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We report results on the dec8y —DpK ™ and its charge conjugate using a data sample of>850% BB
pairs recorded at th¥ (4S) resonance with the Belle detector at the KEKB asymmaedtie™ storage ring.
Ratios of branching fractions of Cabibbo-suppressed to Cabibbo-favored processes are determined to be
B(B~—D°")/B(B~— D% )=0.077+0.005(stat}- 0.006(syst),B(B~—D;K )/B(B~—D,m )=0.093
+0.018(stat)- 0.008(syst) and3(B~—D,K™)/B(B~—D,m)=0.108+0.019(stat}- 0.007(syst) where the
indices 1 and 2 represent tiikP= +1 andCP= —1 eigenstates of thB°-D° system, respectively. We find
the partial-rate charge asymmetries 8B —DcpK™ to be A;=0.06+0.19(stat)- 0.04(syst) andA,=

—0.19+£0.17(stat} 0.05(syst).

DOI: 10.1103/PhysRevD.68.051101

PACS nuni®erl3.25.Hw, 14.40.Nd

The extraction of¢s [1], an angle of the Kobayashi- RD12
Maskawa trianglg2], is a challenging measurement even R1,25W=1+r2+ 2r cosd’ cosgs,

with modern high luminosityB factories. Recent theoretical
work on B meson dynamics has demonstrated the direct ac-
cessibility of ¢5 using the procesB™—DK™ [3,4]. If the ) for D,

DY is reconstructed as &P eigenstate, théd—c and b o'
— U processes interfere. This interference leads to dicdet

"l s+m for D,,

violation as well as a characteristic pattern of branching frac- o

tions. However, the branching fractions formeson decay Where the ratioR°12andR®" are defined as
modes toCP eigenstates are only of order 1%. Sincé

violation through interference is expected to be small, a large B(B~—D; K )+B(B*—D; K")

number ofB decays is needed to extragt. Assuming the RP12
absence oD°-D° mixing, the observables sensitive @P

violation that are used to extract the anglg [5] are

B(Bi—>Dl,2K7)_B(B+—>D1’2K+)
B(Bi—>Dl’2K7)+B(B+—>Dl’2K+)

A=

2r siné’'singg

1+r2+2rcosé’ cosgs

*On leave from Nova Gorica Polytechnic, Nova Gorica.

B(Bi—>D1’2’ﬂ'7)+B(B+—>Dlyz77+) ,

B(B~—D%")+B(B*—D°%K™")

R’= —
B(B~—D%%)+B(B"—D% ")

D, andD, areCP-even andC P-odd eigenstates of the neu-
tral D meson,r=|A(B~—D°K")/A(B-—D% )| is the
ratio of the amplitudes of the two tree diagrams shown in
Fig. 1 and ¢ is their strong-phase difference. The ratio
corresponds to the magnitude GP asymmetry and is sup-
pressed to the level 6f 0.1 due to the Cabibbo-Kobayashi-
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identification requirement oP(K/7)>0.4 (<0.7). For ka-
ons from theD°—=K K* mode we requireP(K/x)>0.7

while for pions from D°—# 7" mode we require
P(K/m)<0.7.

The w mesons are reconstructed from’ 7~ 7% combi-
nations in the mass window 0.732 Ge&¥KM (7" 7~ 7°)
<0.82 GeVLt? with the charged pion particle identification
requirementP(K/7)<0.8. To reduce the contribution from
the non-resonant background, a helicity angle |cos6,|
>0.4 is applied wherd),,, is the angle between the normal
to thew decay plane in the rest frame and the momen-
tum in theDP rest frame. To remove the contribution from
D%—K*“p*, we require theK27~ invariant mass to be

Maskawa(CKM) factor (~0.4) and a color suppression fac- greater than 75 Me\¢” from the K* = nominal mass.

tor (~0.25). Note that the asymmetrie$, and A, have The ¢ mesons are reconstructed from two oppositely

opposite signs. charged kaons in the mass window of 1.008 G&V/
The ratio of the Cabibbo-suppressed de&iy— DK~ <M(K"K™)<1.032 GeVt? with P(K/7)>0.2. We also

to the Cabibbo-favored dec®/ —D°#~ has been reported apply the¢ helicity angle cutcoséhe|> 0.4 whered, is the

by CLEO[6] to beRP’=0.099" 3914 +0007,yhile Belle finds ~ angle between one of thg daughters in theb rest frame and

. O .
R°°=0.079+ 0.009+ 0.006[7]. Assuming factorization, the thed¢ momentum in thtf feStdffamf- we form Caféd'da"ﬁh
. 0. . an mesons usin an ecay modes wi
ratio RP" is expected to be t&A(fx/f,)2~0.074 in the masz ranges of 0 435 geyc?/< M77(7;7;T<0 578yGth2 and
tree-level approximation, whe#: is the Cabibbo angle, and 0.903 GeVit2< M(.m-r* 77)<1.002 Gev}ﬁz respectively.
fx andf . are meson decay constants. The measurements AL o . momentum is required to be greate,r than 0.5 GeV/
in good agreement with this theoretical expectation. 7 i

. ' Both » and »' candidates are kinematically constrained to
Previously, Belle reported the observation of the decay?heir ZOmina?l masses. Th® candidates gre required to
B~ —D;K™ andB~—D,K~ with 29.1 fo 1 [8]. This paper :

reports more precise measurements of these decays withhgve masses withitt 2.5 of th_elr ”0”?'”6" masses, whese
. — is the measured mass resolution which ranges from 4.9 MeV
data sample of 78 fb', containing 85.4 10° BB pairs, col-

. _ to 17.7 MeV depending on the decay channelDA mass
lected with the Belle detector at the KEKB asymmetric-

. . . and (wherever possibjevertex constrained fit is then per-
energye” e~ (3.5 on 8 GeV collider operating at th& (4S) formed on the remaining candidates.
resonance. At KEKB, th& (4S) is produced with a Lorentz We combine theD® and 7~ /K~ candidategdenoted by
boost of y=0.425 nearly along the electron beam line. 1y 5 form B candidates. We apply tighter particle identifica-

The Belle detector is a large-solid-angle magnetic specggn, cuts,P(K/7)>0.8(<0.8) for prompt kaongpions, to
trometer that consists of a three-layer silicon vertex detecm'identify B~ —DOK (7 ) events. The signal is identified by

a 50-layer central drift chambgCDC), an array Of. silica 5 kinematic variables calculated in the center-of-mass
aerogel threshold @enkov counteréACC), a barrel-like ar- (¢ ) frame. The first is the beam-energy constrained mass,
rangement of time-of-fligh(TOF) scintillation counters, and -~ \/ > > - -
an electromagnetic calorimeter comprised of(CBlcrystals ~ Mbc™ Ebegm_|pDJ[ph|_’ where pp and p, are the mo-
located inside a super-conducting solenoid coil that provide§"enta ofD™ andK™/7~ candidates anépeanyis the beam
a 1.5 T magnetic field. An iron flux return located outside of N€rgy in the c.m. frame. The second is the energy differ-
the coil is instrumented to detekt® mesons and to identify erg)ce,AE_:EDwL En—Ebeam WhereE, is the energy of the
muons(KLM ). The detector is described in detail elsewhereD  candidateE, is the energy of th& /=~ candidate cal-
[9]. culated from the Ineasured momentum and assuming the
We reconstrucD® mesons in the following decay chan- pion massE= v|py|?+mZ. With this definition, realB~
nels. For the flavor specific modelenoted byD(), we use —D°7~ events peak akE=0 even when they are misiden-
D°—K «* [10]. For CP=+1 modes, we useD, tified asB~—D°K~, while B~ —DK" events peak around
—K K" and 7~ #* while for CP=—1 modes, we use AE=—49 MeV. Event candidates are accepted if they have
D,— K270, Ko, Ko, K37 andKy'. 5.2 GeVE?’<Mp<5.3 GeVk? and |AE|<0.2 GeV. In
The charged tracIKgandwO selection requirements have €ase of muItipIe candidates frqm a single eyent, we choose
been described in Reff8]. For each charged track, informa- the best candidate on the basis o;?%\determl_ned from the
tion from the ACC, TOF and specific ionization measure-differences between the measured and nominal valubof
ments from the CDC are used to determiné/ar likelihood  andMy.. The fraction of multiple candidates is less than 2%.
ratio P(K/@)=Ly/(Lc+L,), whereL, andL, are kaon Accordir)g to Monte Carlo simulation the correct candidate is
and pion likelihoods. The particle identification requirementschosen in all cases. _ _
and cuts on other kinematic variables are optimized using 10 Suppress the large combinatorial background from the
continuum background and signal Monte Carlo. For kaongwo-jet continuum processes suchesi®e™ —qq (q=u, d, s
(pions from the D°—K ™ 7% mode we used the particle orc), variables that characterize the event topology are used.

FIG. 1. B~ —D%%~ andB~ —D°K".
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FIG. 2. AE distributions for(a) B-—D;w~, (b) B-—D{K™, (¢c) B-—Dy#~, (d B-—D;K™, (¢) B"—D,n~ and (f) B~
—D,K™. Points with error bars are the data and the solid lines show the fit results.

We construct a Fisher discriminaft from 6 modified Fox- pothesis for the prompt pion, where the relative peak posi-
Wolfram momentg11]. Furthermore, cogg, the angle of tion is reversed with respect to the origin. The shape param-
the B flight direction with respect to the beam axis is alsoeters for the feed across froBT — D%~ are fixed by the fit
used to distinguish signal from continuum background. Weresults of theB~ — D%~ enriched sample. The continuum
combine these two independent variablesand co¥)z to  background is modeled as a first order polynomial function
make a single likelihood ratidLR) variable that distin- with parameters determined from tAdE distribution for the
guishes signal from continuum background. We apply a difevents in the sideband
ferent requirement for each sub-mode based on the expecteds.26 GeVE?. Backgrounds from otheB decays including
signal yield and the backgrounds in t, sideband data. contributions from B~ —D*°K~ and B~ —D%K* "~ are

For B-—D% where D°=K 7", K'K* we require modeled as a smoothed histogram from Monte Carlo simu-
LR>0.4, whereas foD%— 7" 7w, K270, K24, K2w, K27  lation. The fit results are shown in Fig. 2.

and K(S)n' we requireLR>0.6. To give an example of the The ratios of branching fractions of Cabibbo-suppressed
performance of this selection, theR>0.4 requirement to Cabibbo-favored processes are determined as follows

keeps 87.5% of th®  —D°[—K~ « "]« signal while re- [12]:
moving 73% of the continuum background.

The signal yields are extracted from a fit to th& dis-
tribution in the region 5.27 Ge\f<M,.<5.29 GeVLt?.
TheB~—D%7 signal is parametrized as a double Gaussian

D

region 5.2 Ge¥4 My,

_N(B"—DK") (B —D7) e( )

" N(B"—Dw)  5(B”—DK") "R

with peak position and width floated. On the other hand, wavhere N is the number of observed events, and € are
calibrate the shape parameters of Bie—D°K ™~ signal us- the signal detection and the prompt pion/kaon identification
ing theB~—D%7~ data. This accounts for the kinematical efficiencies, respectively. The signal detection efficien-
shifts and smearing of th& E peaks caused by the incorrect cies were determined from a Monte Carlo simulation e.g.
mass assignments of prompt hadrons. The peak position ang{B™ — D7 )=(44.6:0.7)%
width of the B~ —DPK ™~ signal events are determined by =(42.5+0.7)%. The particle identification efficiencies for
fitting the B~ — D%~ distribution using the kaon mass hy- the prompt pion and kaore(7) and e(K), are determined

051101-4
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TABLE I. Signal yields, feed-acrosses and ratios of branching fractions. The errd®8 are statistical
and systematic, respectively.

B~—Dm" B~— DK~ B—Dm~ go_B(B”—=DKT)
Mode events events feed-across B(B —D% ")
B —D:h™ 6052+ 88 347.5-21 134.4-14.7 0.077-0.005*+0.006
B~—D;h™ 683.4-32.8 47.38.9 15.6-6.4 0.093-0.018+0.008
B~ —Dyh~ 648.3-31.0 52.4-9.0 6.3-5.0 0.108-0.019+0.007

from a kinematically selected sample ofD** from the slope of the background was determined by chang-
—DY =K 7"]7x" decays, where th&~ and 7' mesons ing its value by its error. Both of the resulting changes were
from D° candidates have been selected in the same c.nincluded in the systematic error from fitting. Also other back-
momentum (2.1 GeV< p, ,<2.5 GeVt) and polar angle grounds including rare decays suchBis—K K"K~ and
regions as prompt hadrons in tBe —Dh~ decay. With our B~ —K~#*#~, which could contribute to th E signal
requirementP(K/)>0.8, the efficiencies were determined region, are estimated from tiiz° sideband data. This uncer-
to bee(K)=0.768+ 0.001 ande(7) =0.976+0.001, and the tainty (0.5%—-3% is also included as a source of systematic
rate for misidentification ofr as K is 0.024-0.001. The error.

ratio of B—D#~ feed-across in th8 DK™ signal toB The asymmetries4, , are evaluated using signal yields
—D=~ signal is 2%—-2.5%, which is consistent with the obtained from separate fits to tB& andB~ samples shown
measured pion fake rate. The ratios of Cabibbo-suppressed to Fig. 3. The results are given in Table 1. We find
Cabibbo-favored decay modes are shown in Table I. The

double ratios are found to be A;=0.06+0.19 stah + 0.04sys?,
Ry=1.21*=0.25 stah = 0.14(sys, A,=—0.19+0.17 stap + 0.05 sysb,
R,=1.41+0.27stah £ 0.15 sysh where the systematic uncertainty is from the intrinsic detec-

tor charge asymmetrg8.2%), the B~ andB" yield extrac-
for CP-even andCP-odd eigenstates, respectively. The sys-tions (2.4%—3.3%, and the asymmetry in particle identifica-
tematic errors in the ratioB® are due to the uncertainty in tion efficiency of prompt kaon&l%). The intrinsic detector
yield extraction(3%—7% and particle identificatior(1%). charge asymmetry is calculated from theB~
The systematic error in the yield extraction includes uncer-, D% — K~ 7" ]~ sample. The systematic error from yield
tainties in theBB background and signal shape parametrizaextraction is calculated by changing the fitting parameters by
tion. The uncertainty in thA E signal shape parametrization *=1o.
was determined by varying the mean and width of the double In summary, using 78 fb* of data collected with the
Gaussian parameters within their errors. The uncertaintelle detector, we report measurements of the de@ys

12 r . r 12 T T T

1oL (a) B—>D; K7 10l (b) B> D; K]
= | ] P | ]
[- 3 >
] st E ]
=2 [ =)
b sl 4 =
2 L 2
s 1 8
&L i Ll &

Ty e AN T 1T
DY 0 A L LA L A A A
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FIG. 3. AE distributions for the charge conjugate modesB~—D;K~, (o) B*—D;K*, (c) B"—D,K™, (d) B*—=D,K".
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TABLE Il. Yields, partial-rate charge asymmetries and 90% C.L. intervals for asymmetries.

Mode N(B™) N(B™) Acp 90% C.L.
B*DK* 165.4+ 14.5 179.6:15 0.04+0.06+0.03 ~0.07<A;<0.15
B* -D,K* 22.1+6.1 25.0:6.5 0.06+0.19+0.04 —0.26<.4,<0.38
B D,K* 20.9+6.5 20.5-5.6 —0.19+0.17+0.05 ~0.47< A4,<0.11
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