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Equation of state for two flavor QCD at nonzero chemical potential
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We present results of a simulation of QCD on a 16334 lattice with 2 continuum flavors of ap4-improved
staggered fermion with massm/T50.4. Derivatives of the thermodynamic grand potentialV with respect to
the quark chemical potentialmq up to fourth order are calculated, enabling estimates of the pressure, quark
number density and associated susceptibilities as functions ofmq via Taylor series expansion. Discretization
effects associated with various staggered fermion formulations are discussed in some detail. In addition it is
possible to estimate the radius of convergence of the expansion as a function of temperature. We also discuss
the calculation of energy and entropy densities which are defined via mixed derivatives ofV with respect to the
bare couplings and quark masses.
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I. INTRODUCTION

Nonperturbative studies of QCD thermodynamics with
small but nonzero baryon charge density by numerical sim
lation of lattice gauge theory have recently made encou
ing progress@1–4#. In particular, it has proved possible t
trace out the pseudocritical lineTc(mq) separating hadronic
and quark-gluon plasma~QGP! phases in the (mq ,T) plane
out to mq.O(100) MeV @2–4#, where the quark chemica
potentialmq is the appropriate thermodynamic control va
able in the description of systems with a varying parti
number using the grand canonical ensemble. In addition,
first estimate has been made of the location along this lin
the critical end point expected forNf52 light quark flavors,
where the crossover between hadron and QGP phase
comes a true first order phase transition@2#. As well as being
of intrinsic theoretical interest, such studies are directly
plicable to the regime under current experimental investi
tion at the BNL Relativistic Heavy Ion Collider~RHIC!,
where corrections to quantities evaluated atmq50 are both
small and calculable. In this respect it is worth reminding
reader that in a relativistic heavy ion collision of a durati
of ;10222 s, thermal equilibration is possible only for pro
cesses mediated by the strong interaction, rather than the
electroweak equilibrium achievable, say, in the core of a n
tron star. This means that each quark flavor is a conse
charge, and conditions at RHIC are thus approximately
scribed by

mu5md5mq ; m I[2~mu2md!50; ms50, ~1!

with mq.15 MeV @5# when we relate the quark and baryo
number chemical potentials viamB53mq . In this paper we
will present numerical results for the equation of state,
pressurep(mq ,T) and quark number densitynq(mq ,T), ob-
tained from a lattice QCD simulation withNf52, which
should give a qualitatively correct description of RHIC phy
ics, and provide a useful warm-up exercise for the phys
case of 211 flavors with realistic light and strange qua
masses.
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Direct simulation using standard Monte Carlo importan
sampling is hampered because the QCD path integral m
sure detNf M , whereM (mq) is the Euclidean space fermio
kinetic operator, is complex oncemqÞ0. In the studies
which have appeared to date, two fundamentally distinct
proaches to this problem have emerged. In thereweighting
method results from simulations atmq50 are reweighted on
a configuration-by-configuration basis with the correcti
factor @detM (mq)/detM (0)#Nf yielding formally exact esti-
mates for expectation values. Indeed, it is found that if
weighting is performed simultaneously in two or more p
rameters, convergence of this method on moderately s
systems is considerably enhanced@6#. This method has been
used on lattice sizes up to 12334 with Nf5211 to map out
the pseudocritical line and estimate the location of the cr
cal end point atmq

crit.240 MeV, Tcrit.160 MeV @2#. More
recently the equation of state in the entire region to the lef
the end point has been calculated this way@7#. However, it
remains unclear whether the thermodynamic limit can
reached using this technique.

Analytic approaches use data from regions where dir
simulation is possible, either by calculating derivatives w
respect tomq ~or more properly with respect to the dimen
sionless combinationmq /T) to construct a Taylor expansio
for quantities of interest@1,3,8,9#, or more radically by ana-
lytically continuing results from simulations with imaginar
mq ~for which the integration measure remains real! to real
mq . The second technique has been used to mapTc(mq) for
QCD with bothNf52 @4# andNf54 @10#, in the latter case
finding evidence that the line is first order in nature. For
nately, the pseudocritical line found in@4# is in reasonable
agreement with that found by reweighting; moreover the
dius of convergence within which analytic continuation fro
imaginarymq is valid corresponds tomq /T<p/3 @11#. The
leading nontrivial term of quadratic order in the Taylor e
pansion appears to provide a good approximation through
this region. In general though, while analytic approach
have no problem approaching the thermodynamic limit, it
not yet clear if and how they can be extended into the reg
around the critical end point~but see@12#!, and to observ-
©2003 The American Physical Society07-1



or

r

fu

fe
on

io

ar
ts
k
e

c

-

ab

in
di

al
t
ve
e
-

u
r

on
w
s

n
u

cu
th
en

th
rg
n

n-

a

e at

y
ll
ur

n

s

lues

ALLTON et al. PHYSICAL REVIEW D 68, 014507 ~2003!
ables that vary strongly withmq such as, e.g., the pressure
energy density.

In our previous paper@3# we used a hybrid of the two
techniques, by making a Taylor series estimate of the
weighting factor@detM (mq)/detM (0)#Nf to O(mq

2). Since
this is considerably cheaper than a calculation of the
determinant, we are able to explore a larger 16334 system,
and also exploit an improved action in both gauge and
mion @14# sectors, thus dramatically reducing discretizati
artifacts on what atTc(mq50).170 MeV is still a coarse
lattice. Our results yield a curvature of the phase transit
line Tc(d

2Tc /dmq
2)umq50.20.14(6), consistent with the

other approaches. Although our simulation employs qu
massesm/T50.4,0.8, not yet realistically light, the resul
also suggest that any dependence on quark mass is wea
the current paper we extend the Taylor series to the n
orderO(mq

4) but this time remain entirely within the analyti
framework, using derivatives calculated atmq50 to evaluate
nonzero density corrections to the pressurep and quark num-
ber susceptibilityxq[]nq /]mq , as well as the quark num
ber densitynq itself. In fact, since the correctionDp can be
evaluated at fixed temperature, it turns out to be consider
easier to calculate than the equation of state atmq50
@15,16#. Since we now have the first two nontrivial terms
the Taylor expansion, we are also able to estimate its ra
of convergence as a function ofT, and confirm that close to
Tc(mq50) the results of our previous study for the critic
line curvature can be trusted out toO(100 MeV), whereas a
higher temperatures a considerably larger radius of con
gence is likely to be found. Finally we consider mixed d
rivatives with respect to bothmq and the other bare param
etersb andm, which are required to estimate energye and
entropys densities. Due to the presence of a critical sing
larity, these latter quantities appear considerably harde
calculate in the critical region using this approach.

Section II outlines the formalism used in the calculati
and specifies which derivatives are required. In Sec. III
present a calculation of the cutoff dependence of the term
the expansion for standard, and for Naik- andp4-improved
staggered lattice fermions, showing that both improveme
result in a dramatic reduction of discretization effects. O
numerical results are presented in Sec. IV, and a brief dis
sion in Sec. V. Two Appendixes contain further details on
calculation of the required derivatives and the cutoff dep
dence.

II. FORMULATION

In the grand canonical ensemble pressure is given
terms of the grand partition functionZ(T,V,mq) by

p

T4 5
1

VT3 ln Z. ~2!

Note that we have been careful to express both sides of
relation in dimensionless quantities. Since the free ene
and its derivatives can only be calculated using conventio
01450
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Monte Carlo methods atmq50, we proceed by making a
Taylor expansion about this point in powers of the dime
sionless quantitymq /T:

DS p

T4 ~mq! D[
p

T4 U
T,mq

2
p

T4U
T,0

5
1

2!

mq
2

T2

]2~p/T4!

]~mq /T!2 1
1

4!

mq
4

T4

]4~p/T4!

]~mq /T!4

1•••

[ (
p51

`

cp~T!S mq

T D p

~3!

where derivatives are taken atmq50. Note that calculating
D(p/T4) is considerably easier thanp(T,mq50) itself, be-
cause whereas lnZ must be estimated by integrating along
trajectory in the bare parameter plane@15,16#, its derivatives
can be related to observables which are directly simulabl
fixed (b,m), whereb is the gauge coupling parameter andm
the bare quark mass. Only even powers appear in Eq.~3!
because as shown in@3#, odd derivatives of the free energ
with respect tomq vanish at this point. Note also that we wi
work throughout with fixed bare mass, implying that o
computation ofD(p/T4) is strictly valid along a line of fixed
m/T.

For QCD with staggered fermions the partition functio
may be written

Z5E DU~detM !Nf / 4exp~2Sg!, ~4!

with UPSU(3) denoting the gauge field variables,Sg@U#
the link action andM @U;mq# the kinetic operator describing
a single staggered fermion, equivalent toNf54 continuum
flavors. On a lattice of sizeNs

33Nt with physical lattice
spacinga, so thatT5(aNt)

21, we define a dimensionles
lattice chemical potential variablem5mqa. Equation ~3!
then becomes

DS p

T4D5
1

2

Nt
3

Ns
3m2

]2ln Z
]m2 1

1

24

Nt
3

Ns
3 m4

]4ln Z
]m4 1•••. ~5!

The derivatives may be expressed as expectation va
evaluated atm50:

]2ln Z
]m2

5K Nf

4

]2~ ln detM !

]m2 L
1 K S Nf

4

]~ ln detM !

]m D 2L , ~6!
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]4ln Z
]m4

5K Nf

4

]4~ ln detM !

]m4 L 14K S Nf

4 D 2]3~ ln detM !

]m3

]~ ln detM !

]m L 13K S Nf

4 D 2S ]2~ ln detM !

]m2 D 2L
16K S Nf

4 D 3]2~ ln detM !

]m2 S ]~ ln detM !

]m D 2L 1 K S Nf

4

]~ ln detM !

]m D 4L
23F K Nf

4

]2~ ln detM !

]m2 L 1 K S Nf

4

]~ ln detM !

]m D 2L G 2

. ~7!

All expectation values are calculated using the measureZ 21(m50)DU(detM @m50#)Nf/4e2Sg and in deriving Eqs.~6! and
~7! we used the fact that^]n(ln detM )/]mn&50 for n odd. To evaluate these expressions we need the following explicit fo

]~ ln detM !

]m
5trS M 21

]M

]m D ~8!

]2~ ln detM !

]m2
5trS M 21

]2M

]m2 D 2trS M 21
]M

]m
M 21

]M

]m D ~9!

]3~ ln detM !

]m3
5trS M 21

]3M

]m3 D 23trS M 21
]M

]m
M 21

]2M

]m2 D 12trS M 21
]M

]m
M 21

]M

]m
M 21

]M

]m D ~10!

]4~ ln detM !

]m4
5trS M 21

]4M

]m4 D 24trS M 21
]M

]m
M 21

]3M

]m3 D 23trS M 21
]2M

]m2
M 21

]2M

]m2 D
112trS M 21

]M

]m
M 21

]M

]m
M 21

]2M

]m2 D 26trS M 21
]M

]m
M 21

]M

]m
M 21

]M

]m
M 21

]M

]m D . ~11!
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The traces can be estimated using the stochastic metho
viewed in @3#. Since]nM /]mn is a local operator, expres
sions containingp powers ofM 21 requirep operations of
matrix inversion on a vector.

Next we discuss the quark number densitynq and its fluc-
tuations. Starting from the Maxwell relation

nq52
]2V

]V]mq
5

]Nq

]V
5

]p

]mq
, ~12!

where V52T ln Z is the thermodynamic grand potenti
andNq the net quark number, we can write an equation
the quark number densitynq analogous to Eq.~5!:

nq

T3 5
Nt

2

Ns
3m

]2ln Z
]m2 1

1

6

Nt
2

Ns
3 m3

]4ln Z
]m4 1•••. ~13!

It is also possible to interpret derivatives ofp with respect to
mq in terms of the various susceptibilities giving informatio
on number density fluctuations@8,17#. We define quark num-
ber (q), isospin~I! and charge~C! susceptibilities as follows

xq

T2
5S ]

]~mu /T!
1

]

]~md /T! Dnu1nd

T3
, ~14!
01450
re-

r

x I

T2
5

1

4 S ]

]~mu /T!
2

]

]~md /T! Dnu2nd

T3
, ~15!

xC

T2
5S 2

3

]

]~mu /T!
2

1

3

]

]~md /T! D2nu2nd

3T3 . ~16!

Quark and baryon number susceptibilities are related byxB
[]nB /]mB5322xq . Any difference betweenxq and 4x I is

due to correlated fluctuations in the individual densities ou
and d quarks. With the choicemu5md5mq5ma21, mu
5md , which approximates the physical conditions at RHI
xq can then be expanded in terms of quantities already u
in the calculation ofp andnq :

xq

T2 U
mq50

[
1

T2

]nq

]mq
5

Nt

Ns
3

]2ln Z
]m2

;

]2~xq /T2!

]~mq /T!2U
mq50

5
1

NtNs
3

]4ln Z
]m4 , ~17!

whereas the expansion ofx I is determined by the following
expectation values:
7-3
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x I

T2U
mq50

5
Nt

4Ns
3 K 2

4

]2~ ln detM !

]m2 L , ~18!

]2~x I /T
2!

]~mq /T!2 U
mq50

5
1

4Ns
3Nt

F K 2

4

]4~ ln detM !

]m4 L 12K S 2

4D 2]3~ ln detM !

]m3

]~ ln detM !

]m L 1K S 2

4D 2S ]2~ ln detM !

]m2 D 2L
1K S 2

4D 3]2~ ln detM !

]m2 S ]~ ln detM !

]m D 2L 2F K 2

4

]2~ ln detM !

]m2 L 1 K S 2

4

]~ ln detM !

]m D 2L G K 2

4

]2~ ln detM !

]m2 L G ,

~19!
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where we have explicitly setNf52. Charge fluctuations ar
then given by the relation

xC

T2
5

1

36

xq

T2
1

x I

T2
1

1

6 S ]~nu /T3!

]~mu /T!
2

]~nd /T3!

]~md /T! D , ~20!

where the third term vanishes formu5md , mu5md .
Finally we discuss the energy densitye, most conve-

niently extracted using the conformal anomaly relation

e23p

T4
52

1

VT3 Fa
]b

]a

] ln Z
]b

1a
]m

]a

] ln Z
]m G , ~21!

whereb andm are the bare coupling and quark mass resp
tively. In fact, for mÞ0 the derivation of this expressio
needs careful discussion. Start from the defining relation

V5E2TS2mqNq52pV52T ln Z, ~22!

where S is entropy. For a Euclidean actionS5S(b,m,m)
defined on an isotropic lattice of spacinga we have the iden-
tity

a
dS

da
53V

]S

]V
2T

]S

]T
. ~23!

It follows that

V
]V

]V
5VTK ]S

]VL 52pV ~24!

T
]V

]T
5V1T2K ]S

]TL 52TS5V2E1mqNq ~25!

implying

e23p2mqnq5
T

V K a
]S

]aL
52

T

V Fa
]b

]a

] ln Z
]b

1a
]m

]a

] ln Z
]m

1a
]m

]a

] ln Z
]m G ~26!
01450
c-

where we have allowed for the dependence of the lat
action on all bare parameters. Since howeverm[mqa, and a
parameter multiplying a conserved charge experiences
renormalization, the third terms on each side cancel leav
the relation~21!.

Taylor expansion of Eq.~21! about m50 leads to the
expression

DS e23p

T4 D 52a
]b

]a

Nt
3

Ns
3 F1

2
m2

]3ln Z
]b]m2

1
1

24
m4

]5ln Z
]b]m4 1•••G

2a
]m

]a

Nt
3

Ns
3F1

2
m2

]3ln Z
]m]m2

1
1

24
m4

]5ln Z
]m]m4 1•••G . ~27!

The beta functiona(]b/]a) may be estimated by measur
ments of observables at (T,mq)5(0,0); the factora(]m/]a)
is poorly constrained by current lattice data but vanishes
the chiral limit, so is frequently neglected. In order to ass
the magnitude of the resulting error, it is nonetheless us
to calculate all the derivative terms. They may be estima
using the formulas

]^O&
]b

5 KOS 2
]Sg

]b D L 2^O&K 2
]Sg

]b L ; ~28!

]^O&
]m

5 K ]O
]mL 1 KONf

4

]~ ln detM !

]m L
2^O&K Nf

4

]~ ln detM !

]m L . ~29!

The derivative]Sg /]b is, of course, simply the combinatio
of plaquettes comprising the gauge action itself, and der
tives with respect tom can be evaluated using

]n11~ ln detM !

]m]mn
5

]n~ trM 21!

]mn
. ~30!
7-4
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The implementation of the second square bracket in Eq.~27!
in terms of lattice operators is straightforward but unwield
for reference the nonvanishing terms are listed in Appen
A.

III. ANALYZING THE CUTOFF DEPENDENCE

In this section we discuss the influence of a nonz
chemical potentialmq on the cutoff effects present in calcu
lations of bulk thermodynamic observables on a lattice w
finite temporal extentNt . For mq50 this issue has bee
discussed extensively for both gluonic and fermionic sec
of QCD. In particular, it has been shown that the use
improved actions is mandatory if one wants to ensure
discretization errors in the calculation of quantities like t
pressurep or energy densitye are below the 10% level on
moderately sized latticesNt&(8210) @14#. We now want to
extend these considerations to the casemqÞ0, which affects
the quark sector only. Following@14# we will concentrate on
an evaluation of the pressure. As we will be evaluating th
modynamic quantities using a Taylor expansion inmq /T we
want to understand the cutoff dependence ofp(mq) and its
expansion coefficients in terms ofmq /T.

In the limit of high temperature or density, due
asymptotic freedom thermodynamic observables likep or e
are expected to approach their free gas, i.e., Ste
Boltzmann~SB! values. In this limit cutoff effects becom
most significant as the relevant momenta of partons con
uting to the thermodynamics areO(T) and thus of similar
magnitude to the UV cutoffa21. Short distance propertie
thus dominate ideal gas behavior and cutoff effects are c
trolled by the lattice spacing expressed in units of the te
perature,Ta[1/Nt .

In the continuum the pressure of an ideal gas of qua
and antiquarks is given by

p

T4U
`

5
3Nf

p2T3E0

`

dkk2ln„@11z exp$2«~k!/T%#

3@11z21exp$2«~k!/T%#… ~31!
a

-

01450
;
ix

o

h

rs
f

at

r-

n-

b-

n-
-

s

with the fugacity z[exp$mq /T% and the relativistic single

particle energies«(k)5Ak21m2. For massless quarks on
finds from an evaluation of the integral the pressure a
finite polynomial inmq /T:

p

T4U
`

5
7Nfp

2

60
1

Nf

2 S mq

T D 2

1
Nf

4p2 S mq

T D 4

. ~32!

For m nonzero the pressure is a series in the fugacity:

p

T4
5S m

T D 2 3Nf

p2 (
,51

`

~21!,11 ,22

3K2~,m/T!~z,1z2,!, ~33!

whereK2 is a Bessel function. Of course, Eq.~33! can also
be reorganized as a power series inmq /T.

It is well known that the straightforward lattice represe
tation of the QCD partition function in terms of the standa
Wilson gauge and staggered fermion actions leads to a
tematicO(a2) cutoff dependence of physical observables.
the infinite temperature limit this gives rise toO@(aT)2

[1/Nt
2# deviations of the pressure from the SB value~32!;

p

T4U
Nt

5
p

T4U
`

1
d

Nt
2

1O~Nt
24!. ~34!

Using improved discretization schemes it is possible to
sure that cutoff effects only start to contribute atO(Nt

24)
@13#, or to considerably reduce the magnitude of the coe
cientd relative to the standard discretization scheme for st
gered fermions@14#.

For mq50 the pressure of free staggered fermions on
tices with infinite spatial volume (Ns5`) but finite tempo-
ral extentNt is given by
p

T4U
Nt

5
3

8
NfNt

4 1

~2p!3E0

2p

d3pW FNt
21(

p4

ln@v2~p!14 f 4
2~p!#2

1

2pE0

2p

dp4ln@v2~p!14 f 4
2~p!#G . ~35!
In the first term the sum(p4
runs over all discrete Matsubar

modes, i.e.p4P$(2n11)p/Ntun50, . . . ,Nt21%, whereas
in the second term we have an integral overp4 which gives
the vacuum contribution. For quarks of massm the function
v2(p) is given byv2(p)[4(m51

3 f m
2 (p)1Nt

22(m/T)2. Here
we have introduced functionsf m(p) to describe the momen
tum dependence of the propagator for the standard, Naik@13#
andp4 staggered fermion actions@14#:
f m~p!5
1

2
sinpm ~standard staggered action! ~36!

f m~p!5
9

16
sinpm2

1

48
sin3pm ~Naik action!

~37!
7-5
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FIG. 1. The pressure calculated on lattices with temporal extentNt in units of the continuum ideal Fermi gas value.~a! shows results for
the standard, Naik andp4 actions at (mq /T,m/T)5(0,0), ~0,1!, ~1,0! and (1,1);~b! the coefficientsC0 ,C2 ,C4 of the mq /T expansion of
p(m/T50) divided by the corresponding SB constant as a function ofNt .
il

t

tin

all
ost

uark

f
ure

an-

rts
f m~p!5
3

8
sinpm1

2

48
sinpm (

nÞm
cos2pn ~p4 action!.

~38!

The introduction of a nonzero chemical potential is eas
achieved by substituting every temporal momentump4 by
p42 im[p42 iNt

21(mq /T). The integrals in Eq.~35! have
been evaluated numerically for differentNt . Results for dif-
ferent values ofmq /T and m/T are shown for the differen
fermion actions in Fig. 1.

For the standard action cutoff effects remain>10% out to
Nt'16, whereas both improved actions are hard to dis
se
t

a

01450
y

-

guish from the continuum result byNt510. We note that
lines for differentmq /T values but the same quark mass f
almost on top of each other. Cutoff effects are thus alm
independent ofmq . The effect ofmqÞ0 on the cutoff depen-
dence of the pressure is even smaller than the effect of q
massmÞ0.

As can be seen from Eq.~32! for moderate values o
mq /T them dependence of the continuum ideal gas press
is dominated by the leadingO@(mq /T)2# contribution. In
order to control the cutoff dependence of the various exp
sion terms we have expanded the integrand of Eq.~35! up to
order O@(mq /T)6#. For the standard action the series sta
with
lnFv2~p!1sin2S p42
i

Nt

mq

T D G5 ln D2
2i cosp4sinp4

D Nt
S mq

T D2
2114 D cos2p41cos4p4

4 D2 Nt
2 S mq

T D 2

2
i ~2114 D216D cos2p41cos 4p4!sin2p4

6D3Nt
3 S mq

T D 3

1OF S mq

T D 4G . ~39!
e,

the

he
Here we use the shorthand notationD54(m51
4 f m

2 (p). The
remaining orders as well as the series for Naik andp4 ac-
tions are given in Appendix B. A common feature of the
expansions is that the odd terms are pure imaginary and
integral and sum overp4 of those terms vanish due to
he

factor sin(np4) which always appears. To be more precis
this factor always forms the pattern sin(np4)cos(mp4) which
can be shown to vanish, either after summation over
discrete set ofp4 values, or integration from 0 to 2p, for
n,mPN. Performing the momentum integration and t
7-6
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FIG. 2. ~a! The coefficientsC6 in the massless case, multiplied withNt
2 as a function ofNt

22 ~results for standard staggered fermions a
divided by 10! and ~b! the ratioC6(Nt)/C6(`) at m/T50.4 for the standard, Naik andp4 actions.
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summation over Matsubara modes we obtain the coeffici
of the mq /T expansion of the pressure;

p

T4U
Nt

5Nf(
i 50

`

CiU
Nt

S mq

T D i

. ~40!

We checked numerically that with increasingNt the coeffi-
cientsC0 , C2 andC4 do indeed converge to their correspon
ing SB values,

lim
Nt→`

C05
7p2

60
; lim

Nt→`

C25
1

2
; lim

Nt→`

C45
1

4p2
. ~41!

Figure 1~b! showsC0 , C2 andC4 for the standard, Naik and
p4 actions with massless quarks, normalized to the co
sponding SB value.

We see here again that the cutoff dependence of the p
sure atmÞ0 is qualitatively the same as atm50.

For massless quarks the coefficientC6 should vanish with
increasingNt , as checked in Fig. 2~a!. It is expected that this
01450
ts

e-

s-

term will approach zero likeNt
22 in the largeNt limit. In

order to define the numerical factor, we plotC6Nt
2 overNt

22 .
A fit yields C6'20.015Nt

22 for the standard action. This i
at least an order of magnitude larger than for thep4 im-
proved action, for which the dominant cutoff dependen
seems to beO(Nt

24) as for the Naik action.
In the case of massive quarks the expansion~40! no

longer terminates atO(mq
4). After expanding Eq.~31! in

terms of mq /T and performing a numerical integration w
find for the expansion coefficientsCi(m/T) up to i 56 the
values given in Table I.

The mass valuem/T50.4 is the value we use in our nu
merical calculations, corresponding toNt54 andam50.1.
We note that the coefficientC6 no longer vanishes. As show
in Fig. 2~b!, for Nt finite there are large deviations from th
continuum value. Even atNt54, however, the absolute
value of this coefficient is still a factor of about 1024 smaller
than the leading termC0. The deviations thus do not show u
in the calculation of the complete expression for the press
shown in Fig. 1~a!. These terms, however, become more i
portant in higher derivatives of the pressure such as the q
ve
TABLE I. Continuum values for the coefficientsCi of the mq /T expansion of the pressure of a massi
gas of quarks for the mass valuesm/T50.4 andm/T51.0.

m/T50.4 m/T51.0
i Ci(m/T) Ci(m/T)/Ci(0) Ci(m/T) Ci(m/T)/Ci(0)

0 1.113632 0.967 9.52816331021 0.827
2 4.88045531021 0.976 4.31391431021 0.863
4 2.53110131022 0.999 2.47139731022 0.976
6 1.87765931026 5.03681631025
7-7
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FIG. 3. Coefficients of~a! (mq /T)2 and ~b! (mq /T)4 in the Taylor expansion ofD(p/T4) as functions ofT/T0.
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number susceptibilityxq . In summary, for a gas of free
quarks we find that themq /T expansion up toO@(mq /T)4# is
sufficient for mq /T,1 andm/T,1. In the continuum the
deviation from the full expression over this range is sma
than 0.01%. On the lattice, however, cutoff effects lead
deviations of approximately 10% on coarse (Nt54) lattices.

IV. NUMERICAL RESULTS

We applied the formalism outlined in Sec. II to numeric
simulations of QCD withNf52 quark flavors on a 16334
lattice, using both Symanzik improved gauge andp4-
improved staggered fermion actions. The simulation met
is exactly as presented in@3#.1 The bare quark mass wa
ma50.1 for which the pseudocritical point for zero chemic
potential is estimated to bebc.3.649(2). In order to cover
a range of temperatures on either side of the critical point
examined 16 values in the rangebP@3.52,4.0#. The simula-
tion employed a hybrid molecular dynamic ‘‘R’’-algorithm
with discrete time stepdt50.025, and measurements we
performed on equilibrated configurations separated bt
55. In general for eachb, 500 to 800 configurations wer
analyzed, with 1000 used in the critical regionb
P@3.52,3.66#. On each configuration 50 stochastic noi
vectors were used to estimate the required fermionic op
tors. For each noise vector, 7 matrix inversions are requ
to estimate the required operators~8–11! and ~A3–A5!.

Following the procedure used for the equation of state
m50 @15#, we translate to physical units using the followin
scalingAnsatz@18#:

a~b!

a~ b̄ !
5â~b!

11g2â2~b!1g4â4~b!

11g21g4
~42!

1The coefficientc3
F of the knight’s move hopping term was inco

rectly reported to be 1/96 in@3#; its correct value is 1/48.
01450
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where â[R(b)/R(b̄), R being the two-loop perturbative
scaling function appropriate for two light flavors. Usin
string tension data at (T,m)5(0,0) the best values for the fi

parameters corresponding to a referenceb̄53.70 are g2

50.669(208),g4520.0822~1088! @15#. We find that our
simulations span a temperature rangeT/T0P@0.76,1.98#,
whereT0 is the critical temperature atmq50.

In Fig. 3 we show the first two coefficients,~a! c2 and~b!
c4, of the Taylor expansion ofD(p/T4) introduced in Eq.~3!
as functions ofT/T0. Also shown are the corresponding S
limits: ~a! Nf C2(Nt) and ~b! Nf C4(Nt), where the coeffi-
cientsCi are defined in Eq.~40!, with values relevant for both
the lattice used (Nt54) and the continuum limit (Nt5`)
plotted. Bothc2 and c4 vary sharply in the critical region
but except in the immediate vicinity of the transition th
quadratic term dominates the quartic. This is consistent w
the results of@7# where data at varyingm obtained by re-
weighting were found to lie on an almost universal cur
when plotted as a fraction of the SB prediction. T
asymptotic value ofc4 appears to be approached from abov

A notable feature is that in the high-T limit our data lie
closer to the continuum SB prediction rather than their v
ues Ci(Nt54) corrected for lattice artifacts,c2 assuming
80% of the continuum value forT/T052 whereasc4 is al-
most coincident with its continuum value. By contrast rece
calculations with unimproved staggered fermions@7,9# find
that the high-T limit of the data lies close to the lattice
corrected SB value. This situation can be modelled by m
ing the coefficientd of the O(Nt

22) correction appearing in
Eq. ~34! temperature dependent. In thermodynamic calcu
tions performed with pure unimproved SU~3! lattice gauge
theory @19#, where extrapolations to the continuum limit a
currently practicable, it is found thatd(T).0.5d(T5`) for
T;3T0, becoming even smaller closer toT0. The behavior
of c2 andc4 we have observed usingp4 fermions is broadly
consistent with this behavior.
7-8
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In Fig. 4 we plotD(p/T4) defined in Eq.~3! as a function
of (mq /T)2 for various temperatures. In most casesc4!c2
and the relation is thus almost linear. The strongest de
tures from linearity are forT.T0, but even here the qua
dratic term is dominant for (mq /T)2&0.4, corresponding to
mq&100 MeV. Given enough terms of the Taylor expansi
in mq /T, one could determine its radius of convergencer
via2

r5 lim
n→`

rn[ lim
n→`

AU cn

cn12
U. ~43!

Data from the pressure atmq50 @15# and the current study
enable us to plot the first two estimatesr0 and r2 on the
(mq ,T) plane along with the estimated pseudocritical li
Tc(mq) found in @3# in Fig. 5. Also shown are the corre
sponding values from the SB limit~32!. For T.Tc one finds
that rn increases markedly asn increases from 0 to 2; if the
SB limit is a good predictor for the QGP phase we mig
expectc6 to be very small, and the next estimater4 corre-
spondingly very large in this regime. Close to the transit
line, however, the thermodynamic singularities appear to
strict r;O(1); this in turn gives an approximate lowe
bound for the position of the critical end point. From th

2The argument of@4# that r<p/3 due to the presence of a pha
transition as imaginary chemical potential is increased beyond
value @20# does not hold for calculations withmq real; in this case
the pressurep0 corresponding to the unit element of the Z~3! sector
is always the maximum and hence dominates the partition func
in the thermodynamic limit—hence the issue concerns the ana
propertieswithin this physical unit sector.

FIG. 4. D(p/T4) as a function of (mq /T)2 for various tempera-
tures, increasing upwards from the lowest curve withT/T050.812
to the highest withT/T051.980.
01450
r-

t

n
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figure we deducemq
crit*(121.2)T0, not inconsistent with

the result of@2#. The new results atO(m4) are important
because they justify in retrospect our neglect of fourth or
reweighting factors in our earlier calculation of the critic
line Tc(mq) @3#. Indeed, simulations with imaginarym sug-
gest that neglect of these terms in the analytic continuatio
physicalmq is justified formq&170 MeV @4#.

Figure 6 plots the dimensionless correctionD(p/T4) to
the equation of state as a function of bothmq /T andmq . In
the latter case the correction rises steeply across the tra
tion and peaks forT.1.1T0, before rapidly approaching a
form D(p/T4)5aT22 characteristic of the SB limit, with the
coefficienta having 82% of the continuum SB value. Com
parison with the equation of state results atmq50 from Ref.
@15# suggests that the correction will give a significant co
rection to the pressure for 0.9&T/T0&1.3, mq /T0*0.5, but
will decrease in importance asT rises further. The curves o
Fig. 6~b! are in good qualitative agreement with those
Refs.@7,9#, although we consider any quantitative agreem
to be somewhat accidental as the numerical data obtaine
@7,9# with unimproved actions have large discretization
rors which have been corrected for by renormalizing the r
data with the known discretization errors in the infinite te
perature limit. Experience gained in calculations of therm
dynamic quantities in the pure SU~3! gauge theory suggest
that in the temperature range of a few timesT0 this proce-
dure overestimates the importance of cutoff effects by a f
tor two or so@19#.

Figure 7~a! shows the quark number densitynq evaluated
using Eq.~13!. As mq increases,nq rises steeply as the QG
phase is entered; for reference, if the quark number den
in nuclear matter is denotedn̄q , then the ratio n̄q /T0

3

'0.75. Our results are numerically very similar to those o
tained using exact reweighting in@7#, where a massma
'0.1 for the light quark flavors was used. Note that a s

is

n
ic

FIG. 5. Estimates for the radius of convergencer(mq ,T).
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FIG. 6. The equation of state correctionD(p/T4) vs. T/T0 for ~a! variousmq /T, and~b! variousmq /T0.
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nificant quark mass dependence fornq was observed in@3#,
and indeed is present even in the SB limit as described
Sec. III; however analysis of the SB limit suggests that
difference between the chiral limit andm/T50.4 is about
4%. In Fig. 7~b! we show the result of eliminatingmq in
favor of nq via

DS p

T4D5
1

4c2
S nq

T3D 2

2
3c4

16c2
4 S nq

T3D 4

1OF S nq

T3D 6G . ~44!
01450
in
e

The relation ~44! approximates the ‘‘true’’ equation o
state in terms of physically measurable quantities; we h
plotted the resultingD(p/T4) against (nq /T3)2 up to the
point where the ratio of the magnitude of the second term
Eq. ~44! to that of the first is 40%: the pointnq /T3

5A2c2
3/3c4 where the ratio is 50% marks a mechanical

stability ]p/]nq50, which is an artifact due to the trunca
tion of the series. Stability of the equilibrium state und
local fluctuationsdnq requires]p/]nq.0, an example of Le
Châtelier’s principle. AsT/T0 increases through unity, th
equation of state changes from a form resembling the lowT
SB limit p}nq

4/3 to the stiffer p}nq
2 characteristic of the

high-T SB limit. Interestingly enough, to the order we ha
FIG. 7. ~a! nq /T3 as a function ofT/T0 for variousmq /T0, and ~b! the ‘‘true’’ equation of stateD(p/T4) vs (nq /T3)2 for various
temperatures. The continuum SB forms1

4 (p2/Nf)
1/3(nq /T3)4/3 ~low T) and (2Nf)

21(nq /T3)2 ~high T) are also shown as functions ofT/T0.
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FIG. 8. Susceptibilities~a! x i /T2umq50, and~b! ]2x i /]mq
2umq50 as functions ofT/T0.
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calculated the instability artifact sets in atmq /T.1.4 for T
large, but atmq /T.0.4 for T'T0, thus providing an inde-
pendent, and more stringent, limit to the physical validity
our approach, and reflecting the importance of contributi
from higher orders in the Taylor expansion close toTc(mq).

Next, in Fig. 8 we plot the expansion coefficients cor
sponding to the various susceptibilities defined in Eqs.~14!–
~16!. For T&T0 there is a significant difference betwee
xq(mq50) and 4x I(mq50), implying anticorrelated fluc-
tuations ofnu and nd which rapidly decrease in magnitud
aboveT0 and vanish asT approaches the infinite temperatu
SB limit.3 In the same limit the charge susceptibilityxC ap-
proaches the value518 xq . The critical singularity in 4x I and
xC is weaker than that ofxq , which can be traced back to th
differing coefficients of̂ (]2ln detM /]m2)2&, the dominant
term in the vicinity ofTc , in the definitions~7! and~19!. The
dimensionless quantityTxC/s, where s5(e1p2mqnq)/T
is the entropy density, can be related to event-by-event fl
tuations in charged particle multiplicities in RHIC collision
and has been proposed as a signal for QGP formation@25#.
Event-by-event fluctuations in baryon number have also
cently been discussed in@26#.

3There has recently been a discussion whether the differe
(4x I2xq)/T2 is exactly zero in the high temperature phase,
suggested by some lattice calculations@21#, or just small but non-
zero, as found in perturbative calculations@22#. We find that the
difference stays nonzero but decreases by one order of magn
betweenT.T0 and T.1.5T0. At T.1.36T0 we find a value of
0.0066~28! for this difference calculated in 2-flavor QCD whic
clearly disagrees with the quenched result (264)31026 presented
in @21# as well as the recent 2-flavor results of this group@9#. Our
results are, however, in agreement with the findings of Ref.@24#. At
T.2T0 the numerical value of this difference drops below o
current error level of about 231023. In the high temperature limit
this error is thus not yet small enough to discuss numerical eff
at the level of 1024 as suggested in the discussion presented in@23#.
01450
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In Fig. 9 the relation~17! and data of Fig. 3 have bee
used to plot the dimensionless quark number susceptib
xq /T2 as a function ofT/T0 for various mq /T. The peak
which develops inxq asmq increases is a sign that fluctua
tions in the baryon density are growing as the critical e
point in the (m,T) plane is approached. Physically, th
shows that at the critical point, as well as strong fluctuatio
in the (c̄c) bilinear expected at a chiral phase transiti
there are also fluctuations in (c̄g0c) since Lorentz symme-
try is explicitly broken by the background baryon char
density. For quantities such asnq and xq defined as higher
derivatives of the free energy with respect tomq , the relative
importance of the higher order terms in the Taylor ser
expansion is increased; for example, atT.T0 and mq /T
51 the quadratic contribution toxq(mq) is about 3 times

ce
s

de

ts
FIG. 9. xq /T2 as a function ofT/T0 for variousmq /T.
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FIG. 10. Derivatives ~a! (2VT3)21]3ln Z/]b](mq /T)2 ~circles! and 2(2VT3)21]3ln Z/]m](mq /T)2 ~diamonds!; ~b!

(24VT3)21]5ln Z/]b](mq /T)4 ~circles! and2(24VT3)21]5ln Z/]m](mq /T)4 ~diamonds!.
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that of the leading order term. For this reason we do
expect the data of Fig. 9 to be quantitatively accurate in
critical region. Note, however, that at each temperature
expansions forp, nq and xq all have thesameradius of
convergence.

Finally we turn to a discussion of the derivatives nec
sary for calculating the response of the energy densitye to
increasingmq . The Taylor expansion of the energy dens
involves derivatives of the expansion coefficientscp(T) used
to calculate the pressure,

DS e23p

T4 D 5 (
p51

`

cp8~T!S mq

T D p

, ~45!

with cp8(T)5T@dcp(T)/dT#umq50. It is apparent from the

temperature dependence of the expansion coefficientsc2(T)
and c4(T) shown in Fig. 3 that the coefficientscp8(T) can
become large in the vicinity ofT0. On the other hand tha
figure also shows thatcp8(T) will be small, i.e. close to zero
at high temperature as expected in the ideal gas limit
comparison with Eq.~27! shows that the numerical evalua
tion of cp8(T) requires the knowledge of lattice bet
functions and a calculation of mixed derivatives of lnZ with
respect tom as well asb and m. In Fig. 10 we plot these
derivative terms; the signals in this case are much noi
than for ]nln Z/]mn, although we have been able to che
that the numerical values for]3ln Z/]b]m2 are consistent
with the slope of the curve in Fig. 3~a!. It is clear firstly that
with the exception of]3ln Z/]m]m2 the signal only differs
significantly from zero in the immediate neighborhood of t
transition, and secondly that derivatives with respect tom are
strongly anticorrelated with those with respect tob. The
latter suggests it might be possible to learn something fr
Eq. ~27! about the shape of theD„(e23p)/T4

… curve as a
01450
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m

function of T/T0 away from the chiral limit even in the ab
sence of quantitative information abouta]m/]a.

Consider however ignoring mass derivatives and focus
on those performed with respect to coupling. In this case
derivatives are consistent with zero forT*1.2T0; i.e. the
differenceD„(e23p)/T4

… is to a good approximation inde
pendent ofmq for these high temperatures. This observati
is consistent with the results obtained by using exact
weighting in @7#. Consider now temperatures close toT0.
The beta function at the criticalbc has the value
a21da/db522.08(43) @15#; substituting the derivatives
from Fig. 10 in Eq.~27! we find atT0

DS e23p

T4 D '~4.861.2!3S mq

T D 2

2~564!3S mq

T D 4

1•••. ~46!

Taking the central values of the coefficients in this expans
one may conclude that the ratioc28/c48 is comparable with
c2 /c4. At present the large error on the coefficient of t
(mq /T)4 term, however, does not allow a firm conclusion
the convergence radius of the expansion ofe23p. We also
note that the coefficientc48 will change sign forT;T0. This
suggests that large cancellations can occur formq /T
;O(1) and indicates that higher order terms are neede
determine this difference reliably. In any event, it would a
pear that extending our current analysis to determine ene
and entropy densities (e,s) in the critical region will be far
more demanding.

V. SUMMARY

We have presented the first Monte Carlo calculation of
QCD equation of state at nonzero quark chemical poten
7-12
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within the analytic framework; no reweighting has been p
formed. As in our previous work, we have exploited the re
tive simplicity of the method to explore larger physical vo
umes than those used in comparable studies@7,9#. In
addition, the compatibility of our method with the use of
improved lattice fermion action has meant that our res
suffer from relatively mild discretization artifacts, our da
for the pressure correctionDp(mq) achieving 80% of the
Stefan-Boltzmann value byT.2T0.

Our results forDp and itsm-derivativesnq and the vari-
ous susceptibilitiesx i are in good qualitative agreement wi
those of @7,9#. Since higher derivatives suffer from large
discretization artifacts, and are inherently noisier when e
mated by Monte Carlo simulation, the results for, say,xq are
less quantitatively reliable than those forDp; nonetheless the
singularity developing inxq asmq is increased, seen in Fig
9, is evidence for the presence of a critical end point in
(mq ,T) plane, and for the importance of quark number flu
tuations in its vicinity.

The calculation of fourth order derivatives has enabled
for the first time to make an estimate for the limitations
our method, both analytically through the radius of conv
gence of the Taylor expansion inmq /T, and physically via
the requirement of consistency with Le Chaˆtelier’s principle.
For both criteria the most stringent bounds are unsurprisin
in the vicinity of the critical line, where convergence of th
series limits us tomq /T&1, and mechanical stability of th
equilibrium state tomq /T&0.5. Of course, the picture
should change with the inclusion of still higher derivativ
since on physical grounds we expect stability of the equi
01450
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e
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rium state everywhere within the domain of convergence.
are currently investigating the feasibility of including the re
evantO(m6) terms in our calculation.

Other quantities of phenomenological importance such
the energye and entropys densities, which require mixed
derivatives with respect to the other bare parametersb and
m, appear more difficult to calculate with quantitative acc
racy with this approach. It remains an open question whe
the radius of convergence for these quantities is the sam
that for quantities defined by series in]nV/]mn.

Finally, it is necessary to stress the importance of refin
the current calculation, firstly by simulating systems w
Nt>6 so that a reliable extrapolation to the continuum c
be performed, and secondly by repeating it with a realis
spectrum of 211 fermion flavors.
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APPENDIX A: DERIVATIVES NEEDED TO CALCULATE
ENERGY DENSITY

Here we present the nonvanishing terms in the exp
sions for]n11ln Z/]m]mn:
]3ln Z
]m2]m

5K Nf

4

]2trM 21

]m2 L 12K S Nf

4 D 2]~ ln detM !

]m

]trM 21

]m L 1K S Nf

4 D 2]2~ ln detM !

]m2
trM 21L

1 K S Nf

4 D 3S ]~ ln detM !

]m D 2

trM 21L 2F K Nf

4

]2~ ln detM !

]m2 L 1 K S Nf

4

]~ ln detM !

]m D 2L G K Nf

4
trM 21L ~A1!

]5ln Z
]m4]m

5K Nf

4

]4~ trM 21!

]m4 L 14K S Nf

4 D 2]3~ trM 21!

]m3

]~ ln detM !

]m L 14K S Nf

4 D 2]3~ ln detM !

]m3

]~ trM 21!

]m L
16K S Nf

4 D 2]2~ ln detM !

]m2

]2~ trM 21!

]m2 L 16K S Nf

4 D 3]2~ trM 21!

]m2 S ]~ ln detM !

]m D 2L
112K S Nf

4 D 3]2~ ln detM !

]m2

]~ ln detM !

]m

]~ trM 21!

]m L 14K S Nf

4 D 4S ]~ ln detM !

]m D 3]~ trM 21!

]m L
1K S Nf

4 D 2]4~ ln detM !

]m4
trM 21L 14K S Nf

4 D 3]3~ ln detM !

]m3

]~ ln detM !

]m
trM 21L

13K S Nf

4 D 3S ]2~ ln detM !

]m2 D 2

trM 21L 16K S Nf

4 D 4]2~ ln detM !

]m2 S ]~ ln detM !

]m D 2

trM 21L
1 K S Nf

4 D 5S ]~ ln detM !

]m D 4

trM 21L 2F K Nf

4

]4~ ln detM !

]m4 L 14K S Nf

4 D 2]3~ ln detM !

]m3

]~ ln detM !

]m L
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13K S Nf

4 D 2S ]2~ ln detM !

]m2 D 2L 1 K S Nf

4

]~ ln detM !

]m D 4L 16K S Nf

4 D 3]2~ ln detM !

]m2 S ]~ ln detM !

]m D 2L G
3K Nf

4
trM 21L 26H K Nf

4

]2~ trM 21!

]m2 L 12K S Nf

4 D 2]~ ln detM !

]m

]~ trM 21!

]m L
1K S Nf

4 D 2]2~ ln detM !

]m2
trM 21L 1 K S Nf

4 D 3S ]~ ln detM !

]m D 2

trM 21L 2F K Nf

4

]2~ ln detM !

]m2 L
1 K S Nf

4

]~ ln detM !

]m D 2L G K Nf

4
trM 21L J F K Nf

4

]2~ ln detM !

]m2 L 1 K S Nf

4

]~ ln detM !

]m D 2L G . ~A2!

As explained above, all terms involving the expectation value of an odd number of derivations with respect tom have been se
to zero. Evaluation of Eqs.~A1! and ~A2! requires the following expressions for the derivatives of trM 21:

]trM 21

]m
52trS M 21

]M

]m
M 21D ~A3!

]2trM 21

]m2
52trS M 21

]2M

]m2
M 21D 12trS M 21

]M

]m
M 21

]M

]m
M 21D ~A4!

]3trM 21

]m3
52trS M 21

]3M

]m3
M 21D 13trS M 21

]2M

]m2
M 21

]M

]m
M 21D 13trS M 21

]M

]m
M 21

]2M

]m2
M 21D

26trS M 21
]M

]m
M 21

]M

]m
M 21

]M

]m
M 21D ~A5!

]4trM 21

]m4
52trS M 21

]4M

]m4
M 21D 14trS M 21

]3M

]m3
M 21

]M

]m
M 21D 16trS M 21

]2M

]m2
M 21

]2M

]m2
M 21D

14trS M 21
]M

]m
M 21

]3M

]m3
M 21D 212trS M 21

]2M

]m2
M 21

]M

]m
M 21

]M

]m
M 21D

212trS M 21
]M

]m
M 21

]2M

]m2
M 21

]M

]m
M 21D 212trS M 21

]M

]m
M 21

]M

]m
M 21

]2M

]m2
M 21D

124trS M 21
]M

]m
M 21

]M

]m
M 21

]M

]m
M 21

]M

]m
M 21D . ~A6!

APPENDIX B: THE PRESSURE OF FREE STAGGERED FERMIONS

Expanding the quantityp/T4 as discussed in Sec. III one finds

p

T4U
Nt

5Nf(
i 50

`

CiU
Nt

S m

T D i

5
3

8
NfF(

i 50

` S Nt
32 i

~2p!3E0

2p

d3pW (
p4

ci~p!D S m

T D i

2
Nt

4

~2p!4E0

2p

d4pc0~p!G . ~B1!

Here only the even expansion coefficients give nonvanishing contributions. Introducing the abbreviation,

D54(
m

f m
2 ~p!, ~B2!
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with f m(p) as given in Eq.~38!, the even expansion coefficients for the standard action are given by

c05 ln~D ! ~B3!

c25
1

4D2
@124Dcos~2p4!2cos~4p4!# ~B4!

c45
1

96D4
@2918D228D~2314D2!cos~2p4!1~12256D2!cos~4p4!224Dcos~6p4!23cos~8p4!# ~B5!

c65
1

2880D6
@1502180D2132D428D~45260D2116D4!cos~2p4!1~22251960D22992D4!cos~4p4!

1540Dcos~6p4!21440D3cos~6p4!190cos~8p4!2780D2cos~8p4!2180Dcos~10p4!215cos~12p4!#. ~B6!

For the Naik action we introduce an additional function,

g4~p![2 i
d f4~pW ,p42 im!

dm
U

m50

52
9

16
cos~p4!1

3

48
cos~3p4!. ~B7!

The even expansion coefficients can then be written as

c05 ln~D ! ~B8!

c25
22

3D2
@26D f 4

2~p!16Dg4
2~p!248f 4

2~p!g4
2~p!1D f 4~p!sin~3p4!# ~B9!

c45
1

36D4
„48$2768f 4

4~p!g4
4~p!1D3@ f 4

2~p!2g4
2~p!#2192D f 4

2~p!g4
2~p!@ f 4

2~p!2g4
2~p!#

1D2@26 f 4
4~p!144f 4

2~p!g4
2~p!26g4

4~p!#%224D2@D28 f 4
2~p!#g4~p!cos~3p4!

232D f 4~p!@D223D f 4
2~p!19Dg4

2~p!248f 4
2~p!g4

2~p!#sin~3p4!1D2@D28 f 4
2~p!#sin2~3p4!… ~B10!

c65
1

1620D6
†2720D2g4~p!$D31768f 4

4~p!g4
2~p!1D2@226f 4

2~p!16g4
2~p!#196D@ f 4

4~p!22 f 4
2~p!g4

2~p!#%

3cos~3p4!245D4@D28 f 4
2~p!#cos2~3p4!296D f 4~p!$8D4146080f 4

4~p!g4
4~p!275D3@ f 4

2~p!23g4
2~p!#

160D2@3 f 4
4~p!250f 4

2~p!g4
2~p!115g4

4~p!#12880D@3 f 4
4~p!g4

2~p!25 f 4
2~p!g4

4~p!#%

3sin~3p4!115D2$5D314608f 4
4~p!g4

2~p!1D2@276f 4
2~p!136g4

2~p!#1192D@ f 4
4~p!26 f 4

2~p!g4
2~p!#%

3sin2~3p4!110D3f 4~p!@3D216f 4
2~p!#sin3~3p4!172„4$245760f 4~p!6g4

6~p!1D5@ f 4
2~p!2g4

2~p!#

192160D f 4
4~p!g4

4~p!@ f 4
2~p!2g4

2~p!#22D4@15f 4
4~p!294f 4

2~p!g4
2~p!115g4

4~p!#

1120D3@ f 4
6~p!223f 4

4~p!g4
2~p!123f 4

2~p!g4
4~p!2g4

6~p!#1960D2@9 f 4
6~p!g4

2~p!

234f 4
4~p!g4

4~p!19 f 4
2~p!g4

6~p!#%25D3f 4~p!@3D216f 4
2~p!#g4~p!sin~6p4!…‡. ~B11!

To simplify the expressions for thep4 action we define the expansion coefficients recursively and thus also list the
expansion coefficients. However, after integration over the momenta also in this case only even powers ofm/T contribute to
the expansion of the pressure. Introducing further abbreviations,

Sm5 (
nÞm

sin2~pn! and c̄k52 ick , ~B12!

the expansion coefficients for thep4 action can be written as
014507-15
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c05 ln~D ! ~B13!

c152
i

6D
@2S12S22S316S4

21S1cos~2p1!1S2cos~2p2!1S3cos~2p3!#sin~2p4! ~B14!

c25
1

18D
„9Dc̄1

216@3S4
22S1sin2~p1!2S2sin2~p2!2S3sin2~p3!#sin2~p4!22cos2~p4!$9S4

21sin2~p1!@23S11sin2~p4!#

1sin2~p2!@23S21sin2~p4!#1sin2~p3!@23S31sin2~p4!#%… ~B15!

c35
i

18D
„3Dc̄1~ c̄1

226c2!2@231cos~2p1!1cos~2p2!1cos~2p3!#cos3~p4!sin~p4!

22cos~p4!sin~p4!$12S4
21sin2~p1!@24S11sin2~p4!#1sin2~p2!@24S21sin2~p4!#1sin2~p3!@24S31sin2~p4!#%…

~B16!

c45
1

216D
„6cos4~p4!@sin2~p1!1sin2~p2!1sin2~p3!#23$3D~ c̄1

4212c̄1
2c2112c2

2224c̄1c̄3!

18@23S4
21S1sin2~p1!1S2sin2~p2!1S3sin2~p3!#sin2~p4!1@231cos~2p1!1cos~2p2!1cos~2p3!#sin4~p4!%

24cos2~p4!$18S4
21sin2~p1!@26S1111sin2~p1!#1sin2~p2!@26S2111sin2~p2!#1sin2~p3!@26S3111sin2~p3!#%…

~B17!

c552
i

360D
„3D@ c̄1

5220c1
3c2260c̄1

2c̄31120c2c̄3160c̄1~c2
212c4!#120@231cos~2p1!1cos~2p2!1cos~2p3!#

3cos3~p4!sin~p4!18cos~p4!sin~p4!$12S4
21sin2~p1!@24S115sin2~p4!#1sin2~p2!@24S215sin2~p4!#1sin2~p3!

3@24S315sin2~p4!#%… ~B18!

c652
1

6480D
$629Dc̄1

61270Dc̄1
4c221620Dc̄1

2c2
211080Dc2

311080Dc̄1
3c̄326480Dc̄1c2c̄323240Dc̄3

223240Dc̄1
2c4

16480Dc2c426480Dc̄1c̄522cos~2p1!22cos~2p2!22cos~2p3!131cos@2~p122p4!#

131cos@2~p222p4!#131cos@2~p322p4!#124S1cos@2~p12p4!#124S2cos@2~p22p4!#124S3cos@2~p32p4!#

248S1cos~2p4!248S2cos~2p4!248S3cos~2p4!1288S4
2cos~2p4!2186cos~4p4!124S1cos@2~p11p4!#

124S2cos@2~p21p4!#124S3cos@2~p31p4!#131cos@2~p112p4!#131cos@2~p212p4!#131cos@2~p312p4!#%.

~B19!

Note that we have defined here the coefficientsci without Nt factors, which can be found in front of the integrals in Eq.~B1!.
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