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QCD thermal phase transition in the presence of a small chemical potential
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We proposc a new method to investigate the thermal properties of QCD with a small quark chemical
potential u. Derivatives of quark and gluonic observables with respect to s are computed at £=0 for two
flavors of p4 improved staggered fermions with ma=0.1,0.2 on a 16*X4 lattice, and used to calculate the
leading order Taylor expansion in u of the location of the pseudocritical point about x=0. This cxpansion
should be well behaved for the small values of p,/7,.~0.1 relevant for BNL RHIC phenomenology, and
predicts a critical curve 7.(u) in reasonable agreement with estimates obtained using exact reweighting. In
addition, we contrast the case of isoscalar and isovector chemical potentials, quantity the cffect of u#0 on the
equation of state, and comment on the complex phase of the fermion determinant in QCD with u#0.
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1. INTRODUCTION

The study of the phase structure of QCD at nonzero tem-
perature and baryon density is one of the most interesting
topics in contemporary physics. Heavy-ion collision experi-
ments arc running at BNL and CERN with the goal of the
experimental production of a new state of matter, the quark-
gluon plasma [1]. On the theoretical side, novel color supcr-
conducting and superfluid phases have been conjectured at
high baryon densities [2). For these reasons the need for
numerical studics of the QCD phase transition using lattice
gauge theory simulations, currently the most powerful quan-
titative approach to QCD, with both temperature T#0 and
quark chemical potential p,#0, is more urgent than ever.
Precisc theoretical inputs from simulations in the vicinity of
the QCD phase transition are indispensable to the under-
standing of heavy-ion collision experiments.

Over the last several years, the numerical study of lattice
QCD has been successful at a zero chemical potential and
high temperaturc [3]. In contrast, because the quark determi-
nant is complex at £# 0 and Monte Carlo simulation is not
dircctly applicable, studies at nonzero p are still largely ex-
ploratory. Recent developments with £#0 can be classified
in two categorics [4]. At the low temperatures and high den-
sities where the new phases are expected, studies of model
ficld thcories such as two-color [SU(2)] QCD and the
Nambu-Jona-Lasinio (NJL) model have been made. The
simulation is possible because in both cases the quark deter-
minant is positive definitc so that conventional Monte Carlo
methods can be used. The other case is high temperature and
low density, which is phenomenologically more important
for the BNL Relativistic Heavy lon Collider (RHIC), since
the QCD phase transition both in the early universe and in
the interesting regime for heavy-ion collisions is expected at
rather low density, ¢.g.. g~ 15 McV (u,/T.~0.1) for the
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RHIC [5]. In this region the reweighting method, in which
observables at u#0 arc computed by performing simula-
tions at Re( ) =0, is applicable [6]. Using this method, the
first results on the phase structure in the (u,7) plane were
recently obtained by Fodor and Katz [7]. Unfortunately, al-
though in principle with infinite statistics this method is ex-
act, rather general arguments suggest that in practice the re-
gion of applicability of the reweighting method becomes
narrower as the lattice volume is increased. Another efficient
method at low density is via a Taylor expansion obtained by
computing the derivatives of physical quantities with respect
to # at =0. This approach is not restricted to small lat-
tices, because it requires only the expectation values of local
fermion bilinears; thesc are measured effectively on large
systems using stochastic methods, and might even be ex-
pected to self-average as the volume increases. Since analy-
ticity is required, however, the values of u that can be
reached must be boundced by, c.g., the critical point expected
in the (u«,T) plane for QCD with two light flavors. Pioneer-
ing work in such a framework has been done by developing
expansions for free energy, yiclding quark number suscepti-
bility [8,9], for hadronic screening masses [10], and in the
context of the three-dimensional effective theory [11].

In this study, we investigate the transition temperature T,
as a function of u#0. In Sec. II, we propose a new method
to compute derivatives of physical quantitics with respect to
. Details of our simulations performed on a 163X 4 lattice
with quark masses m=0.1,0.2 arc presented in Sec. III. In
Sec. IV we check the feasibility of the method by calculating
the derivative of the transition point with respect to m. Our
main result, the calculation of the second derivative of B,
with respect to u for two-flavor QCD, is given in Sec. V.
Using data on the lattice beta function, we arc then able to
translate this result into physical units, yiclding an estimate
for the phasc transition line 7.(u). We also discuss the re-
sponsc of the pressure p(T) and energy density €(T) to non-
zero p, and estimate their variation along the critical line.
Finally, in this section we discuss the problem of the com-
plex phase of the quark determinant, and show that the sign
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problem is mild in the region of the phase diagram relevant for RHIC physics. Section VI presents our conclusions.

Il. REWEIGHTING METHOD FOR THE g DIRECTION

Ferrenberg and Swendsen's reweighting method is a very useful technique to investigate critical phenomena [12]. In QCD
the expectation value of an obscrvable O(B.m.u) can in principle be computed by simulation at (By,mq. 1) using the

following identity:

1
<O>(B,m.#)= m

(Oem\'f{ln det M(m, p) = Indet Mimy, .Fo)]e—sxlﬁH’ »

f DUO[det M(m )" Ve 5P )

S.(By)
Po )(B()-’"o-“u)

T aN{Indet Mim.p) ~Indet Mimg.pzo)] ,— S ABY+S (Bo)
(e il 0-#o)],~ Sy ,, 0)‘/30

Herc M is the quark matrix. S, the gauge action, Ny the
number of flavors, and =1 or 1/4 for Wilson or staggered
lattice fermions, respectively. The chemical potential param-
eter p=pqa, where a is the lattice spacing. Because
det M(p) is complex for Re(u)# 0. the expectation values
in Eq. (2) can only be estimatcd by conventional Monte
Carlo importance sampling if the simulation is performed for
Mo zero or purcly imaginary. Most of the attempts to calcu-
late at u#0 have used variants of this method [6]. The re-
weighting factor for the gauge part is casy to compute by
measuring the plaquette P,,,.. since

~SHBIFSB)=(B=B) 2 Puk)  O)

for the standard Wilson action, and extensions for improved
actions are easy to derive. However, to compute the fermion
part, the calculation of the fermion determinant is required
for each point (s, ) we want to study. Such a calculation is
quite expensive and difficult to perform in practice. Fodor
and Katz have performed such calculations, and by reweight-
ing in both u and B have succeeded in tracing out the critical
line B.(p) and locating the critical end point on small lat-
tices [7]. Their method exploits the fact that the overlap be-
tween ensembles at different points along the coexistence
line separating hadronic and quark-gluon plasma phases re-
mains reasonably large on finite systems.

Another problem of the reweighting method is the sign
problem, which will be discussed in detail later. As u in-
creases from zcero, the calculation of Eq. (2) becomes more
difficult due to fluctuations in the phasc of the denominator.
To avoid these problems, we restrict ourselves to calculating
derivatives of physical quantitics with respect to u, which
can be done at u=0. This yiclds cstimates of the physical
quantity as a continuous function of x in a narrow range of
#, but the region of applicability is not restricted to the
immediate neighborhood of the phase transition, This per-
mits the development of a Taylor expansion of observables in
powers of u=p.a: strictly speaking, in fact, the physically
relevant expansion parameter which ultimately must govern

Mg o)

convergence is the fugacity u,/T=N,u. The Taylor expan-
sion for the fermionic part of the reweighting factor around
pn=0is

det M( ) N i u" @ Indet M(0)
“NeIM Gam)) e o

=D R,u". (4)

n=1

We similarly expand fermionic observables such as the chiral
condensate,

() =(N>XN) ' aNgtr M™'), (5)

where the lattice size is N2XN,, once again obtaining a
continuous function for small . Using the formula

——=-M"—M", (6)

expressions for #'(Indet M)/dp™ and &'(tr M~ ')/ au" in
terms of traces over products of local operators and inverse
matrices can be developed:

dlIndet M oM
— =t M —],
gn g

(7

-1

— N —_—

m apl’

( = oM oM
—1tr
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We apply the random noise method to calculate the deriva-
tives of Indet M and tr M™', which cnables us to compute
on rather large volumes in comparison with the usual studies
of QCD with u# 0. Using N, sets of random noisc vectors
74 which satisfy the condition limy _..(1/N, D 77",71‘,1

=6

;j+ we rewrite the trace of products of IM/dp and M™!
as

IM M
tr M '—. .M
{7#'” a#n:
) d"'/\f r?"”\/f
Ilm—E 77‘, N Mg,
Nyme n Pyt n| (9[1"2
)

M~ 'p,=x and MY (OM/du)--- n,=x arc obtained by
solving Mx= 5, or Mx=(aM/dpn)--- n,. and we compute
the right-hand side (RHS) of Eq. (9) with finite N,. The
crror for estimates of physical obscrvables made from N,
configurations is expected to decrease as (NyNoop ™. Fur-
ther notes on the application of the noise method are given in
the Appendix.

By using the derivatives of both the reweighting factor
and fermionic observable up to nth order in g, we can obtain
the correct answer for the expectation value up to nth order,

PHYSICAL REVIEW D 66, 074507 (2002)

which can be easily checked by performing a Taylor expan-
sion of the expectation value, Eq. (1), directly for each physi-
cal observable. Of course, for a pure gluonic observable such
as the Polyakov loop L only the expansion of Indet M is
needed. Furthermore, we should note that at £=0 the odd
order derivatives of both Indet M and tr M~ are purcly
imaginary and the cven order derivatives are real. This prop-
erty is proved using the identities for the fermion matrix:

MY (p)=TsM(—p)T

and

Mt M
—(p)=(=1)"T;
(9#1 ‘9”!1

(—u)Ts, (10)

where T's is 5 for Wilson fermions and (— 1)"1Fr2¥n+s

for staggered. Then, at u=0,

_ "|M _ (th _ *
M '—M'——M
(9#'11 d#lh
. LM M
=(—1ymrmt oy M — M —— M
f;/}."' r?,u,"’

(I

Because the terms in the nth derivative satisfy n,+u,
+-..=n. we obtain

@ Indet M\ * & Indet M
o =(—1)"7. (12)
i ap
M * & M}
—] == — (13)
{7#1 ﬂ#"

Using this property and the fact that Z is a real function of
B. m, and u, we can explicitly confirm that, if the opcrator
has the property that even order derivatives are real and odd
order derivatives arc purcly imaginary at £=0, e.g., {(Y4)
or its susceptibility, then all odd order derivatives of the ex-
pectation valuc of a physical quantity arc zero at ©=0, as
we expect from the symmetry under changing u to — u. The
derivative of the expectation value can be written as a sum of
products of expectation values composed of the operator, the
rewcighting factor, and their derivatives, and the total num-
ber of differentiations in cach term has to be odd for an odd
order derivative. Hence all terms for odd derivatives contain
at least one expectation value of a purcly imaginary operator
and hence vanish, since the expectation value of a purcly
imaginary operator is zcro. Therefore the first nontrivial or-
der of corrections to. c.g., {({¢) or its susceptibility, that we
compute in this study is O(u?): the truncation errors, so far
unquantified, are O(u).
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In order to be more specific, let us define the Taylor ex-
pansion of an operator by 27_ O, 1", Then to O(u?) the
expression (2) for (O)g ) can be rewritten

((Oy+ O pu+ O, p”)exp(Ryp+Rou’—AS,))
(exp(Ripu+ R pu”—AS,)) ’
(14)

(O)(B,ﬂ)z

where expectation values on the RHS are measured with re-
spect to an ensemble generated at (3,.0). Extension of this
formula to combined data from several ensembles using mul-
tihistogramming is straightforward {12]. Further details on
the evaluation of Eq. (14) using the noisec method for fermi-
onic operators arc given in the Appendix.

In order to determine the pseudocritical point, we calcu-
late the Polyakov loop susceptibility

xe=N3((LY—(L)?). (15)

where the Polyakov loop L= (N3)_"‘ N‘l tr 1l U,,(\ 1),
and the susceptibility of the chiral condensate!

Xou=(N2XN) ™Y aNp[{(tr M™'))=(tr M™')?]
(16)

|

2(B.m,pu)= f DU(det M)NE*e ™S,

Sg=—ﬁ‘ Y W+ XY

W,

u>r X o pr
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We define the transition point 8.(u) by the peak position of
these susceptibilities for cach u:

IX(B. 1) _
ag
If we compute dx/3f correctly up to nth order in u, we can

determine the nth derivative of 8. with respect to u. For
example, if we determine B.(4) using an operator such as

amn

(ypry, which is real and whose first derivative at =0 is
purely imaginary, then the first derivative B.(u) vanishes
because as argued above the first derivative of the suscepti-
bility is zero in this case.

Finally, note that we can also estimate the magnitude of
fluctuations of the phase of det M, because on each configu-
ration this phase can be expressed in terms of the odd terms
of the Taylor expansion of In det Af; this will be discussed in
more detail in Scc. V C.

111, SIMULATIONS FOR N=2 IMPROVED STAGGERED
FERMIONS

We employ a combination of the Symanzik improved
gauge and two flavors of the p4 improved staggered fermion
actions [13.14]. The partition function is dcfined by

(18)

(19)

M= 77;(-\')‘ UM 8eajy= UPNx=1)6, -]+ c’;z_ (U () 8esinajy— UMM = i=2/) 8, aj,
i 1#)

[}V)

HULTI(0)8aim2jy= UL M= i+ 2)) 8 naj I+ AL UL

(-\')6x+ i+24.n

TR P Y . TR I .. Q=D iand ..
-e '“Uf'g)(-‘_’_24)5,.—:'-:4..\"*'0 LU )(-\)5_r+i—:4_y_¢’ plj{i_-i )(-‘_'+24)5x—i+24.y]}

+7)4(.\’)[ [e#UIm(‘)6.|'+-£.,\'—C_”U£1lf(‘_4)5\ 4|]+L§2 [L’”U“’ \+4+"l\

—e“‘U“q”(\—4 21)6, i- ,,+e"U‘l Mx)é

where W
and

U‘A‘ﬁ’(.\' )=

r+4 ’l\

(r) and W]x‘(\) are [ X1 and 1 X2 Wilson loops, 7,(x)=(— 1yt

e RUST I N (x—4420)8, 4420, ]} +m6, ,, (20)

*u-1 s the Kawamoto-Smit (KS) phasc,

1 . . .
5[ U U (x+ U (x+p+v)

+ UL Ux+ 0 U ,(x+20)],

'Note that we caleulate only the disconnected part of the complete chiral susceptibility.
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TABLE 1. Simulation point (mm,8) and number of configurations
N onr for mass reweighting and p reweighting.

m B N on{mass) Neanl &)
0.1 3.640 38000 20000
3.645 15000
3.650 58000 38000
3.655 16800
3.660 55000 40000
3.665 7800
3.670 30000 30000
0.2 3.740 5000
3.750 30000 20000
3.755 15000
3.760 52000 34000
3.770 48000 32000
3.780 5000

, 1 - - - -
U‘#"‘;“'(.\')= E[U,,(.\')UT,(.\'+ =) UNx+p—2v)

+Ulx= 0 Uy =20) U (x—20)].

fa — . R
VS = - +6w{ U,x)+ w;‘ [UAx)U u(x+ »)
XUNx+ p)+ Uy —0)U(x— )
XU (x+p— ;/)]]. (21)
The cocfficients are 8=6/g>, ¢,=—1/12, ¢,=1-8¢,, cf

=3/8, ¢5=1/96, and @=0.2. The action is derived such that
rotational invariance of the free fermion propagator is re-
stored up to O(p*). It is known that this action makes the
discretization crror of the cquation of state pressure p(T)
small as T—oc, and T, obtained by this action is consistent
with that obtained using improved Wilson fermions [14,15].
To incorporate the chemical potential, we gencralize the
standard prescription of trcating p as an imaginary gauge
potential 4, [16] by multiplying the terms generating n-step
hops in the positive and negative temporal directions by ¢"#
and e~ "¥, respectively.”

We investigated the transition points for quark masses m
=0.1 and 0.2. The corresponding pscudoscalar and vector
meson mass ratios are mpg/m =070 and 0.85 [14]. We
computed the Polyakov loop, chiral condensate, and their
susceptibilitics. The simulations were performed on a
16>X 4 lattice for seven values of Be[3.64.3.67] for m
=0.1 and six values of Be[3.74,3.80] for m=0.2, using the

*Note that for any improved action involving terms in which ¢
and ¢ are separated by more than a single link, there is no longer a
local conserved baryon number current bilinear j,(x) such that
E"(j,,(.\')—j,‘(.\'—;l))=0 for nonzero lattice spacing.
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FIG. 1. Quark mass dcpendence of x; as a function of 8 at
m=0.1.

hybrid R algorithm. We adopted a step size A7=0.25Xm
and a molecular dynamics trajectory length 7=0.5. For cach
trajectory ten sets of Z, noise vectors were used to calculate

the reweighting factor and the derivatives of ¢4 up to scc-
ond order in u.

For the calculation of mass reweighting surveyed in Scc.
IV, we took a total of 220600 trajectorics at m=0.1 and
155000 trajectories at m=0.2. For the study with u#0 de-
scribed in See. V, we used 128000 trajectorics at m=0.1 and
86000 trajectories at m=10.2. The details arc summarized in
Table 1. The multihistogram method of [12] was used to re-
weight in the B direction using data from scveral values of

[ T I ! T

—— m=0.18
12222 =019
‘=-= m=0.20

M -s m=0.21
L_---- m=0.22

(=}

Polyakov loop susceptibility
2
T

v

\ :I t |

0.4 Hji‘f‘,uii;‘ i ‘
et Ik R
”J |I‘l L
Hlli , ! . i \ I .

il
g
3.73 3.75 3.76 3.77 3.78

0.2

FIG. 2. Quark mass dependence of x, as a function of 8 at
m=0.2.
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Chiral susceptibility

— m=0.0%
--- m=0.095
c== m=0.100
----- m=0.105
--=- m=0.110
. 1 . 1
3.66 3.67

FIG. 3. Quark mass dependence of ygy as a function of 8 at
m=0.1.

B. Errors were estimated using the jackknife method with
bin size 100 trajectorics.

IV. REWEIGHTING FOR QUARK MASS

Before calculating derivatives with respect to w, it is
worthwhile to calculate the derivatives with respect to quark
mass m, which is not only potentially important for the chiral
extrapolation, but also a good demonstration of the rewcight-
ing technique for a parameter appearing in the fermion ac-
tion. Because we cannot compare the result obtained by re-
weighting in the u dircction with the result of an actual

09— — T
L — m=0.18 |
--- m=0.19
+=-= m=0.20_]
08 r—- ::=O.21
--=-- m=0.22 4

e
<

Chiral susceptibility
(=4

!
Hllml

03 i \ [ |
- 3.74 3.98 3.76 3.77 3.78

B

FIG. 4. Quark mass dependence of ygy as a function of 8 at
m=0.2.
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3.780

3770

3.750

— Polyakov
X -~ fitted line
374 . 1 \ 1 . 1 R
-0.020 0010 0.000 0.010 0.020
m-m,

FIG. 5. B.(m) determined by x,; around m=0.2, .

simulation at u#0, this test is a necessary check of the
reliability of our method. The reweighting formula for quark
mass is casily obtained from Eq. (4) and Egs. (7) by replac-
ing @' M/ou" with dM/dm=1 and @"M/om" =0 for n=2,
In the casc of the reweighting for i, we compute the fermi-
onic reweighting factor up to second order, and the chiral
condensate up to first order, i.c.,

Indet M(m)—Indet M(im,)
=tr M~ "(m—my)— (M~ "M~ ") (m—my)*12
+O[(m—my)?]. (22)

Y= (NN) " LaN{tr M~ = (M~ M~ ) (m—mg)]
+O0[(m—mg)°]. (23)

Hence, the error of the Polyakov loop susceptibility is
O[(m—my)*] and that of the chiral susceptibility O[(m
—myg)?]. Figures | and 2 show x, and Figs. 3 and 4 show
Xy for different m as functions of B for simulation masses
my=0.1 and 0.2. These figures show that the peak position
moves to smaller 8 as m decreases, as expected. Moreover,
we find that as m decreases the peak height becomes lower
for x, and higher for xg,. These behaviors are consistent
since the Polyakov loop is an exact order parameter only in
the limit m—2c, while the chiral condensate is an order pa-
rameter only for m—0. The phase transition is known to be
a crossover for two-flavor QCD with m>0. We calculate the
slope of the transition point 38, /dm assuming that B.(m) is
defined by the peak position of the susceptibility whenever a
clear peak is obtained.® Figures 5, 6, and 7 show B.(m) for

3Because the peak width of y, is too wide for the smaller mass
m=0.1, we do not determine the pseudocritical point for L in this
case.
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T —T T T T T T

3.660

3.655

3.640 —— Chiral

~ = fitted line

3.6?3 2 1 s

1
010 <0.005 0.000

m-mo

FIG. 6. B.(m) determined by xg, around m=0.1.

cach mgy. We fitted the data by a power series expansion

about my, i.c., B.( m)=B‘<(/710)+E:'i‘lc,,( m—mg)", with fit
range |(m~mg)/mg| <0.05 or 0.1. The results are presented
in Table II. We find a linear fit to be adequate with the de-
pendence on choice of Ny, less than 3%; the discrepancy
from the choice of fit range is less than 10%. Both uncer-
tainties lie well within the statistical error. We denote the
fitted line for Ng=1 and |(m—my)/mg|<0.1 by a dashed
line. In Fig. 8 we compare the predicted variation of B.(m)
with previously existing data [14]. Filled symbols are the
results of the current study. The short lines denote the upper
and lower bounds on the slope B, . From this figure, we find
that reweighting yiclds results which are quite consistent
with those of direct simulation, and hence infer that re-
weighting the fermion action using the technique we have
outlined works well.
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3780
370
o X
Loy

3760~

3750 .
— Chiral
-~ fitted line

17 ) ] \ ] ) 1 .

.-18.( 20 -0.010 0.000 0.010 0.020
m-m,

FIG. 7. B.(m) determined by x4, around m=0.2.

V. REWEIGHTING FOR CHEMICAL POTENTIAL

A. Chemical potential dependence of the transition temperature

Next we turn our attention to reweighting with respect to
#, with the Taylor expansion made about the simulation
point £=0. First we calculate the derivatives of the transi-
tion point with respect to w4 in the region of small ¢ relevant
to the RHIC. In Figs. 9, 10, 11, and 12, we plot x; and x gy,
at m=0.1 and 0.2 for various . As outlined in Sec. I, we
compute consistently up to O(x”) and expect the results to
contain errors at O(u*). Strictly speaking, the O(x?) term
does not vanish for L since it is complex (see Sec. 1T). How-
cver, we expect that x; and yg, yicld the same B, (see
below) with error O(u*). The figures show that the position
of the susceptibility pcak moves lower as u increases, which
means that the critical temperature becomes lower as u in-
creascs. As we obtained well-localized peaks for x; at

TABLE II. Quark mass dependence of transition point determined by L and (Jc//) The fitting function is
B.=B.(my)+ 2, -1 ¢, (m—my)". The truncation error is contained in ¢, from .

my Be(my) ) c; Fit range Ng
oy 0.1 3.6492(22) 1.05(14) — —0.01<m—my<0.01 1
3.6492(22) 1.03(13) [=9.(14)] =0.01<m—my<0.01 2
3.6492(22) 1.07(19) — = 0.005<m—my<0.005 1
3.6492(22) 1.07(19) [—=17.(26)] —0.005<m—m,<0.005 2
0.2 3.7617(36) 0.896(90) — = 0.02<m—my<0.02 1
3.7617(36) 0.894(89) [5.13)9] —0.02<m—m,<0.02 2
3.7617(36) 0.970(168) — -0.01<m—my<0.01 1
3.7617(36) 0.999(180) [18.39)) —0.01<m—my<0.01 2
Polyakov 0.2 3.7639(19) 0.838(64) — —=0.02<m—my<0.02 1
3.7639(19) 0.835(63) -2.7(4.5) —0.02<m—m;<0.02 2
3.7639(19) 0.883(106) — —0.01<m—my<0.01 1
3.7639(19) 0.885(106) —4.7(10.0) —=0.01<m—my,<0.01 2
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FIG. 8. B.(m) determined by x gz, in comparison with previous
results.

m=0.2 and x4, at m=0.1 and 0.2, we usc these peak posn-
tions to determine the transition point 8, as a function of x’
in Figs. 13, 14, and 15. Note that because the Polyakov loop
is interpreted as an external quark current running in the
positive time dircction, positive and negative p give differ-
ent contributions to both L and y,, and we display both
cascs. Figures 13, 14, and 15 also display the valuc of u
=0.1T, relevant for the RHIC. The shift B.(©)— B.(0) is
found to be small at this point.

Because the first derivative is expected to be zero as dis-
cussed above. we fitted the 8, data by a straight line in u?,
fixing B. at #=0. in ranges p’<0.008(0.014) for m
=0.1(0.2). respectively, in which the phase problem is not

0.70 T T T : , .

2
I

Polyakov loop susceptibility
[~ =
3 2

1 1 1 | 1

0.30 3.65 3.66 3.67

FIG. 9. x,(B) at m=0.1 for various u.
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e
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FIG. 10. x.(B8) at m=0.2 for various u.

serious (see Scc. VC below). We obtain d?B8,/du*=
—1.20(44) and — 1.02(56) at 1= 0.1 and 0.2 from the chiral
susceptibility and d’B,/du’=—1.01(23) at m=0.2 from
the Polyakov loop susceptibility. Dot-dashed lines in Figs.
13, 14, and 15 are the fitted lines. To investigate the fit range
dependence and the fitting function dependence, we also
tried the range ©2=<0.005(0.01) for m=10.1(0.2), and using
a quadratic fit function. Table IIT summarizes the results. We
may conclude that |d?B,./du?|~1.1 with 30-50% ecrror,
and any quark mass dependence of d* B, /du’ is not visible
within the accuracy of our calculation.

Of course, it is desirable to translatc these observations
into physical units. The second derivative of T, can be

1.8 T r T T : r
s i
L el
> 16 L e
= il ” i
2 .| |‘||l‘ ! R
§ :llll' ' j|| 1) l] II‘ l!‘l' !
E, el .1{‘" I il
E ‘ l b 1
= | ‘:III
S l}.';\
I | v‘{' —— =000
1.2? --—-u=0.04
Iﬂ.f ----- pu=0.08
' 1 : i . 1 \
3.64 3.65 3.66 3.67

FIG. 11. xz4(B) at m=0.1 for various u.
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FIG. 12. xgy(B) at m=0.2 for various u.

estimated by

T 1 & d
e ”,‘/(a—ﬁ), (24)
du, N;T. du” da

where a is the lattice spacing. The beta function may be
obtained from the string tension data in Ref. [14]. We com-
pute it by differentiating the interpolation function of the
string tension with an ansatz [17]

Voa (B)=R(B)[1 +c2a*(B)+csa*(B))co, (25)

3.768 . I r T .
3766 1| | _
3.764 N .
N
N\
A N ]
3162} N W : | -
| 1 -
W 1
3.760 - N ! \ J H
—— >0 Polyakov FHH
3758 ~--- u<0 Polyakov 1
—-- fitted line .
. 1 . | .
3% 0.005 0.010
RHIC 2

n

FIG. 13. Phasc transition point B.(u) determined by x, at
m=0.2.
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] ) ] \
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FIG. 14, Phase transition point 8.(u) determined by xgy at
m=0.1.

where R(B) is the usual two-loop scaling function, a

=R(B)/R(B) and /3 3.70. ¢y .c». and ¢, are fit parameters
with ¢o=0.0570(35), ¢>,=0.669(208), and cy
=—0.0822(1088) at m=0.1. We get a "(daldB)
=-=2.08(43) at (B.m)=(3.650.1). We then find
T(.(llzT'./d/J.‘:’)*_O.]“ at m=0.1. We sketch the phase
transition line with 50% error in Fig. 16 assuming T,
=170 McV. In the figure we also indicate the line u /T
= 0.4, corresponding roughly to the range over which the fits
to the leading order behavior of T.(u) shown in Figs. 13 —
15 arc made. Of course, one has to expect that higher-order
terms in the expansion become relevant for u/T=0(1). To

3.768 . T . 1 T
L .
3.766 H ]
N -
3.764 .,k_q\
L 1 \;4. q 4
\~~ ‘N
3162 H nw -
3760 N -
~
3758 Chiral N
L fitted line .
3 7 6 L I i I 1
) ?).m(L 0.005 0.010
RHIC 2

n

FIG. 15. Phase transition point B.(u) determined by xg, at
m=0.2.
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TABLE 111, 8. and its second derivative with respect to u. We
fitted the data with the function B.(u)=B0)+3¥® ¢, u®",
where d* 8, ldu*=2c¢,.

m B. d*B.ldu’ Fit range Ng,
o 0.1 3.6497(16) —1.20(44) 0=<p’<0.008 |
3.6497(16) —1.19(54) O0<pu’<0.005 |
3.6497(16) —121(79) 0=u’<0.008 2
0.2 3.7641(37) —1.02(56) O0=<u’<0014 1
3.7641(37) —1.10(68) O0=<u’<0.010 |
3.7641(37) —1.34(103) 0=pu’<0.014 2
Polyakov 0.2 3.7651(16) —1.01(23) 0=u’<0014 |
3.7651(16) —1.07(24) 0<p’<0.010 1
3.7651(16) —121(31) 0<p'=0014 2

quantify this we will have to analyze higher-order contribu-
tions in the expansion in the future. To indicate the present
systematic uncertainty in the transition linc for larger u/T
we show this region as a dotted line in Fig. 16. We stress that
the errors shown arc statistical only and reflect the uncer-
tainty of the coefficient of the O(u”) term in the expansion
of T.(u). On the assumption that the transition line is para-
bolic all the way down to 7=0, then this curvature is too
small to be consistent with the phenomenological expecta-
tion that at 7=0 a transition from hadronic to quark matter
occurs for u. some 50-200 McV greater than the onsct of
nuclear matter at u,=my/3=307 McV [18]. This tendency
is also supported by the result of Fodor and Katz [7], and
hints at contributions from higher-order dcrivatives, or even

200 ™ T r T r
- Fodor & Katz .
womw% '
7~~~ s N
>
[}
P 100 n
N’ M
M~ | ) 4 |
: N
50 |
; myf3 i
: 1nuclear matteJ
L l I 1
00 200 400 600

u (Mev)

FIG. 16. Sketch of the phase diagram, as estimated using our
value of the curvature of 8.(#=0). The errors shown are statistical
only and reflect the uncertainty of the coefficient of the O(u*) term
in the expansion of T.(u). Dotted line is u/T=0.4. The diamond
symbol is the end point of the first order phase transition obtained
by Fodor and Katz [7].
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0.10

g
[=]
=

Polyakov loop

0.06

0.04

FIG. 17. L(B) at m=0.1 for various .

nonanalytic behavior, at larger values of u. Despite the large
errors we can sce that our result gives us useful information
about the phase diagram, at least for small x, because the
first derivative is zero.

Another point worth noting is the screening effect of dy-
namical antiquarks at ©<<0. A negative chemical potential
induces the dynamical generation of antiquarks, which in
contrast to quarks can completcly screen an cxternal color
triplet current. Thus the free encrgy of a single quark is re-
duced, especially in the confinement phase, and the singular-
ity at the phasc transition point is weakened due to the re-
duction in the range of current-current interactions. This
effect can be seen in Figs. 9, 10, 17, and 18, where we denote
the Polyakov loop and its susceptibility at <0 by dot-dot-

0.10

2
j=3
3

Polyakov loop

- —-u=005
-=.=- =010
mi= p=0.05 1
- —— 1=0.10

] : ] ) ]
0.04 375 3.76 3.77

B

FIG. 18. L(B) at m=0.2 for various p.
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FIG. 19. Difference between u and u; for 8. determined by x,
at m=0.2.

dashed and dot-dash-dashed lines. We sce that L at u<0 is
larger than that at #£>0, which mcans that the free energy at
u<0 is smaller. Morcover, as seen in Fig. 10, the peak
height of x, becomes smaller for £ <0, while the position of
the pseudocritical linc in Fig. 13 is almost the same between
positive and negative u. The screening effect only seems to
make the phase transition singularity weaker without shifting
the pseudocritical line. Because the only source of asymme-
try between u and — u is due to the correlation between the
imaginary parts of the fermion determinant and L, these
imaginary contributions help to decrease the susceptibility at
©#<0. In this way, we can sce that the explicit breaking of
time reversal symmetry by exchange of u with — u helps to
highlight an interesting feature of dynamical quarks in full
QCD.

Finally, if instcad we were to impose an isovector chemi-
cal potential u; having opposite sign for « and d quarks
[9,19], then the quark determinant would become real and
positive, enabling simulations using standard Monte Carlo
methods [20]. This motivates a comparison between systems
with the usual isoscalar chemical potential x4 and the isovec-
tor chemical potential u;. In the framework of the Taylor
cxpansion, terms cven in g are identical for both « and d
quarks, but odd terms cancel for the case u,;#0, mcaning
that terms proportional to O, R, should be sct to zero in Eq.
(14). We analyzed the transition point B.(u;) for m=0.2;
the results are shown in Fig. 19 for 8. determined by x, and
Fig. 20 for that by x,. The solid line shows 8. as a func-
tion of u;, the dashed linec B.(u). The second derivative of
B, with respect to y; is found to be —0.96(19) for x, and
—0.93(52) for xgy,. Dot-dashed lines in Figs. 19 and 20
show the fits. Within crrors there appears to be no significant
difference between isovector and isoscalar chemical poten-
tials for small . A similar analysis for y g, at m=0.1 is
shown in Fig. 21; here the second derivative of B. is
—0.71(16), which is smaller than the isoscalar case. How-

PHYSICAL REVIEW D 66, 074507 (2002)

3-768 L) ' T ' L]
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FIG. 20. Difference between u and u, for 8. determined by
Xgy atm=0.2,

ever, this result is also smaller than that obtained at m
= 0.2, which is physically unacceptable since the second de-
rivative should approach zero as m—x. Hence the differ-
ence between u; and o at m=0.1 is most likely duc to
statistical error.

The terms we have dropped are associated with fluctua-
tions in the phase of det M, which are small in the region of
small u, as will be demonstrated in Scc. V C below. This is
perhaps not unexpected on physical grounds—increasing u,
is predicted to induce the onset of matter in the form of a
pion condensate at a critical uy,=ntps/2 [19], and indeed
evidence for this scenario in the form of a negative curvature
for m pg( ;) in the low-T phase is reported in [10]. However,

3.652 T ] T I T l T
3.650 —
|- "‘"-._ 4
gl 4 ."‘~.~~
4 N ~~"~~,.~
3.648 "I, T H
U » o ~.~~
A a Y N ~~._~~~~
- N 4 TN
I
3646} TS !
0 I *.hu
. hdt
| T
L : [N
-~~~ [so-scalar !
¥
36l — Iso-vector ! 1
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) ] N 1 R ] .
0.000 0.002 0.004 0.006 0.008
RHIC 2
n

FIG. 21. Difference between p and u; for B, determined by
Xay at m=0.1,
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FIG. 22, Quark number susceptibilitics ys and yxg at m=0.1.
AX=Xs™ Xns-

even for m=0.1 on this lattice this scale is roughly 0.92\o
=390 MeV [14]. which is a little larger than the isoscalar
onset threshold p,<m /3. The curvature with repect to u;
should dominate as the chiral limit is approached and pion
and nucleon mass scales become scparate. If this turns out to
be the case, then it is interesting to note that phase corrcla-
tions between observable and measure actually decrease the
physical effect of raising u: this has also been obscrved in
simulations of two-color QCD with a single flavor of stag-
gered adjoint quark [21], in which including the sign of the
fermion determinant has the cffect of postponing the onset
transition.

B. Quark number susceptibility and equation of state at ##0

The cnergy density € and pressure p at the critical point
are interesting quantitics for heavy-ion collision experiments.
In this section, we discuss the g dependence of the cquation
of state which describes them. If we employ the integral
method based on the homogeneity of the system [22], we
obtain p=(T/V)In Z; derivatives of p with respect to u are
then related to the quark number density 1y (via a Maxwell
relation) and the singlet quark number susceptibility yg
=dnglap, [8]:

r?(p/T")z_l__ r?an: ny 26)
TP % R TR B

6‘3(/)/7"‘)_ I #InZ s
T s o2
ALy VT oul T

(27)

Here ny, xs. and also the nonsinglet susceptibility yns arc
given in physical units by
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FIG. 23. Quark number susceptibilitics xg and xyg at

m=0.2.
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! oM A aM

-\ mn n
The quark number density is zero at £=0 so once again the
Icading correction is O(u?). The susceptibilitics ysa® and
Xxnsa© are plotted in Figs. 22 and 23 for m=0.1 and 0.2,
Because yga” =0.0433(3) and 0.0306(2) for m=0.1 and 0.2
at B. in Table I (44f), we obtain Tzﬂz(p/T‘)/(?p.i
=0.693(5) (m=0.1) and 0.490(4) (m=0.2) at B... The dis-
crepancy of p/T* at the interesting point for the RHIC,
Hy/T.~0.1, from its valuc at =0 is about 0.0035(0.0024)
for m=0.1(0.2); since p/T*=027 at B, for (m.u)
=(0.1,0) [14] this is a 1% cffect, and hence quite small. We
can also obtain estimates of the quark number density via

s

2] 2

N, FM
Xs_ & EN’ | M)
T N ap”

K}

. (30)
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11(1113‘—*;1(1(1,\/502, with results nq/T3=0.693(5),uq/T and
0.490(4)py/T for m=0.1 and 0.2 which assuming T
=170 MeV translates into roughly 9% and 6% of nuclear
matter density at the RHIC point. Clearly these values will
nced careful extrapolation to the chiral limit before a mean-
ingful comparison with experiment can be made.

Moreover, the energy density € can also be estimated via
the equation for the conformal anomaly:

e=3p I dlnZ

™ v’ da
3 1 apBaomZ  dmdnZ |
oy oa ap +a(9_a am B

Here we estimate € in the chiral limit, where aédm/da can be
neglected. We find

e—3p 1 dlnZ{1 fa\~!

rr’[(e—sp)/f“]w_l_axS(l_&_a)“' -
ol T 9B \a 3B

Because the quark mass dependence of the equation of state
seems to be small in Ref. [23], we estimate the derivative
using the value of x5 at m=0.1 and 0.2. Using the formula
HOMIB={O(—3S/13B))—(O¥—4aS/9B), wec obtain
r?(xsaz)/(?ﬂ= 1.11(5) and 0.82(4) at B, for m=0.1 and 0.2.
Then the second derivative of e—3p is cstimated to be
Tzﬁz[(e—3p)/7“]/8p,g=8.5( 1.8) at m=0.1, where we use
the same value of the beta-function as in Scc. V A. Finally,
we obtain 724%( e/T‘)/r?p,fl= 10.6(1.8). The discrepancy of
e/T* at the RHIC point from =0 is about 0.05. Once
again, because €/T*~6 at B, for (m,)=(0.1,0) [24]. this
is a 1% effect, suggesting that the p, dependence of the
cquation of state is small in the regime of relevance for the
RHIC.

Next we discuss the relation between the equation of state
and the phase transition line. It is of great interest to inves-
tigate whether the values of the pressure p(T.(x,),x,) and
cnergy density €(T.(iq).1q) along the transition line arc
constant or not. To this end, consider the line of constant
pressure in the (T, ) plan, i.c.,

_% P >
Ap= ﬁT—\T+ (9(;1.:) Alug)
ApIT) 4p ApIT*) ,
=T +—|AT+| T ———|A(u))
=0, ' (34)
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together with a similar relation for Ae, and compare it with
the phasc transition line. The slope of the constant pressure
line is then given by

dT _ a(piT*) (a(p/7“)+4p
dipg)  Aug) a0 T

The derivative d(p/T*)/dT can be calculated by

). (35)

T;;(p/r")_ 1 aa)"a(p/r“)
aT  \adp B

(1 aa)“ . A
= - — N P
adpl '\ \NN, B

1 4S,
N3N, 9B
R 0

where (---), means the expectation valuc cvaluated at T
=0 for normalization. Using the data of Ref. [14], p/T*
=0.27(5), dp/TH19B8=4.5(9) at T, for m=0.1, together
with the beta function in Sec. VA, we obtain
T(a(p/ﬂ)/amr:r‘;z.zw) for m=0.1. Noting also that
Ap/TH A p3)= (1) [F(p/ T Iui1=0.347(3)/T°,  we
find that the slope of the constant pressure line emerging
from the critical point on the T axis is T(dT/d(p.i))
=—0.107(22). A similar argument using the data of [24]
gives the slope of the constant cnergy density line
T(dT/d(,qu))= —0.087(23). Because the slope of the tran-
sition line in terms of ,u.f' is T(.(dTC/d(/Li))
=(112)TAd T, /dpg)~—0.07(3), we deduce that the
variations of p and € along the phase transition line are given
by

, (36)

P(Te( ) 1) = P(T(0).0)= 3 T2(0)X0.12(11),

(T (o). 1g)— €(T.(0),0)= uiT2(0)X 1.0(2.2), (37)

the dominant source of uncertainty in cach case being the
location of the phase transition line itself. Within our errors,
therefore, both pressure and cnergy density appear constant
along the phase transition line.

C. The phase of the determinant at £ #0

Finally we discuss the region of applicability of gencric
reweighting approaches. If the rewceighting factor in Eq. (1)
changes sign frequently due to the complex phase of the
quark determinant, then both numerator and denominator of
Eg. (1) become vanishingly small in the thermodynamic
limit, typically behaving ~e~Ys« with the lattice size N,
=N>N,. This makes control of statistical crrors in the calcu-
lation of the cxpectation value very difficult. Of course,
arg(det M) starts at zero at =0 but grows as u increascs. It
is important to cstablish at which valuc of u the sign prob-
lem becomes severe.
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TABLE 1V. Average of (Imtf (aM/auyM™"]), average of its
crror for each configuration ({g)), standard deviation (STD), and
improved standard deviation [STD(Imp.)].

m B {Imu{(oM/iop)M™']) (&) STD  STD(Imp.)
0.1 3.64 —1.15%107* 0.00199 0.00233  0.00110
3.65 1.02x1073 0.00194 0.00223  0.00099
3.66 —3.06%x107° 0.00189 0.00212  0.00085
3.67 —1.40x 1073 0.00185 0.00206  0.00077
0.2 3.75 1.03% 1073 0.00141 0.00168  0.00085
3.76 0.93%107% 0.00140 0.00161  0.00072
3.77 —4,17%1073 0.00138 0.00155  0.00061

As discussed in Scc. 11, the phase can be expressed using
the odd terms of the Taylor expansion of Indet M. If we
write det M=|dct M]e'?, then

dlndetM p’ & Indet M
+— +

0=aN¢Im| p
(38)

For small u. the first term aN¢Imul M~ (aMop)lp is
dominant. Now, because (NiN,)“ tf M~ (dM/ap)] is the
quark number density. its expectation value must be real and
in fact vanishes at £=0. Although the average of the phase
is zero, its fluctuations remain important. We investigated the
standard deviation of (N?N,)™' Imt{ M~ (dM/dp)] and
present the results in Table IV. We find values of about
2.2X%107% at B.(m=0.1) and 1.6X1073 at B.(m=0.2).
The standard deviation of the leading term of Eq. (38) there-
forc has a magnitude of about 18u for m=0.1 and 13 for
m=0.2 in the vicinity of the transition. Conscquently the
phase problem appecars from p~0.09(0.12), ic., uq/T.
~0.4(0.5) for m=0.1(0.2), since the phasc problem arises if
the phase fluctuation becomes of O(1). We notice that the
value of u for which the phase fluctuations become signifi-
cant decreases as cither m or 8 decreases. Roughly spcaking,
the numerator and denominator of Eq. (2) decrease in pro-
portion to the average of the phase factor (Re(e’”)). We
show this factor for various B8 and m in Fig. 24, where it is
clear that the average becomes small around the values of
quoted above. The phasc fluctuations at the RHIC point
=0.1T, ., however, are small cnough for the analysis of Secs.
V A and V B to be applicable.

We should also note that the fluctuation of the phase de-
pends on the lattice size N, and on the number of the
noise vectors N,,. From gencral arguments, the phase of the
reweighting factor is expected to decrease as {e'”)xe ™V
implying that the applicable region of reweighting becomes
narrower as the lattice size grows. By contrast, the value
of Imtf M~ '(aM/3u)] calculated on cach configuration
also contains an crror due to the finite number of noise
vectors [sce Eq. (A2) of the Appendix]; for N,=10 this
error is not small compared to the standard deviation, as scen
in Table IV. The phase fluctuation discussed above includes
this error duc to finite N, and we suspect that the true

site
.
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FIG. 24. The expectation value of the complex phase (cos #).

fluctuation becomes smaller as N, increascs. To confirm
this, we reanalyze the standard deviation
VA{Imul M~ T(aMIap) V)= (Im i M~ T(aM/ap)])° by
treating the calculation of ({ImufM~'(aM/au)]}*) more
carcfully. Since the noise sets must be independent, we sub-
tract the contributions from using the same noise vector for
cach factor, Details are given in the Appendix. The results
are quoted in the STD(Imp.) column of Table IV and are
found to be significantly smaller. Because they might be
closer to the N,== limit, they suggest that the standard
deviation for larger N, is much smaller, which means that the
region of applicability becomes wider as N, increases.

V1. CONCLUSIONS

In this paper we have proposcd a new method based on a
Taylor expansion in chemical potential u to investigate the
thermodynamic properties of QCD with p# 0. By comput-
ing the chiral susceptibility and the Polyakov loop suscepti-
bility for two flavors of p4 improved staggered fermions, we
have been able to estimate the dependence of 8., and hence
the critical temperature T., on p on moderately large vol-
umes, thus reinforcing the recent advance of lattice QCD
into the interior of the (ug,7) plane [4]. We have also been
able to quantify the effect of a nonzero chemical potential on
the equation of state. Although we have focused on critical
obscervables in order to fix physical scales, the method can be
applied in a small range of u at arbitrary B, although the
radius of convergence is expected to decrcasc as T—0 since
in this limit all p dependence should vanish for pe=<pu,,
making the behavior about the origin nonanalytic. The
mcthod is also applicable to a range of physical obscrvables
[8-10). We find that T, decreases as g increases, but this
appears to depend only weakly on quark mass, an effect also
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observed in studies of the cquation of state p(T) [23]. Our
results are in broad agrecement with estimates based on exact
reweighting [7] and suggest that the discrepancy of B, from
its value at =0 is small in the interesting region for heavy-
ion collisions. Moreover, we have observed evidence that
when a negative chemical potential is imposed, the genera-
tion of dynamical antiquarks and the consequent screening of
an external color triplet current is enhanced.

An unresolved issue is the method’s limitations. We have
been able to estimate the complex phase of the fermion de-
terminant for a 16°X 4 lattice and found that the sign prob-
lem is not serious in the range uy/7.<0.4-0.5 for m
=0.1-0.2, covered by this study. It is not yet clear to us to
what extent the radius of convergence of the Taylor expan-
sion is linked to the fluctuations of arg(det M). An optimist
might hope that the method can yield accurate thermody-
namic information all the way out to the critical end point
where the quark/hadron phase transition changes from sec-
ond to first order; morcover, since individual terms in the
expansion are expectation values of local operators, the
method should be applicable on arbitrarily large volumes,
particularly if larger numbers N,, of stochastic noise vectors
than we have used here are employed. A pessimist might
worry that phasc fluctuations should make calculation of
higher-order terms impracticable long before the radius of
convergence is reached, particularly as the chiral limit is ap-
proached since in this case the corrclations between
arg(det M) and Im(O) should discriminate between the dif-
ferent physics associated with isoscalar and isovector chemi-
cal potentials. More work is necded before we can say which
is more realistic.

After this work was submitted we learned of a paper that
studies the phase transition linc by analytical continuation of
results obtained by simulation with imaginary p [25]. The
results are in reasonable agreement with ours.
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APPENDIX: REMARK ON THE NOISE METHOD

The calculation of an operator such as (tr 4)>, where 4 is
a matrix, using the noise method has to be treated carcfully.
Because the random noise vectors should be independent for
each calculation of tr 4,

N,
1 I
(trA)“— IlmN— 2 77‘, 77"N 2 77bA77b

Ny—x""1n a=1

l|m YTVEETEY 2 A 7, ATy

No(Nom Ah
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FIG. 25. Effect from the term of O(g%) on x, at m=0.2. Solid
lines are the same as in Fig. 10 obtained including the O(&?) term,
and dashed lines are calculated without it.

This equation can rewritten as

(A2)

N, 2
] n
(tr4)*= lim[(N—E nf,Ana) —&%(4)|,

N“—.ac n d

where g(A) is the error due to finite N, :

e*(A4)=

| Y 2
(Egﬂmﬂ.

(A3)

1
r[ n; (midn,)?

The error decreascs as (N,— 1)~ as N, increases, but can be
significant for small N,,. Morcover, £°(4) is negligible for
an operator that always has the same sign such as tr M~ '; in
this case its contribution is about 0.001% for ((tr M~')?)
with N,=10. However, for an operator that changes sign
frequently, such as tf M~ ' (@M/du)], the effect of the addi-
tional term is important. We calculate the quark number sus-
ceptibility and the valuc of “STD(Imp.)” in Table IV taking
this additional term into account. The difference between
“STD” and “STD(Imp.)” in Table IV is the contribution
from the additional term.

Next, we construct the reweighting method based on Tay-
lor expansion, Eq. (2), explicitly up to second order using the
noise method. Assuming O is a bosonic operator, we can
rewrite the numerator of Eq. (2):
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p

_Ir?M)>
MT—] )|+ (A4)
p

(Q’Nf)2

7 '/
-

O “M"ﬁMM“ﬂM )
Y] £ Fd

=<chp

+#TaN,{( 7'M

+- (AS5)
aM u’
tag—1 _~ 2.2 -1
,uaM{n M Em 17) 3 (aNp-e (M (9;;)
FM ( ?M_IaMM_,aM ) . (A6)
PRl I Em o ,

where (- --) denotes the average over the noise vectors. The denominator of Eq. (2) is given by the same expression with
O=1. In each case a term proportional to &* appears. In Fig. 25, we cstimate the effect of this term by subtracting it from the
original one. The difference in x, caused by the subtraction is found to be quite small, e.g., less than 1% at m=0.2 and u
<0.1. The result suggests the contribution from the term of &7 is small for y, although the value of [ M~ '(aM/au)]? itself

is not small.

For the case of a fermionic operator such as i many such additional terms appear in the reweighting formula. In this
study, we neglect the cffect from further additional terms, since Fig. 25 suggests that the cffect is small for the determination

of B..
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