the values offi

quoted above. The phase fluctuations at the R川C point fiq
=0.1 / c. however, arc slllall enough for the analysis of Sees.

VA and VB to be applicable.

We should also note that tllC Ructuation of the phase de-

pends on the lattice size N、　and on tllC llullbcr of the

noise vectors Nn. From general arguments, the phase of the

reweighting factor is expected to decrease as (el*)3W一一、'<ik、

implying that the applicable region of rewcighting becomes

na汀ower as the lattice size grows. By co一一trast, tl-e ヽ′alue

of Im叫jtl~ {8MI∂fj.)] calculated on cacll configuration
also contains an error due to the finite number of noise

vcとtors [sec Eq. (A2) of the Appendix]; for ;Vn-10 this

e汀or is not snlal compared to tlle standard dc＼′latioil, as seell

in Table IV. TIlc phase fluctuation discussedこIbove includes

this error due to finite Nn, and we suspect tllat the true

PHYSICAL REVIEW D 66, 074507 (2002)

FIG. 24. The expectation value of tllc complex phase (cosの.

fluctuation becomes smaller as Nn increases. To confirm

this,  lve reanalyze tlic standard del′tatiotl

treating tl一c calculatioヮofくくTl一一叫A/~ '(∂M/dfi)]}-) more
carefully. Since the noise sets must be independent, we sub-

tract the contributions from using the sとimc noise vector for

each factor. Details are given in the Appendix. The results

arc quoted in tllc STD(Imp.) column of Table IV and arc

found to be significantly smaller. Because they might be

closer to tllc N -oz 1,nit, they suggest that the standard

deviation for 一arger jVn is nluch sll1allcr, lvhich means that the

region ofapplicability becon-cs 、vidcr as 〟 increases.

VI. CONCLUSIONS

In tllis paper we have proposed a ilelv method based on a

Taylor expansion in chenlical potential /i to investigate the

themlodynanlic properties of QCD witll 〝≠ 0. By conlPuト

ing the chiral susceptibility and tllc Polyakov loop susccpti-

bility for two navors ofp4 improved staggered fermions, we

llavc been able to estimate the dependence ofβ。, and llcncc

tlle critical temperature Tc , on /x Oll moderately large vol-

umes, thus reinforcing the recent advance of lattice QCD

into (he interior of the (/jlc γ) plane [4J. We Ilavc a一so been

able to quantify the effect ofa nonzero cllcmical potentia一 on

the equation of state. Although we have focused on critical

observables in order t0 6x physical scales, the method can be

applied in a small range of /x at arbitrary /?, although the

radius ofcon、′crgence is expected to decrease as T-0 since

in this limit all /x dependence si-ould ヽ′anish for /*q≦V-0,

making tllc bcl-avior about tl-c origin nonanalytic. TllC

method is also applicable to a range ofpilysical observablcs

[8-10]. We find that T(. decreases之is fi increases, but this

appears to depend only weakly on quとirk lllass, an effect a一so
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observed in studies of the equation of state />(7") [23]. Our

results are in broad agreement with estimates based on exact

reweighting [7] and suggest tl-at tl-c discrepancy ofβC什om

its value at /i-0 is smal in the interesting region for leavy-

ion collisions. Moreover, we llavc obscn!ed evidence that

when a negative chemical potential is in-posed, the genera-

tion ofdynamical antiquarks and tllc consequent screening of

an external color triplet current is enhanced.

An unresolved issue is the method's limitations. We have

been able to estimate the complex phase of the fermion de-

terminant for a 16 ×4 lattice and found that tl-e sign prob-

lem is not serious in the range fiq/Tc<0.4-0.5 for m

-0.ト0.2, covered by tllis study. It is一一ot yet clear to us to

what extent the radius of convergence of the Taylor expan-

sion is linked to the月uctuations ofarg(dctM). An optimist

might hope that the i-letl-od can yield accurate tllermody-

namic information all the way out to tllc critical end point

where the quark/hadron phase transition changes from sec-

ond to first order; moreover, since individual terms in the

expansion are expectation values of local operators, tlle

method should be applicable on arbitrarily large volunleS,

pa打icularly if larger numbers Nn of stocllastic noise vectors

than we have used here are employed. A pessimist might

worry that pi-asc月uctuations silould make calculation of

higher-order ten一一s impracticable long before the radius of

convergence is reached, particularly as tllc chiral limit is ap-

proached since in this case tllc corrclatioils between

arg(detM) and ¥m(0) silould discriminate between the dif-

ferent physics associated with isoscalar and isovcctor chcmi-

cal potentials. More work is rlecdcd before we cail say wlljcll
is more realistic.

After this work was submitted we learned of a paper that

studies the phase transition linc by analytical continuation of

results obtained by simulation with imaginary fi [25]. The

results are in reasonable agreement with ours.
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APPENDIX: REMARK ON THE NOISE METHOD

Tlle calculation of an operator such as (tr A)-, where A is

a matrix, using the noise method las to be treated carefully.

Because the random noise vectors should be independent for

each calculation oftr A,

PHYSICAL REVIEW D 66, 074507 (2002)

FIG. 25. Effect from the term ofO(e-) on xl at//;-0.2. Solid

一ines are the same as in Fig. 10 obtained including the O(㌔) term,

and dashed lines are calculated lvithout it.

Tllis equatioil Call rewritten as

where e(A) is the error due to finite Nn:

The error decreases as (〃。- 1 )~　as Nn iilcreases, butcan be

significant for small N,I Moreover, s-(A) is negligible for

an operatorthat always has the same sign such as tr M ; in

tIds case its contribution is about 0.001% for ((tr M~]y)

with N - 10. However, for an operator that changes sign

frequently, such as叫M~ l(∂M/叫)], the effect of the addi-
tional ternl IS llllportallt. We ca一culate tlle quark number sus-

ccptibility and the value of"STD(Imp.)" in Table IV taking

this additional term into account. The difference between

"STD" and "STD(Imp.)" in Table IV is the contribution

from the additional term.

Next, we construct the reweighting method based on Tay-

lor expansion, Eq. (2), explicitly up to second order using tl-C

noise metllod. Assuming O is a bosonic operator, we can

rewrite tlle llulllcrator of Eq. (2):
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where (-) denotes tl-e average over tl-c noise vectors. Tf-e der-0---il-ator of Eq. (2) is given by tI-c sa一一1c c?prcssion withJI

0- 1. In each case a ten-n proportional to e~ appears. In Fig. 25, we estimate the effect of this ten一一by subtracting it from tl-e

original one. The difference in ¥l caused by tl-e subtraction is found to be quite small, e.g., 一ess tl-an 1% at /;;-0.2 and /a

≦0.1. The result suggests the contribution from the tenll ofe- is small for ¥l a】tllougll the value ofe[M-I(∂〟/dfi)]2 itself
is notsmall.

For the case of a fern-ionic operator sucl- as仲間any such additional tern-s appear in the revveighting formula. In this
study, we neglect the effect from furtl-er additional terms, since Fig. 25 suggests that tl-c effect is small for the determination
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