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Calculation of nonleptonic kaon decay amplitudes from K— 7r matrix elements
in quenched domain-wall QCD
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We explore the application of the domain wall fermion formalism of lattice QCD to calculate the K— 7w
decay amplitudes in terms of the K*— #* and K"—0 hadronic matrix clements through relations derived in
chiral perturbation thcory. Numerical simulations are carried out in quenched QCD using the domain-wall
fermion action for quarks and a renormalization group-improved gauge action for gluons on a 16°X32X 16
and 24*X 32X 16 lattice at 8=2.6 corresponding to the lattice spacing 1/a=~2 GeV. Quark loop contractions
which appcar in Penguin diagrams are calculated by the random noise method, and the A/=1/2 matrix
elements which require subtractions with the quark loop contractions are obtained with a statistical accuracy of
about 10%. We investigate the chiral propertics required of the K* — 7+ matrix clements, Matching the lattice
matrix clements to those in the continuum at u = l/a using the perturbative renormalization factor to one loop
order, and running 1o the scale u=m_ = 1.3 GeV with the renormalization group for V=3 flavors, we calcu-
late all the matrix elements needed for the decay amplitudes. With these matrix clements, the A7=3/2 decay
amplitude Re 4, shows a good agreement with experiment after an extrapolation to the chiral limit. The A/
=1/2 amplitude Re Ay, on the other hand, is about 50-60 % of the cxperimental one even after chiral
extrapolation. In view of the insufficient enhancement of the A/=1/2 contribution, we employ the experimen-
tal values for the real parts of the decay amplitudes in our calculation of £’ /e. The central values of our result
indicate that the A/=3/2 contribution is larger than the A/=1/2 contribution so that £'/¢ is negative and has
a magnitude of order 10™*. We discuss in detail possible systematic uncertainties, which seem too large for a

definite conclusion on the value of € '/e.
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I. INTRODUCTION

Understanding nonleptonic weak processes of the kaon, in
particular, the K— 77 decay, represents one of the keys to
establishing the standard model and probing the physics be-
yond it. This decay exhibits two significant phcnomena:
namely, the A7/=1/2 rule, which is a large enhancement of
the decay mode with A/=1/2 relative to that with A/
=3/2, and direct CP violation [1,2], which is naturally built
in the model for three or morc familics of quarks [3]. While
both of these phenomena are well established by experiment,
theoretical calculations with sufficient reliability that allow
examinations of the standard model predictions against the
experimental results arc yet to be made. The main reason for
this status is the difficulty in calculating the hadronic matrix
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clements of local operators which appear in the cffective
weak Hamiltonian for the decay amplitudes. At the energy
scales relevant for these operators, analytic treatments such
as the 1/N, expansion are not sufficiently powerful to reli-
ably evaluate the cffect of the strong interactions in the ma-
trix elements. In fact, the A/=1/2 rule, which is supposed to
arise from QCD cffects, has not been quantitatively ex-
plaincd by analytic methods so far. With these backgrounds,
Monte Carlo simulations of lattice QCD provide a hopeful
method for the calculation of the decay amplitudes.

A natural framework for theoretical calculations of the
decay amplitudes is provided by the effective weak Hamil-
tonian Hy, which follows from an operator product cxpan-
sion (OPE) of weak currents [4]:

Gr
HW=T;V..SV:.*@ W) Q). (1.1)

Here the Wilson cocfficients #; contain the effects of the
cnergy scales higher than g so that they can be calculated
perturbatively. Nonperturbative QCD effects are contained in
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the matrix elements of the local operators Q;, and the cal-
culation of these matrix clements, often called hadronic ma-
trix elements (HME), is the task of lattice QCD [5-8]. Our
aim in this paper is to rcport on our attempt to obtain these
matrix clements through numerical simulations of lattice
QCD using the domain wall formalism [9-11] for quarks.
The amplitudes for K— 7 decay with A/=1/2 and 3/2
are written as the matrix elements of Hyy,
((mm) | HylKO)Y=A4,e', (1.2)
where the subscript /=0 or 2 denotes the isospin of the final
state corresponding to A/=1/2 or 3/2, and &, is the phase
shift from final state interactions 77— a7 caused by QCD
effects. The A7/=1/2 rule, which is one of the focuses of our
calculation, is described by the ratio of isospin amplitudes
A/ :

(1.3)

Another focus is the parameter €' /& of direct CP violation in
the standard model. The recent experimental results are

P
&

o [ImA4, Im4d,

V2|e|lReds  Red
(20.7x2.8)x107*

“l(15.3+2.6)x 107

(KTeV)[1],

(NA48)[2]. (1:4)

In the numerical simulation of latticc QCD, matrix ele-
ments are generally extracted from Euclidean correlation
functions of the rclevant operators and those which create the
initial and final states in their lowest cnergy levels. For suf-
ficiently large Euclidean time distances, excited states damp
out and the matrix clements of the lowest energy states are
left. In fact, the kaon B paramecter By has been successfully
obtained from the three-point correlation function of K and

K° and an inscrtion of the AS=2 weak Hamiltonian [12].
However, in the calculation of the four-point function,
(m(t2) (1) H 1)K (1)), necessary for the K—ma de-
cay, there is a severe limitation as pointed out by Maiani and
Testa [13]. They have shown that it is difficult to obtain the
matrix clements unless the momentum of each of the two
pions in the final state is st to zero.

One of the ways to overcome the difficulty pursued in the
past is to calculate the matrix clements with the two pions at
rest, allowing a nonzero encrgy transfer AE=2m —my at
the weak operator. This generally causes mixings of unphysi-
cal lower dimension operators through renormalization,
which has to be removed. (Sec Ref. [8] and references
therein.) Furthermore, the unphysical amplitudes obtained
with AE#0 need to be extrapolated to physical ones by use
of some cffective theories such as chiral perturbation theory.
Due to these problems and numerical difficultics of extract-
ing reasonable signals from four-point functions, this ap-
proach has not been successful for the A7=1/2 amplitude
despite many cfforts over the years [14]. For the A7/=3/2
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amplitude for which the operator mixing is absent, on the
other hand, a recent study has obtained a result in agreement
with experiment [16].

Several proposals have been presented over the years for
extracting the physical amplitude from the four-point func-
tions [17-19]. Feasibility studies for implementing them in
practical simulations are yet to come, however.

In this paper we explore a method proposed by Bernard
et al. [15] which is alternative to calculating the three-point
function. In this method, which we shall call as reduction
method, chiral perturbation theory ( xPT) is used to relate the
matrix elements for K— @7 to thosc for K— 7 and K—0
(vacuum), and the latter amplitudes are calculated in lattice
QCD. Since this calculation involves only three- and two-
point correlation functions, the Maiani-Testa problem men-
tioned above is avoided. Statistical fluctuations are also ex-
pected to be diminished compared with the case of four-point
correlation functions.

Early attempts with this method [14] encountered large
statistical fluctuations in the correlation functions so that
meaningful results were difficult to obtain. For the Wilson
fermion action or its O(a) improved version, there is an
added difficulty that the mixing of operators of wrong chiral-
ity caused by explicit chiral symmetry breaking of the action
has to be removed. The mixing problem has been resolved
only for the AJ=3/2 operators so far [20-22].

The first results on the A7=1/2 rule and £'/¢e calculated
with this method were recently reported [23] using the stag-
gered fermion action which kecps the U( 1) subgroup of chi-
ral symmetry. In this work, however, a large dependence of
the A/=3/2 amplitude on the meson mass was seen, which
made the chiral extrapolation difficult. Morcover, large un-
certainties due to perturbative renormalization factors de-
pending on the value of the matching point were reported.
Hence clear statements on the viability of the method were
difficult to make from this work.

In this paper we report on our attempt to apply the
domain-wall fermion formalism of lattice QCD [9-11] to the
calculation of K— 77 decay amplitudes in the context of the
reduction method. A major advantage of this approach over
the conventional fermion formalisms is that full chiral sym-
metry can be cxpected to be realized for sufficiently large
lattice sizes in the fifth dimension. Good chiral property of
one of the K— 7 matrix elements, equivalent to the kaon B
parameter, was observed in the pioncering application of the
formalism [24]. Detailed investigations into the realization of
the chiral limit have been made in the quenched approxima-
tion for the plaquette and a renormalization group (RG)-
improved gluon action [25-27]. It was found that the usc of
RG-improved action leads to much better chiral properties
compared to the case of the plaquette action for similar lat-
tice spacings [26]. This prompts us to adopt the RG-
improved action in our simulation.

Another possible advantage of the domain wall formalism
is O(a”) scaling violation from the fermion sector as op-
posed to O(a) for the Wilson case. Indecd our domain wall
fermion calculation of B [28] exhibits only a small scaling
violation. The magnitude of violation is much smaller com-
pared to the staggered fermion case [29] which is also ex-
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pected to be O(a?). An improved scaling behavior may be
enhanced with the use of the RG-improved gluon action.

This paper is organized as follows. In Sec. I1, we summa-
rize the main points of the yPT reduction method. For the
construction of the formulas which relate the matrix cle-
ments for K— 7 and the K— w7 decay amplitudes, the re-
lations between the four quark operators Q; and yPT opera-
tors arc considered at tree level on the basis of chiral
transformation propertics. The necessity of chiral symmetry
on the lattice is emphasized. In Sec. I we summarize the
details of our numerical simulation procedure. We discuss
the form of lattice actions and the choice of an optimal set of
simulation parameters from the point of view of chiral prop-
erties. Some of the technical issues are also explained includ-
ing renormalization of the four-quark operators and RG-
running of the matrix elements to the relevant energy scale.
The numerical results are reported in Secs. IV and V. The
former contains results of hadronic matrix clements. In par-
ticular, we show that the subsct of K— 7 matrix clements
which are expected to vanish in the chiral limit satisfy this
requirement. We then present the physical matrix elements
and combine them with the Wilson cocfficients, which are
already calculated perturbatively. This leads us to results for
the A7=1/2 rule and &'/¢. Our conclusions arc given in Sec.
VI

A preliminary report of the present work was presented in
Ref. [30]. We refer to Refs. [31,32] for a similar attempt, and
Refs. [33,8] for reviews.

II. CHIRAL PERTURBATION THEORY
REDUCTION METHOD

A. Local operators

We carry out our analyses choosing the energy scale p in
the OPE for the weak Hamiltonian (1.1) equal to the charm
quark mass m.=1.3 GeV. In this case only u.,d, and s
quarks appcar in the local four-quark operators. Convention-
ally these operators are written as

01=[5.7u(1 = ¥s)up)lup (1 = ¥5)d, ], @)
02=[5,7,(1= ¥5)u, Ly v, (1 = ¥5)dy]. 22)
0s=[s,7,(1~ md,,]ZI (4571 = ¥5)45). @.3)
04=[s,7,(1~ mij (957,01 = ¥5)q.], .4)
0s=[s,7,(1- 75)‘1"]:2, (95 7u(1+ ¥5)a5). @.5)
O6=[5,7,(1- mdb]Zl [q6Yu(1+ ¥5)q.]. (2.6)

3 — —
Q7= 5[5117;1(] - 75)‘]41]2 C‘q[(lh’}'p( 1+ YS)(III]9 (27)
9
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3 — _
0v= 3lsa7u(1 = 79412 elapru(1+ ¥5)0.). 29)
3 — —
Qo= 3 lsa7u(1- 75)da]§ eylqpru(l=75)qs),  (2.9)

3 — —
010= 315,71 = 1) )2 e,[qs7,u(1= ¥5)g,], (2.10)
9

where the indices a.b denote color, and the summation over
g appcaring in Q3 to Q¢ runs over the three light flavors,
g=u.d,s, with the charge e¢,=2/3 and e;=e,=—1/3.

With the use of Fierz rearrangements, one can derive the
relations,

04=0,+0;-0,, (2.11)
3 1

Qg= §Q|_5Q3, (2.12)
3 1 1 1

O10= 5Q2—§Q4=Q2—§Q3+ EQI' (2.13)

Hence Q4, Qg, and Q) are not independent operators. We
emphasize that these relations do not hold in general
d-dimensions where Fierz rearrangements cannot be used.
In terms of the irreducible representations of the chiral
SU(3);,®SU(3)y group, Q;’s are classified as

01.02,00,0100  (27.,1z)0(8,1z), (2.14)
QB#Q-"QS’Q(): (8L7IR)~ (2-]5)
07.0s:  (8..,8g). (2.16)

The operators Q;(i=1,...,10) are invariant under CPS
symmetry, i.e., the product of CP transformation and des
interchange. A basis of operators which are irreducible under
chiral symmetry and invariant under CPS is given by

(SL,]R):Xl=(.;1)L(U_II)L_(.Y_1I)L(U_({)L, (2.]7)
(81.12): Xs= (sd) [ (ue) . +2(dd) +2(s5),]
+(su) (ud)y . (2.18)
(27,0 ):X3= (sd) [2Cua)  — (ded) = (55),]
+2(su)(ud), . (2.19)

(81.12):Y = (sd) [ (uur) g+ (dd) g+ (s5)g). 1",
(2.20)

(81,82):Y2=(sd),[2(ut) g— (dd) g (55)], Y2,
2.21)

where (sd),_=.syﬂ.( 1 - 7vs)d and (Sd)R=S.‘)',5( 1+ y5)d. The
color and spinor indices arc summed within cach current
except for Y€ for which the color summation is taken across
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the two currents. While X;’s have the Lorentz structure of
L®L, Y;’s have that of L&R. All the independent local op-
crators arc written as lincar combinations of these operators:

1 1 |

Q|=5X]+EX3+ §X3. (2.22)

1 1 1 ,

Q:—_Exl'f‘ ]_0X3+ gX;. (...23)
1 1

Q3 5/\/1 + EX‘» (2.24)

0s=Y, (2.25)

O=7,". (2.26)
1

0r=3Y, (227)
2

Ox=3zY% (2.28)

The expressions for the dependent operators Q.49 5 are casily
derived using Egs. (2.11)—(2.13).

The final states in the K— 7 ar decay can have cither isos-
pin /=0 or 2, i.c., AI=1/2 or 3/2. Hence Q;’s arc decom-
posed as

0;=0"+0. (2.29)

This decomposition is accomplished by constructing another
basis of irrcducible representations with the intrinsic isospin
1. The details arc described in Appendix A.

B. Chiral perturbation theory

In the low energy region of strong interactions, the octet
of pseudoscalar mesons 7%, 7w* K" K® K*, 5 play a princi-
pal role as the Nambu-Goldstone bosons of spontancously
broken chiral symmetry SU(3),®SU(3)s—SU(3),. In
chiral perturbation theory (xPT) as a low cnergy cffective
theory of QCD, these Nambu-Goldstone boson ficlds are
used to parametrize the broken axial symmetry, and we col-
lect them in a 3X 3 matrix,

§=(ei‘l’//)’ (2.30)
(l)=2 A“¢”
Lﬁ()+ l_ 710 ot K*
V2 Ve
= T - ]_,n-0+ I_ 7° Ko
V2 e '
K 0 2 0
it K —_ U
V6 o |

(2.31)
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where A¢ are Gell-Mann matrices. and f is the decay con-
stant. Under SU(3),®SU(3)g chiral transformation, =
e SU(3) transforms as

Sogplel, STog, Stk (2.32)
The chiral Lagrangian to the lowest order, with the additional
mass term, is given by

cl\.=’;— tr(4 2*,9,,2)—{71:{ MET+3)]). (233)

where M=(2B,)-diag[m, ,m ,m,] denotes the quark mass
matrix and By is a parameter. In terms of X, the left- and
right-handed currents are given by

R . N :
(L)j=3/40, 23, (R);=5/(3,5-3")], (2.34)

respectively.

The idea of the xPT reduction method by Bernard er al.
[15] is to relate the hadronic matrix clements for K— w7
decays to those for K— 7 and K—0 (vacuum) using xPT,
and calculate the latter through numerical simulations of lat-
ticc QCD. As the first step of the xPT reduction method, we
construct operators in xPT which correspond to X;’s and ¥;’s
in QCD, i.c., those which transform under the same irreduc-
ible representations of SU(3), ® SU(3 ) and invariant under
CPS symmetry. In the following, we discuss the case of
{(27,,18),(8,,1z)} and (8,,8z) representations separatcly.

C. Reduction method for (27,,1z) and (8,.1;) operators

For the irreducible representations (27;,1z) and (8.,15),
which cover Q,...,0¢.Qy and Q,y, the product of left-
handed currents (L#)}(Lﬂ)f is one of the candidates for the
operator to the lowest order in xPT. An cxplicit form of the
operators, which are also CPS invariant. is given by

(8L, 1R): A= (L)LY, (2.35)

(27,,0):C=3(L )L +2(L YLD, (2.36)
where A corresponds to X, or X, while C is the counterpart
of X3. The latter is decomposed into two parts with /=0 and
2 in the same way as X; (see Appendix A):

c=C0+2c, 237
where
CO'= (L )HL 3+ (L)L )3+ 2(L )3 (L )3
=3(L 3L W3 (2.38)
C= (LWL W3+ (L)L) = (LWL )3 (239)

In addition to the operators above, there is another
(8,,1x) operator which is allowed from CPS invariance:
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(81.1x) : B=(SM+MZh}
=By(m,+m)E+Z3
—Bo(m,—mE-3)3

4 m,+m, 5 Mg—my

,
a 4,)3
o Em—my (Aus s

B3 o+ my

(2.40)

where V,,=(R,+L,)/2 and A,=(R,—L,)/2are vector and
axial vector currents with L, and R, defined in Eq. (2.34).
The equation of motion for X is used to derive the third line
from the second linc in Eq. (2.40).

The counterpart of this operator for QCD can be obtained
casily by SU(3),®SU(3)z and CPS symmetry,

Qo= (ms+m)sd— (m—my)sysd

P mg+m— / my—ny— / (2.41)
= A a— S [¢ .
Blm,—m, Yu my+my, Yu¥sd|s

where the equation of motion for s and d quark ficlds is used.

For physical K— wm processes, Q. and hence B, do
not contribute sincc these operators are a total derivative of
local operators and the cnergy-momentum injected at the
weak operator vanishes. However, for the unphysical pro-
cesses such as K— 7 and K—0 (vacuum) which we are to
calculate on the lattice, the matrix clements of Q, or B do
not vanish duc to a finite ecnergy-momentum transfer for m
#my. Therefore a mixing between Q;'s and Q,, in K—7
matrix clements exists which should be removed. We should
also note that this mixing incvitably arises in the case of
mg=m,, as is often choscn in numerical simulations on the
lattice, since Qg is not a total divergence for this case.

We assume that there are linear relations in the sense of
matrix elements between the local operators  {Q;(i
=1,....69,10),0.s} and {A,B,C} which belong to the
same representations, i.c.. {(27,,12).(8,.1z)}:

Qf-")=a,-A+b,-B+c‘,-(”C(m, (2.42)
0.4="rB. (2.43)
0=, (2.44)

where the cocfficients «; .b; ,cﬁ” , and r arc unknown param-
eters. Taking the matrix clements of the two sides of Egs.

(2.42). (2.43) and (2.44) for K"—0, K*—>#*, and K°
— @77, one obtains
(010"~ @,Q .| K°)=0, (2.45)

PK'P=

2
(7’.+|Q$'0)_aiqub|K+)= /.:_, ("i_""(,))""o(l’.‘),

(2.46)
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20K Pa i
<w+|Qt?’|1<+>=—%cg-uom. (2.47)
+ =1 (0] g0 V2o, ) 4

(w* 77 |0|K =f—3(m,'\.—mj_,)(a,—c,~ )+ 0(p),
(2.48)

5 \/5 5 3 )
(7* 77 |QVIKO)=— f—J(m;\-— e+ Op?).
(2.49)

where a;=b;/r in Egs. (2.45) and (2.46), px and p , are the
momenta of kaon and pion, respectively, and p denotes cither
of them. In Egs. (2.48) and (2.49). niy and m  are the physi-
cal meson masses. After eliminating a;—c!®) from Egs.
(2.46) and (2.48), we arrive at the relation between
(w77 |O|K®Y and (w*|Q'|K*) in the I=0 case:

(mp—m%)

<W+W'IQ§"'IK")=——\/5f(p =
K'FP=

<W+|Q$'m_ aiquh|K+)

+O(p°). (2.50)
0]0{"|K®
<0|qub|K>

(2.51)

The K—0 (vacuum) matrix clements are uscd only to deter-
mine the «;’s which govem the subtraction of unphysical
contributions originating from Q.. The relation for the /
=2 casc is derived in the same way from Eqs. (2.47) and
(2.49):

(mi»-mi)

(m* | QP |K%) = (w*107IK™)

V2f(pxpa)
+0(p*), i=1,....69,10.

(2.52)

Let us note that the essential point of the reduction
method is a calculation of the parameters a;—¢!®’ and P
from K— a three-point correlation functions in numerical
simulations of lattice QCD. Since these parameters appear in
Egs. (2.46) and (2.47) as the cocfficients of pg-p . their
values are sensitive to the chiral properties of the K—
matrix clements on the left-hand side of these cquations.
Hence SU(3),® SU(3 ), chiral symmetry on the lattice is an
indispensable requirement for a successful calculation using
this method.

D. Reduction method for (8,.8;) operators

In order to construct (8,.8z) operators in xPT, we ob-
serve that (E);:(E*)f transforms as (8z.8;) [34-36] where
(j,k) and (/,i) correspond to 8, and 8, respectively. One
finds a CPS invariant operator

014501-5
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D=33}(=%) (2.53)

as the counterpart of Y,. The decomposition into the /=0
and 2 part is given by

D=D"+D*, (2.54)
DV=23}(2H)]-33=H | +23(3Ns, (2.55)
SIEH+IIENI-23EY;3. (2.56)

Assuming lincar relations between {Q4,0Q4’} and D,

00=dOp® P =4PD? (i=178), (2.57)

with the unknown parameters d/’s, we take the matrix ele-
ments of the two sides for K— 77 and K— 7 to obtain

(w0 KHY=4d1 2+ O(p?),

(m* 7| QKO = — 224"/ 3+ O(p?), (2.58)
(7*|QPIK*)=2dUf2+ Op?),
(777 |QP)KY=— 2421+ Op?). (2.59)

These relations lead to the reduction formulas for (8,,8z)
operators, namely,

|
(m* 7| QV|K%) = — (=" Q| K )+ O(p?),

V2f

i=78
(2.60)

which is common for the /=0 and 2 components.

I11. DETAILS OF SIMULATIONS
A. Lattice actions

The RG-improved gauge action we usc is defined by

1
Sgluon g Co 2 TrUpl""—l E

laquette 1X2 rectangle
plaq g

TrUpgt,
3.1

where the coefficients of the plaquctte and 1 X2 Wilson loop
terms take the values cq=3.648 and ¢,=—0.331 [37]. This
action is expected to lead to a faster approach of physical
observables to the continuum limit than with the unimproved
plaquette gauge action.

In order to satisfy the requirement of chiral symmetry on
the lattice, we use the domain-wall formalism [9] for the
quark action. Adopting the Shamir’s formulation [10,11], the
action is written as

-3 PP (), (3.2)

xv,st

DPY=pY+ D3, (3.3)
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D;”,I(x 2 #U#(\)ﬁ(\’+ﬂ—\v)
M

rt Yy 4 - -
3a Yul¥T #)6(x—.u—y)] S

r
+ 8(x—y)d,,, (3.4)
1- Ys 1+ s
S(y v)= - . —
Dsl(’\ ’v‘) 2[’5 ,v+|.l+ 2(15 63‘—1,1 5(X 'V)
! )
— —8(x )8, (3.5)
ds

where D" is the ordinary Wilson-Dirac operator in four di-
mensions, M is the domain-wall height which has to be ad-
justed to ensure the existence of chiral modes, e.g., 0<M
<2 at tree level, and r is the Wilson parameter which we
choose to be unity. The operator D? is the extended part in
the fifth direction in which the coordinate is bounded by 1
SN ES N5.
Using the chirality projection operators

1= 1+7ys
PL= 5 B R= 5 N (3.6)
quark fields are defined by
q(x)= Py (x)+ Pripy (x), (3.7
)= Py (P L+ Y (x) Py, (3.8)

and their mass m is introduced as a parameter in the bound-
ary condition in the fifth direction:

Yy 41 (X)=ma(x), do(x)=mapy(x). (G.9)

The operators Q; and Q,;, in our numerical simulation arc
constructed from g and ¢ only, by identifying u, d, and s with

Qu-> qa> and g;. o o
Axial vector transformations in five dimensions are de-

fined as
S (x)=iQ(sIN €] (x) hs(x),

S (x)=—ih,(x)Q(s)N€%(x), (3.10)

where Q(s)=sign(2Ns—s+1) and € (x) is an infinitesimal
parameter. This definition leads to the variation

Oq(x)=iysh€'(x)q(x), (3.11)

(1)—lq( X)ysAe’(x), (3.12)

in terms of quark ficlds. and the axial-vector current takes the
form
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RG-improved

® B=2.2 (16°x24xN,)
OB=2.2 (12°x24xN,)
W B=2.6 (16°x32xN,)
— fit with c+qe"’"5
-~ fit with ae™s

mg, (MeV)
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plaquette

® B=5.65 (16°x24xN,)
OP=5.65 (12°x24xN,)
® p=6.0 (16°x32xN,) .
ORef. (26]

— fitwith c+ae™s

-~ fitwith ae™

~Jo

FIG. 1. (Left) Anomalous quark mass ms, as a function of Ns in the ma—0 limit for the RG-improved action. Filled (empty) circles
represent data at (8,M)=(2.2,1.7) on a 16°(12%)X24 lattice. Filled squares are those at (8,M)=(2.6,1.8) on a 16> %32 lattice. For the
latter, data at four larger N are used for fits with the functions ae™ "5 (dotted lin¢) and ¢+ ae™ s (solid line). (Right) Same for the

plaquette action at (8,M)=(5.65,1.7) and (6.0, 1.8).

A\YS ]

A%(x)=2 0(s) E[z/T,(x)( = ) U (ON Y (x+ )

=1

+ et W1+ Y ) ULON ()] (3.13)
Taking the divergence of A4}, , onc obtains
V,A%(x)=2J%,(x)+2ma P (3.14)
with
J5g(x)= J}\'S/z(-\')Pl)\" Uy a1 ()
U (PR Yy p(x)  (3.15)
and
Pi=g(x)Nys5q(x). (3.16)

The axial vector current A}, docs not conserve automatically
even in the chiral limit 77,—0 duc to the first term J, on the
right-hand side. Effects of this breaking term, however, are
expected to vanish as Ng—cc, In practice it is necessary to
determine the value of N for a given set of lattice param-
cters and a type of gluon action, so that the chiral breaking
effect due to this term is acceptably small.

In Refs. [26,27], the chiral property of the domain-wall
fermion was investigated in dctail in the quenched numerical
simulation. Defining an anomalous quark mass by [26]

(01> J4,(x,1) P*(0)]0)

3.17)

ms,a=

(01> P(x,1)P*(0)|0)

the axial Ward-Takahashi identity (3.14) yields

V,‘< 2 A‘;’L(,\-)P”(O)> =2a(mg+ mS,,)< 2 Pu(x)Pb(0)> .
' (3.18)

In Fig. 1, we quote results of ms, as a function of N from
Refs. [25,26]. In the right panel data from the standard
plaquette gluon action for a™'~1 GeV (circles, B=5.65)
and a~'=2 GeV (squarcs, 8=6.0) arc summarized with
two types of exponential fits. The counterparts from the RG-
improved gluon action are found in the left panel, where S
=2.2 and 2.6 correspond to ¢~ '~1 and 2 GeV, respectively.
The anomalous quark mass for the RG-improved action is an
order of magnitude smaller than that for the plaquette action
for both a~'~1 and 2 GeV. This clearly demonstrates the
advantage of the use of RG-improved gluon action, which
we therefore adopt in our work.

B. Simulation parameters

Our numerical simulations arc carried out in the quenched
approximation at the inverse gauge coupling of B=2.6.
From the string tension Jo=440 McV [38-40], this value
of B corresponds to

a=194(7) GeV, (3.19)

which we adopt in our analyses. If we usc other quantities
such as the rho meson mass or the pion decay constant to
determing the scale, the lattice spacing is different from the
above value, duc to the quenched ambiguity as well as the
scaling violation. We do not include such an ambiguity of a
in the systematic uncertainty of our results.

014501-7



NOAKI et al.

TABLE [. Number of gauge configurations, independently gen-
erated for each value of ma, in our numerical simulation.

ma 163%32 243%32
0.02 407 432
0.03 406 200
0.04 406 200
0.05 432 200
0.06 435 200

Denoting the five-dimensional lattice size as N>XN,
X Ns, we choose the fifth-dimensional length to be Ns=16
and the domain wall height of the quark action to be M
=1.8. For these parameter choices the anomalous quark
mass at $=2.6 is given by ms,=0.283(42) McV [26]. We
expect this magnitude to be sufficiently small for viability of
the xPT reduction formulas. Chiral properties of matrix ele-
ments will be discussed in detail in Sec. IV A.

To investigate the effect of finite spatial volume V'=N?,
two sizes of lattices given by N,=16 and 24 are examined,
in both cases using the temporal size N,=32.

. We work with degenerate quark masses for u,d, and s
quarks, and denote the common bare quark mass as m
=m,=m,;=m,. Matrix elements are evaluated for the bare
quark masses ma=0.02,0.03,0.04,0.05, and 0.06. Masscs
and decay constants of the pseudoscalar meson calculated on
the lattice, which are common for pion and kaon, are denoted
as my, and f,.

Gauge configurations are generated by combining one
sweep of the five-hit pseudo heat bath algorithm and four
overrclaxation sweeps, which we call an iteration. We skip
200 iterations between configurations for measurements. In
Table 1, the numbers of configurations used in our analyses
are given.

We emphasize that we generate gauge configurations in-
dependently for each value of msa. This is practically fea-
sible since most of the computer time in our runs is spent in
calculating quark propagators. A clear advantage is a re-
moval of correlations between data at different values of m ,
and hence a more reliable control of the chiral extrapolation
as a functlon of m, or meson mass squared my 37 on the basis
of x* fitting of data. For error analyses at each m s a single
elimination jackknife estimation is employed throughout the
present work.

Table 11 shows m?, for both sizes of 167X 32 and 243
X32. The intercepts in m and m?3, are obtained by taking a
linear extrapolation. Values of m1, in the limit of 3,0 are
0.95(62) MeV and 1.09(31) MeV on 163X 32 and 24°X 32
lattices, respectively. These values are larger than the value
ms,=0.283(42) MeV at m,=0. As pointed out in Ref. [26],
the discrepancy between the direct measurement of n1s, and
the estimate from the pion mass is largely cxpldmcd by finite
spatlal size effects on the pion mass. We use m3, as a vari-
able in our chiral extrapolation throughout this paper. We
have checked that our results remain identical within csti-
mated statistical errors if m is used in chiral fits.

PHYSICAL REVIEW D 68, 014501 (2003)

TABLE II. Lattice pscudoscalar meson mass squared
m3, [GeV?] at each mga. The x and y intercepts are obtained
through a linear chiral extrapolation. Physical scale of lattice spac-
ing equals 1/a=1.94 GeV determined by Jo=440 MeV.

16X 32 243X 32

ma [ Gev?] mma my[GeV?]
—0.00049(32) 0.00 —0.00056(16) 0.00

0.00 0.0059(37) 0.00 0.0066(19)
0.02 0.2434(26) 0.02 0.2445(11)
0.03 0.3568(29) 0.03 0.3534(17)
0.04 0.4741(28) 0.04 0.4714(19)
0.05 0.5932(29) 0.05 0.5957(19)
0.06 0.7134(30) 0.06 0.7158(20)

C. Calculation of matrix elements

In Fig. 2 we display the quark line diagrams of three- and
two-point correlation functions needed for our simulation.
Filled squares represent the weak operator QE” or Qg lo-
cated at the site (x,7). Crosses arc meson operators. We fix
gauge configurations to the Coulomb gauge. A wall source
for pion is placed at /=0 and that for kaon at t=T=N,
— 1. Quark propagators are solved by the conjugate gradient
algorithm, imposing the Dirichlet boundary condition in time
and the periodic boundary condition in space. The stopping
condition is given by

[[(D+m)-x—b]|><1077|b]|?, (3.20)

where b is the source vector, x is the solution vector, and D is
the lattice fermion operator. With this stopping condition a
precision of better than 0.1% is achieved for arbitrary ele-
ments of threc-point correlation functions.

The three-point correlation functions for K — 7 matrix el-
ements have the contractions of Figs. 2(a), 2(b), and 2(d).
For calculating the /=0 amplitudes (7*|0{”|K™*), both the
figure-eight contraction of 2(a) and the eye contraction of
2(b) are needed, while for the /=2 amplitudes
(m*QP|K*) only the figure-eight contributes. Writing
O()= 11V Z,0(x,t), we extract the matrix elements from
calculation of the ratio of form

(0l7*(N O (1)(K*)'(0)]0)
(0] 7 (T)A4(1)]0)0]44()(K*)T(0)]0)

Te>| oD Kt

(oK) .
(7" |44]0)(0]44|K™)

= X(*QIK). (3.22)

2m uf M

We note that a local current Aﬂ(x)=(Rx)'y#y5q(x) is em-
ployed in the denominator rather than the conserved current
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0 t T
1 . |
I * 1
3 d
(a) figure-eight
K =t VK S
u u
3 d < QPK %
(b) eye K o
- —
3
(c) annihilation J ]
type) K
d 0}, 0
d E <0 IQ(i‘K >
3 S
(type 2) K
- —_
L4 d
(d) subtraction
K* n* Qe K >
u
3
(e) two-point
K <01Q. K®>
d

FIG. 2. Types of contractions nceded for our calculation. Solid lines represent quark propagators on a background gauge field. Crosscs
represent points where meson sources are placed, while filled squares denote four quark operators or the subtraction operator. (a) “figure-
eight,” (b) “eye” which contributes only for matrix elements of @!*?, (c) “annihilation” with a quark mass derivative in the external line
(type 1) or in the quark loop (type 2), (d) *“‘subtraction,” and (¢) “two-point.”

given in Eq. (3.13) in order to match with the local form of
the four-quark operator in the numerator.

The contractions in Fig. 2(c) show the K°—0 (vacuum)
annihilation matrix elements from which the parameters a;
in the YPT reduction formulas (2.50) are obtained. If ¢ and s
quarks are nondegencrate, these paramcters arc casily ob-
tained from the ratio of propagators:

(0@ ()K" (0)]0)==(0| 0{”|K®)
O1Qu(N(KN'(0)]0)  (01Q,ulK®)

;. (3.23)

In the limit of degenerate quark masses, which applies to our
numerical simulation, some care is needed. From the defini-
tion of Qg (2.41) and the fact that CPS symmetry gives
(0|Q,|K°)|,,,‘=,,,‘I=0. we derive

(Ole-O)lKOM,"x)",d

a;=— lim — yrs (3.24)
my—m (= m14){0]s yscd| K®)
d
‘Tn;<0|Qf'(nlko>|mx=md
=— — (3.25)

(0lsysd| K"

The derivative acts both on the operator Q'”) and on the
kaon, and hence there are two contributions as shown in Fig.
2(c). The necessary derivative of the quark propagator is
obtained through

1G(x.y
dGUY) S GGy, (3.26)
dm :
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FIG. 3. Time dependence of the propagator ratio defined by Eq. (3.22) for Q% (upper) and QY

columns are for the lattice size 16°% 32 and 24° X 32, respectively.

To calculate the quark loops that appcar in the eye and
annihilation contractions, we employ the random U(1) noise
method. We generate {V(x)=¢'"¥(j=1,... ,N) from a
uniform random number 0(x) in the interval 0<0<2. In
the limit N—=, we have

N

1< N
¥ 2 {0 = sxmy). (327)

Therefore, calculating quark propagators with ¢{?(x) as the
source,

P =2 (D+m) (e )", (3.28)

we find

N—x

A
NE 7 *(x) = (D+m) " (x.x)  (3.29)
=1

as the quark loop amplitude for each gauge configuration.

" (lower) for ma=0.03. Left and right

In our calculation, we generate two noises for each spinor
and color degree of freedom, ie., 2X(No. color)
X (No. spinor)=24 noises for cach configuration. In Figs. 3
and 4 we show propagator ratios for the 0% and QY op-
erators, and those for @, and «a¢. The horizontal lines indi-
cate the values extracted from a constant fit over r=10-21
and the one standard deviation error band. Here correlations
between different time slices arc not taken into account for
the fit, Instead errors are estimated by the jackknife method.
We observe rcasonable signals, which show that 24 noises
for each configuration we employ is sufficient to evaluate the
quark loop amplitude. From Eq. (3.22), the xPT reduction
formulas derived in Sccs. I C and 11 D are converted to the
following forms at the lowest order of yPT:

Fori=1,...,6.9,10:

(m* w7 | QKO = 2 f a(mi— m)

x (”T+|Qt‘o._ aiqublK+>
(m*|4s|0)0lAK*) T
(3.30)
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0.06 T T T

005 - 0, 24’32

0.04 E

oos | 0%%%% %

) D
{ ooz} 4
0.01 2 . 1 0.01 L L L
0 10 20 30 0 10 20 30
t t
-1.6 T T T -1.6 T T T
-17 |
O
-18
Lo
_1g | §
2.0 L 1 1 _2‘0 1 1 1
0 10 20 30 0 10 20 30
t t

FIG. 4. Time dependence of the propagator ratio defined by Eq.
mga=0.03. Left and right columns arc for the lattice size 16* % 32

(7 77| QK Y= 2 (i — m)
(7*|0PK*)
(71441000 44|K*)’

(3.31)

for i=7.8 (I1=0,2):

(m*10"IK*)
(7] A4]0X0]A4K*)
(3.32)

(| QP KOy = — VB f X

where we set p,\:(im‘\,,ﬁ) and p,,=(—im‘\,,6) for K*
—* matrix elements on the right-hand side. We identify
Sfar with f; and assign to it the physical value of f;, since fy,
agrees with f_ in the chiral limit. On the other hand, the
nieson masses mf( and ’";."r in Egs. (3.30) and (3.31) represent
the experimental values since they arise from the physical
K— e matrix elements. All of the experimental valucs
used in our calculation arc summarized in Appendix B. We
emphasize that these formulas are valid to the lowest order in

(3.25) to calculate the parameter a X @, (upper) and a” X ag (lower) at
and 24X 32, respectively.

XPT. If higher order corrections are small, the right-hand
sides of Eqgs. (3.30)—(3.32) should depend only weakly on
the lattice meson mass m3,.

The two-pion states in the isospin basis are decomposed

as
7 i
[(m)g)= \/;I?T+7T Y+ \/;] 7%,  (3.33)
|(ma)s)= \/—?1;-|7r+7r_)— \/§:| 7 7°).

Therefore, matrix elements in this basis arc given by
(m* 7~ | QK times constants:

(3.34)

3
((7777)0|Qi|K0>= \/;(7T+ 7T—|Q5‘0)IKO)§ (3.35)

((mm)s| Q)K= B(m*a~|QPNK).  (3.36)

We use a shorthand notation
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FIG. 5. Effect of subtractions illustrated for Q%" (upper) and QY" (lower) as a function of m3,. The original matrix element
(m*|Q'V|K*) (circles) and the subtraction term — a{m*|Q | K*) (diamonds) are added to obtain the physical matrix element (squares).
Values are multiplied with a factor v2£,(m%—m3)/(m*|44/0)(0|44]K*) so that the vertical axis has dimension [GeV?]. Left and right

columns are for the lattice sizes 16> %32 and 243X 32, respectively.

(@) =((mm)|Q/|K®), =02 (3.37)

for the matrix clements in the isospin basis hereafter.

D. Subtractions in A/=1/2 matrix clements

According to Eq. (3.30) the contribution of the unphysical
operator Q. has to be subtracted for calculating the A7
=1/2 matrix clements. Figure 5 shows the original matrix
clement (7*|Q®|K*) (circles), the subtraction term
—a{7*|Q.wK*) (diamonds), and their sum (squares),
multiplicd with a factor 2/ (ma—m>)/(7*|4,]0)
{0]A4|K*) for conversion to the K— 77 matrix elements
[see Eq. (3.30)]. The left and right columns correspond to the
spatial sizes 16> and 24°, respectively, and the upper and
lower rows exhibit the data for Q%" and QY as typical

examples. These matrix elements play a dominant role in the
AI=1/2 rule and &'/e as we see in later sections. The nu-
merical details of subtractions for all of the rclevant opera-
tors Q'© for i=1,2,3,5,6 are collected in Table I1I.

We observe that the subtraction term represents a crucial
contribution in the physical matrix element. In the case of
Q' the subtraction term is twice larger than the original
matrix element and opposite in sign. Thus the physical ma-
trix element is similar in magnitude but flipped in sign com-
pared to the original matrix element. .

For the casc of QY the subtraction term almost cancels
the original matrix element so that the physical matrix ele-
ment is an order of magnitude reduced in size. Nonetheless,
as one can see from inspection of Table III, the physical
matrix clements are well determined with errors of 10-20 %.
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TABLE I11. Subtraction in K— 7 matrix element {7 *|Q®|K*} for i=1,2,3,5,6 multiplied with a factor
V2f (k= m3) (]| 4,]0){0| 44| KT). The values of the K*— 7+ matrix element (first), the subtraction
term — a{ 77| Q.| KT) (subtraction), and their sum (total) are given in units of GeV>.

16 %32 243%x 32
mea first subtraction total first subtraction total
0" 0.02 -0.013544) —0.0134(25) —0.0269(56) —0.0028(23) —0.0164(12) —0.0192(28)
0.03 —0.0084(29) —0.0133(20) —0.0217(39) —0.0052(24) —0.0115(14) —0.0167(30)
0.04 —0.0091(21) —0.0107(16) —0.0198(30) —0.0082(14) —0.0092(10) —0.0174(21)
0.05 —0.0096(16) —0.0085(13) —0.0181(24) —0.0056(12) —0.0076(10) —0.0131(18)
0.06 —0.0071(14) —0.0073(12) —0.0144(20) —0.0085(11) —0.00752(82) —0.0160(16)
O 002 —0.041040)  0.0825(25)  0.0415(46) —0.0500(19)  0.0875(13) 0.0375(23)
0.03 —0.0419(24)  0.0755(21)  0.0336(29) —0.0450(19)  0.0823(16) 0.0373(22)
0.04 —0.0392(18)  0.0752(18)  0.0361(22) —0.0434(18)  0.0743(14) 0.0309(16)
0.05 —0.0375(15)  0.0659(14)  0.0284(16) —0.0394(13)  0.0680(12) 0.0286(13)
0.06 —0.0346(13)  0.0627(13)  0.0281(14) —0.0354(11)  0.0636(11) 0.02821(94)
O 0.02 -0.130(17) 0.1253(90) —0.005(21) —0.1151(81)  0.1256(46) 0.010(10)
0.03 —0.118(10) 0.1107(81) —0.007(14)  —0.1140(84)  0.1311(53) 0.017(11)
0.04 —0.1137(76)  0.1179(61)  0.004(11)  —0.1198(61)  0.1206(42) 0.0008(80)
0.05 —0.1132(65)  0.1055(50) —0.0077(86) —0.1052(46)  0.1146(43) 0.0094(66)
0.06 —0.1000(50)  0.1031(47)  0.0032(75) —0.1049(44)  0.1051(35) 0.0002(55)
O 002  1.719(45) —1.743(36)  —0.024(24) 1.832(24)  —1.853(185)  —0.022(11)
0.03  1.608(37) —1.657(32) —0.048(15) 1.73131)  —1.768(261)  —0.036(11)
0.04  1.591(33) —1.633(30) —0.042(11) 1.59327) —1.635(249)  —0.0420(80)
0.05  1.438(26) —1.482(25) —0.0444(82)  1.521(25) —1.553(224) —0.0321(67)
0.06  1.430(26) —1465(23) —0.0359(71)  1.412(23) —1.448(205) —0.0361(53)
o 002 498(13)  —5.01(10)  —0.025(51) 5.264(67) —5.350(54) —0.086(22)
0.03  4.66(10)  —4.792(91) —0.129(26) 4.960(88) —5.110(76) —0.150(20)
0.04  4.632(97) —4.721(86) —0.089(19) 4.595(80) —4.732(71) —0.137(14)
0.05  4.155(78) —4.287(71) —0.132(12) 4385(72)  —4.496(65) -0.111(11)
0.06  4.121(73) —4.234(67) —0.1129(95)  4.087(65) —4.183(60) —0.0957(88)

These results show that the subtraction plays a crucial role
in calculations with the reduction method. Numerically this
procedure is well controlled in our case.

E. Renormalization and RG-running

Throughout this paper, the renormalization of the opera-
tors and the RG-running of the matrix elements are carried
out within the perturbation theory in modified minimal sub-
traction MS scheme with naive dimensional reduction
(NDR).

The physical K— 7# amplitudes in the isospin basis 4,
are given by

Gr

10
A= VeV W)W, (38)

where we set §;=0 since our calculation at the tree level of
XPT does not incorporate the effect of the final state interac-
tion; this effect begins from the next to leading order of yPT.
The Wilson coefficient functions have a form

W)=z (u)+ 7 yu) (3.39)

where y; are nonvanishing only for i=3,...,10 and 7=
—(VEVQ)I(VEV ) is a complex constant. With our choice
of scale u=m_=1.3 GeV, the functions z;(m_) are negligi-
bly small for i=3,...,10 [41].

The coefficient functions y(u) and z(u) at m,
=1.3 GeV have been calculated for several values of the
QCD parameter Ag}—; [41]. We employ Af\:—;= 325 MeV for
our main results, and also consider Ag%=215 and 435 MeV
to cxamine the magnitude of the systematic error. The choice
of the central value is motivated by recent phenomenological
compilations of the strong coupling constant, e.g., Ref. [42]
quotes Af4;=296f3§’ MeV  corresponding to ey >(Mzo)
=0.1184(31). We list the values of coefficient functions we
usc in Table IV. The experimental parameters are summa-
rized in Appendix B. .

To calculate the renormalized matrix elements in the MS
scheme (Q,-);“g( &), we first translate the lattice values into
the renormalized ones at a matching scalc g*:

014501-13



NOAKI ef al.

PHYSICAL REVIEW D 68, 014501 (2003)

TABLE 1V. Wilson coefficient functions [41].

\(\:g o s ¥3 ¥ ¥s Ve vl ygla  yola  yyla
215MeV —0.346 1.172 0.023 —0.048 0.007 -—-0.068 —0.031 0.103 —1423 0451
325 MeV —0415 1216 0.029 -0.057 0.005 -—-0.089 —0.030 0.136 —1.479 0.547
435 MeV —-0490 1265 0036 -—-0.068 0001 -0.118 -0.029 0.179 —1.548 0.664
IV. RE T F HADRONIC MATRIX ELEMENT
(Q,) (q*) le(q a (Q )Illl(l/a A (3.40) V ESULTS O 1 S

This step is carried out using the renormalization factor cal-
culated to one-loop order of perturbation theory [43-46].
The detailed form of the onc-loop terms and explicit numeri-
cal values for g* = 1/a in quenched QCD, appropriate for our
case, are given in Appendix C.

The next step is to cvolve the renormalized matrix ele-
ments from the scale ¢* = 1/a to u=m_ using the renormal-
ization group, and combine them with the Wilson coefficient
functions W;(u). The RG-evolution of the matrix elements

(0:)S(w) is inverse to that of the coefficient functions
Wiu), ie.,

Wilw))= Uy p2) i Wi 1), (3.41)

(OIS () =[U ™ (1, 2) 140 (a). (3.42)

Perturbative calculations of U(m,.,¢*) at the next-to-leading
order are available [41]. In Appendix C we adapt the known
results to calculate the numerical values of the evolution ma-
trix for our case in which u,=m.=1.3 GeV and u,=1/a
=194 GeV. The evolution may be made cither for
quenched QCD or for N,=3 flavors corresponding to u, d,
and s quarks, depending on the view if the matching at u
= 1/a is made to the quenched theory or to the N,=3 theory
in the continuum space-time. This is an uncertainty inherent
in quenched lattice QCD, and we choose the N=3 cvolu-
tion in our calculation. We have also tested the evolution
with quenched QCD, and found that the results for hadronic
matrix elements do not change beyond a 10-20 % level.

For the coupling constant in our N,=3 cvolution, we em-
ploy the two-loop form

9

Inin

S 47 B A
ag (p)=———| 1= ———|, (43)
Boln ,u2 ® In 3
Asss s
with 1\(\31; 372 MeV, which corresponds to A(\‘g

=325 MeV. In order to check systematic crrors associated
with this choice, we also make calculations for ALY

MS
=259 MeV (A=215 McV) and A82=478 Mev (AS)
=435 MeV).

A. Chiral properties of K— 7 matrix elements

As we mentioned in Scc. 111 B, the RG-improved gauge
action provides the advantage that the measure of residual
chlral symmetry breaking ms, duc to finite N is small at

~!=2 GeV. It is nonctheless desirable to check the size of
thc chiral symmetry breaking effect directly for the K— =
matrix elements.

Explicit chiral symmetry breaking, if present, causes mix-
ing of the /=0 four-quark operators Q'*’ with the lower

dimensional operator sd without quark mass suppression, so
that K— 7 matrix clements at m,=m = m, behave as

)l1
(70— ;0| K*) = —(a —c“”)+(é+ lmf)
V& a a

xX(mt|sd|K*y+Om?)  (4.1)

for (8, ,1z) operators, and
(7 *|Q‘°’|K+>—f “”+ (7T+|sd|K+)+O(m”) 4.2)

for (8, ,8%) operators. Here B;,7;, and §; arc dimensionless
quantities which represent magnitudes of residual chiral
symmetry breaking, and hence are proportional to e~ Ns
with some constant ¢. The matrix element {7 *|sd|K*) stays
nonzero in the chiral limit. Motivated by Egs. (2.41) and
(3.14), one may consider modifications of the subtraction
operator such as

Qaw— (msgtmy+2ms,)sd—(m—mg)sysd. (4.3)
Such modifications, however, will not ensurc the complete
removal of residual chiral symmetry breaking from the ma-
trix elements.

The I=2 operators Q‘,?z) do not mix with the sd operator.
Their matrix elements can have constant terms in the chiral
limit, however, due to mixings with dimension 6 operators
such as Q‘,zs) in the presence of chiral symmetry breaking.
Hence we also consider the chiral behavior of these matrix
clements.

Of the ten operators @Q;, we recall that Q44 o are depen-
dent operators as shown in Egs. (2.11)—(2.13). Furthermore,
there is an identity Q‘,2’=Q‘22’ which follows from Eqgs.
(2.22), (2.23), and the /=2 component is absent in the O35
operatom Thus we only need to examine the matrix elements

!
of Q1% 356 and 01

014501-14
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FIG. 6. Ratio of matrix elements {7 | XD |K*Y/ (7% |4,]0)(0|44|K*YXm3,a® as a function of m3,[GeV?] for i=1,2,3,5,6 (/=0) and
i=1 (/=2) from top to bottom. Left and right columns are for the lattice sizes 16> X 32 and 24° X 32, respectively. Solid lines represent the
chiral extrapolation to #13,— 0 with a quadratic function of m?3,, while dashed lines are with a cubic function as described in the text.
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FIG. 6. (Continued).

Figure 6 shows thesec matrix clements as functions of
el .
my, (GeV?) for the two spatial volumes V=16 (left col-
umn) and V=243 (right column), adopting the normalization

defined by

/ Tt almu:"‘azmu‘*aamu‘ 1
0 0.1 0.2 0:32 04_ 05 0:6 0.7 08
my, [G9V2]
1T+|Xf-”|K+) , az
{ Xt IR,
(7] 44]0)(0] 44| KT) S
(4.4)
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TABLE V. Fit parameters for the chiral extrapolation of the K— 7 matrix clements defined by Eq. (4.4) which should vanish in the

PHYSICAL REVIEW D 68, 014501 (2003)

chiral limit. The parameters (aq,q, ,a2) are determined by the fit function u(,+a,mj’\,+ a:(mi,):.

163 % 32 24X 32
a, a)[GeV™?]  ay[GeV™H x*/dof ag a,[GeV™?]  ay[GeVTY] x°/dof

o —0.007(38)  —0.09(17) 0.04(17) 0.63 0.017Q24)  —0.10(11) 0.01(12) 1.88
—a;0.u 0.004(25)  —0.17(12) 0.15(13) 0.19 —0.041(15) 0.037(74)  —0.064(81) 0.06
0= 0, —0.007(51)  —0.24(24) 0.17(24) 0.12 —0.024(31) —0.06(15) —0.06(16) 1.16
oy 0.021(34)  —0.51(15) 0.25(15) 0.07 —-0.002(23)  —0.50(11) 0.26(12) 0.35
o 0.000(26) 0.82(13)  —0.37(13) 2.43 0.017(18) 0.802(92) —0.37(10) 0.71
0V - .0, 0.019(40) 031(18)  —0.13(18) 2.09 0.024(25) 0.26(11) —0.06(12) 1.40

(0 0.02(15)  —1.36(64) 0.59(65) 0.42 0.063(90)  —1.43(44) 0.58(47) 0.92
— 30 0.0014(95)  1.12(46)  —0.31(49) 0.89 —0.089(59) 1.71(30)  —0.92(33) 0.34
OV - ;0.5 0.02(19)  —0.19(86) 0.23(89) 0.58 —-0.02(11) 0.27(56)  —0.32(60) 0.87

o 0.37(48) 14.7(2.3)  -3.725) 2.56 0.27(34) 16.8(1.7)  —6.4(1.9) 0.48
—as0.n —0.1542)  —16.12.0) 4.7(2.2) 2.56 -0.11(29)  —17.8(1.5) 7.0(1.7) 0.40
O —as0,,  0.02020)  —1.27(90) 0.95(92) 0.17 0.13(12) —0.85(57) 0.51(61) 0.48

O 0.8(1.4) 4.1(6.6) —124(7.1) 2.96 0.86(97) 47.6(5.00  —17.2(5.6) 0.31
—aoQub —0.1(1.2)  —47.8(5.8) 14.8(6.3) 2,61 -0.19(85)  —52.1(4.5) 21.0(5.0) 0.42
OV - Q. 0.053(38)  —3.0(1.6) 1.7(1.6) 2.27 0.59(22) —4.0(1.0) 3.3(1.1) 0.62
o\ —0.0023(13)  0.0727(64)  0.0178(68) 0.19 —0.00264(65)  0.0751(33)  0.0140(37) 0.28

by b [GeV™2] by [GeVTY] X /dof by by [GeV™2] b, [GeVTY) x/dof

sd —170(11) 116(46) —64(45) 221 —186.2(4.0) 151(19) —82(19) 3.72

For the /=0 channel, three data sets are plotted, correspond-
ing to the original matrix element X!"'=Q!" (circles), the
subtraction term — ;Q,,, (diamonds), and the subtracted
matrix element Qf.“— a;Qgy (squares). For the /=2 chan-
nel, subtractions are absent and hence X{=Q!".
The denominator of Eq. (4.4) behaves as

(744001 A4Sl K*)=2 13m0}, (45)
irrespective of whether chiral symmetry holds exactly or not.
The advantage of our normalization is that the cocfficient of
the m3, term of the ratio is directly related to the K°

— ¥~ matrix elements. An alternative normalization is
provided by the ratio

(7 1X"1K*)
(w*|PlOXOIPIK*)’

4.6)

where P=qysq is the pseudoscalar density. This method
avoids the use of measured values of pion mass, but it loses
the straightforward relation to the physical matrix clements.
We usc the normalization (4.4) in our analyses. We have
checked, however, that the conclusion remains unchanged
even if Eq. (4.6) is employed instead.

For chiral extrapolation we consider an expansion of the
form

2

a’
- (7r+|Xf.”|K+)= ag+a,mi+ ag(m?\,)z-*- 03(/)1‘2”)2
M

2

XInmi+agmy)+---. 4.7

Chiral extrapolations using the first three terms are indicated
by the solid line in cach panel of Fig. 6. The fit parameters
arc summarized in Table V. The results for the intercept ay in
the chiral limit are consistent with zero within the fitting
crrors except for the /=2 operator Q1% for the volumes ¥
=16%(1.80) and 243(40), the /=0 subtracted opcrator

D — Q. for ¥=16(1.40) and 24*(2.70), and the sub-
traction term for the /=1 operator —a Q. for V
=243(2.80). Since no systematic tendency that the inter-
cepts become larger for smaller volume is observed, it is
unlikely that the nonzero intercepts of these matrix clements
arc caused by the finite spatial size effect. Indeed even an
opposite tendency that the intercept becomes larger for larger
spatial volumes is observed.

The absence of a systematic trend in our data suggests the
possibility that nonzero intercepts observed for some of the
matrix clements are artifacts of the long extrapolation in
mi,. To test this point, we attempt a fit with a cubic polyno-
mial of form a,m3,+a,(m3,)*+ay(my,)?® and a form with
chiral logarithm given by a mi,-i- as( mj';,)2
+a3y(m3,) Inm3,, both having a built-in chiral behavior of
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TABLE VI. Same as Table V for the fit function aym3i,+as(m3,) +ay(mi)’.

163X 32 243X 32
a[GeV™?] a)[GeV™ ay[GeVT®]  xdof 4y [GeVT?) ax[GeV™1) ay[GeV™e] x°/dof

o —0.10(11) 0.01(44) 0.06(41) 0.64 0.004(67) —0.18(28) 0.10(27) 2.07
- Qup —0.159(72) 0.14(30)  —0.01(29) 0.20 —0.271(40) 0.64(18) —-0.49(18) 0.12
O\ a,0. —0.28(15) 0.21(60) 0.00(57) 0.13 —-0.257(87) 0.42(37) —0.36(36) 0.98
oY —-0.37(10) —0.06(39) 0.21(37) 0.10 —0.499(63) 0.23(27) 0.02(28) 0.35
o 0.826(75) —-0.39(31) 0.02(30) 2.43 0.942(47) -0.72(21) 0.26(22) 0.43
O = a0 0.46(12) —0.46(45) 0.23(42) 2.07 0.461(67) -0.56(28) 0.37(27) 0.98

o -1.09(43) -0.2(1.7) 0.6(1.6) 0.35 - 1.00(25) -0.3(1.0) 0.6(1.0) 1.02
- 30 1.20(27) —0.4(1.1) 0.1(1.1) 0.90 1.07(16) 0.51(71) —0.97(71) 0.57

O~ 30 0.05(55) —0.4(2.2) 0.5(2.1) 0.55 0.10(32) 0.1(1.3) —-0.3(1.3) 0.87

0 17.7(1.4) —11.1(5.7) 5.6(5.6) 2.36 18.82(88) ~-11.0(4.0) 3.3(4.1) 0.50
- asQup —-17.5(1.2) 8.5(5.0) -3.0(5.0) 2.44 — 18.68(76) 9.2(3.5) - 1.6(3.7) 0.38
O — asQun 0.08(59) —1.9(2.3) 1.9(2.2) 0.23 0.03(34) —1.3(1.4) 1.2(1.4) 0.68
o 50.9(3.9) —29(16) 13(16) 2.80 54.02.5) =32(12) 10(12) 0.34
— Qb —49.6(3.4) 21(14) -6(14) 2.54 -53.6(2.2) 25(10) —2.8(1.1) 0.41
00— a0, 0.6(1.1) —-5.9(4.1) 5.0(3.8) 2.36 0.04(63) —5.3(2.6) 5.7(2.5) 1.54
oY 0.0555(38) 0.057(16) —0.027(15) 0.18 0.0557(17) 0.0573(77)  —0.0299(79) 1.50

vanishing at my,=0. We show the former fit curves by
dashed lines in Fig. 6 and the fitted parameters in Table VL.
Numerical results of the chiral logarithm fit arc given in
Table VII. The fit curves are similar to those of the cubic fit.
Both functions provide good fit of data with reasonable

x>/ dof.

TABLE VII. Same as Table V for the fit function am?,+a»(m3,)? +a3(m3,) Innr, including a chiral logarithm term,
M M 3y M g

Let us try to analyze the chiral behavior of /=0 matrix
clements in terms of mixing with the sd operator as given in
Eq. (4.1). The existence of the constant 3; can be detected
from the chiral limit of the matrix elements. On the other
hand, separating the contribution of y; and §; from the physi-

cal ones would require results at different N5. We leave such

163 32 243% 32
a,[GeV™?] a,[GeV™4] ay[GeV™]  x¥dof - a,[GeV7?] ay[GeV™?] ay[GeV™H] x*/dof

o —0.11(20) 0.07(14) 0.02(39) 0.65 0.04(12) —0.110(84) 0.13(25) 2.01
—a; Qg —0.15(13) 0.128(90) 0.0127) 0.20 —0.369(74) 0.268(49) —0.46(16) 0.06
0= a0 —0.29(27) 0.21(19) —0.03(54) 0.13 —0.32(16) 0.15(11) —0.31(34) 1.05
oY —0.32(18) 0.09(13) 0.20(35) 0.09 -0.50(12) 0.259(77) 0.01(25) 0.35
— a0 0.83(13) —0.376(93) 0.01(28) 2.43 0.987(88) —0.515(56) 0.23(20) 0.52
O™ — @, Q. 0.50(21) —0.29(15) 0.21(41) 2.08 0.53(12) —0.276(85) 0.33(25) 1.1
oY - 1.01(76) 0.32(56) 0.5(1.5) 0.38 —0.85(45) 0.10(31) 0.59(97) 0.98
— 0 1.22(49) —0.40(34) 0.1(1.0) 0.89 0.86(29) —-0.21(19) —0.93(66) 0.49
0P~ a; 0 0.12(98) =0.01(71) 0.4(2.0) 0.56 0.05(58) —-0.14(39) -0.2(1.2) 0.87

O 18.7(2.4) -6.8(1.7) 4.8(5.2) 2.44 19.5(1.7) —8.6(1.0) 3.1(3.8) 0.48
—asQu —-17.92.1) 6.1(1.4) —2.4(4.6) 2.49 ~19.0(1.4) 7.99(88) —1.4(3.4) 0.38

- @50 0.5(1.1) —0.54(77) 1.9(2.1) 0.21 0.32(61) —0.46(42) 1.2(1.3) 0.61
o 52.9(7.1)  —19.5(4.9) 11(15) 2.87 56.1(4.8) —24.2(3.0) 10(11) 0.32
— @0 —-50.1(6.1) 16.5(4.1) —4(13) 2.58 —54.1(4.2) 22.6(2.5) —2.5(9.7) 0.42
0 — @O 1.8(1.9) —2.2(1.5) 5.0(3.7) 2.35 1.4(1.1) —1.16(80) 5.7(2.3) 1.21
o 0.0498(68) 0.0364(47) —0.026(15) 0.15 0.0494(32) 0.0351(20) —0.0285(73) 0.99
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TABLE VIIL. 1/2f3,a (*|5d|K™) as a function of m a.

mga 0.02 0.03 0.04 0.05 0.06
163% 32 —145.03.1) —135.1Q2.5) —132.6(2.3) —120.9(1.9) —120.2(1.8)
243% 32 —154.7(1.6) —142.1(2.1) —131.9(1.9) —127.4(1.7) —119.3(1.6)

an investigation for future studies, and assume that the latter
contributions are negligible. We also ignore mixings with the
dimension five operators s, ., ,d since their contributions
are subleading in 1/a.

We estimate B3; from the values of a, obtained in the
chiral fit of the matrix elements for the subtracted operator
Qﬁo)— ;0 given in Table V. For this purpose, we repeat
the calculation of Eq. (4.4) for X\'=sd, and cxtract

('n'+|.;1'|K+>a > s ] =t
— —— Xmya®=——(7"|sd|K"),
(14| 0)01 44K ™ )a 2fva
(4.8)

where powers of « arc supplied to absorb dimensions of ma-
trix clements. We then fit the results to a quadratic polyno-
mial bg+bymy,+bo(m3,)?. The numerical values of Eg.
(4.8) arc given in Table VIII, and the results for b; arc given
in Table V. Normalizing with ms,=0.283 McV to take into
account the e Vs dependence expected for 3;, onc has

i a 1
i _t . (4.9)
by ms,a

ms,a

In the case of V=243, the results are 3; {(ms,a)=0.9(1.1)
for i=1, —091(87) for i=2, 0.8(42) for i=3,
—4.7(4.4) fori=5, and —21.6(8.1) for i=6. Except for the
i=6 operator for which the cocefficient is exceptionally large,
we find values consistent with zero within the errors.

The analyses described here do not show strong cvidence
for the effect of residual chiral symmetry breaking in the K
— 7 matrix elements. Although more data at smaller quark
masses will be needed for the definite conclusion, we con-
clude here that our results for the matrix clements arc con-
sistent with the expected chiral behavior within the statistical
precision of our data. Therefore, for the chiral extrapolation
in the rest of this paper, we employ the cubic polynomial
without a constant term for the central value and use the
form with a chiral logarithm to cstimate the systcmatic un-
certainty. Since nonzero intercepts beyond statistical crrors
cannot be excluded for some of the matrix clements, we
examine possible cffects of the residual chiral symmetry
breaking to the physical matrix elements in Scc. V.

Let us also make a comment on the comparison of lattice
data with predictions of quenched chiral perturbation theory.
For the /=0 channel, data for more values of m are required
for such a comparison becausc of the presence of a number
of unknown parameters as well as a new term of form
b,mi,lnmi, in the predicted matrix clements [47]. On the
other hand, quenched chiral logarithm terms are absent for
the /=2 matrix clements governed by the (27,,1;) operator,
and the ratio ay/a, for Q{2 is predicted to be ay/a,=

—6/(167f>)=—2.180 GeV™2. We observe in Table VII
that the fitted value agrees in sign but is 3 to 4 times smaller
in  magnitude than the prediction, e.g., a3/a,=
—0.58(10) GeV ™ on a 24°X 32 lattice.

Quenched chiral perturbation theory makes the same pre-
diction for the coefficient of the logarithm term of the chiral
expansion of By as it is governed by the same operator in
XPT. For this case, similar discrepancics of lattice results
from the prediction are found for the case of the staggered
fermion action [29] as well as for the domain wall fermion
action [28]. A possible explanation for these large discrepan-
cies is that higher order corrections in (quenched) xPT are
non-negligible at quark masses employed in the current
simulation. Indeed we have confirmed that data for Q{* can-
not be fitted by the form a,m3,+a~(m3)>+ay(m3) Inm’,
+ay(my,)® with ay/a;=—2.180 GeV~? fixed. The complete
form in xPT to this order,

aym’+ ar(my) +as(mi) Inmy,+ay(mi,)?

+as(my)Pnmi+ag(mi)*(Inmi,)?,

unfortunately, cannot be employed for our data calculated
only at five values of quark masses. Understanding the small
value of a3 /a, for 0§ requires further studies.

B. Physical values of hadronic matrix elements

We tabulate the values of all the K— 77 matrix clements
in Tables IX (for 16>X32) and X (for 24°X32). The upper

half of cach table lists the bare lattice values, (Q,)1™, and

the lower half the physical values, (Q,),qs obtained through
matching at the scale g* = I/a followed by an RG-evolution
to w=m,. Note that (Q3_6)§{§ become nonzero due to the
RG-evolution which breaks the isospin symmetry in the
presence of the QED interaction. The two sets of numbers do
not differ beyond a 10-20 % level except for (Qs¢74)0. for
which the difference amounts to 30—40 %. The latter situa-
tion arises from a larger magnitude of mixing of order
5-10 % among the Q%% ¢ operators compared to the other
operators which are typically less than 5%. In the following,
the superscript MS will be omitted unless confusion may
arise.

In Table XI we illustrate the magnitude of uncertainty duc
to the choice of g* by comparing the values of physical
hadronic matrix elements (Q;),(m.) for the choices ¢*
=1la and g*=m/a at m;=0.02 on a 243 spatial volume.
One finds that the difference is at most 20-30 %.

In Fig. 7 we plot the physical matrix elements for the
A7=1/2 amplitudes {Q;) (i=1,...,6,9,10) as a function
of m3,. These eight matrix elements involve the subtraction
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TABLE IX. Hadronic matrix clements (@) and (@), (i=1,...,10) in units of GeV? at each mya on a 16>X 32 lattice. The upper half
of the table lists the bare values. The lower half are those renormalized in the MS scheme at g = 1/a and run to = 1.3 GeV for N,=3 using

Ag%= 372 MeV, which corresponds to /\S—%= 325 MeV.

mya 0.02 0.03 0.04 0.05 0.06

bare (0o —0.0329(69) —0.0266(48) -0.0242(37) —0.0222(29) —0.0176(25)

[GeV?] (02)o 0.0508(57) 0.0412(35) 0.0442(27) 0.0347(20) 0.0345(17)
(Q)0  —0.006(26) —0.008(18) 0.005(13) —0.009(10) 0.0039(91)
(0o 0.078(24) 0.059(16) 0.074(12) 0.0475(93) 0.0560(82)
(0s)o  —0.030(29) —0.059(18) —0.051(13) —0.054(10) —0.0439(88)
(Qe)o  —0.031(62) -0.157(31) —0.109(23) -0.161(15) ~0.138(12)
(07)o 1.635(30) 2.043(33) 2.574(42) 2.835(43) 3.328(49)
(Qx)o 5.012(91) 6.25(10) 7.90(13) 8.66(13) 10.18(15)
(Qo)e  —0.0464(58) -0.0357(35) ~0.0389(28) -0.0285(20) —0.0284(18)
(Q10)o 0.0372(69) 0.0321(48) 0.0294(38) 0.0284(30) 0.0237(25)
(01): 0.01314(15) 0.01402(12) 0.01487(11) 0.015399(98) 0.015957(90)
(0,)» 0.01314(15) 0.01402(12) 0.01487(11) 0.015399(98) 0.015957(90)
(04): 0.4110(42) 0.4292(34) 0.4656(28) 0.4863(27) 0.5264(24)
(04)2 1.238(13) 1.261(11) 1.3357(87) 1.3639(77) 1.4451(70)
(00), 0.01971(23) 0.02103(18) 0.02231(16) 0.02310(15) 0.02393(13)
(010) 0.01971(23) 0.02103(18) 0.02231(16) 0.02310(15) 0.02393(13)

mya 0.02 0.03 0.04 0.05 0.06

renormalized (@) —0.0291(68) —0.0234(47) —0.0206(37) —0.0191(29) —0.0144(25)

at 1.3 GeV (05)o 0.0510(69) 0.0360(43) 0.0415(33) 0.0291(24) 0.0301(20)

[GeV?) (1) 0.004(28) -0.012(20) 0.007(14) —0.015(11) 0.0002(99)
(0s)o 0.082(27) 0.049(18) 0.069(13) 0.035(10) 0.0460(92)
(Os)e  —0.026(26) -0.032(16) -0.033(12) —0.0253(94) —0.0187(82)
(Qedo  —0.012(48) —0.111(24) —0.071(18) -0.115(12) —0.0960(90)
(07) 0.797(17) 1.021(18) 1.269(21) 1.41721) 1.640(23)
(@s)o 3.428(69) 4.374(73) 5.469(86) 6.046(87) 7.024(94)
(Qo)e  —0.0453(70) —0.0287(43) —0.0341(34) —0.0205(24) -0.0212(21)
(01000 0.0347(68) 0.0306(48) 0.0278(37) 0.0275(29) 0.0231(25)
(0)): 0.01345(16) 0.01436(13) 0.01524(11) 0.01578(10) 0.016361(91)
(0-), 0.01328(16) 0.01417(12) 0.01504(11) 0.015571(99) 0.016137(91)
(05)2  —0.00002740(31)  —0.00003058(27)  —0.00003395(25)  —0.00003677(24)  —0.00004007(23)
(0s):  —0.0002198(36)  —0.0002349(30)  —0.0002521(25)  —0.0002652(21)  —0.0002830(20)
(Qs)> 0.0002056(37) 0.0002196(31) 0.0002357(25) 0.0002483(22) 0.0002656(20)
(06)> 0.000758(14) 0.000789(11) 0.0008274(91) 0.0008517(77) 0.0008913(70)
(01)1 0.2045(36) 0.2243(30) 0.2466(25) 0.2655(22) 0.2897(21)
(04)- 0.846(16) 0.880(13) 0.922(10) 0.9488(86) 0.9922(79)
(09)» 0.02026(24) 0.02161(19) 0.02295(16) 0.02376(15) 0.02464(14)
(010): 0.02006(24) 0.02141(19) 0.02272(16) 0.02353(15) 0.02439(14)

of unphysical effects. The empty and filled symbols indicate
the data from V=16 and 24° volumes, respectively. Within
the statistical errors at cach m, and the fluctuation for differ-
ent values of m,, both of which are larger for the smaller
spatial size 16, the data from the two spatial volumes do not
show indications of the presence of finite size effects.

The remaining matrix clements (Q74), for the AI=172
amplitude, which do not require the subtraction, are shown in
Fig. 8. These matrix clements are well determined and ex-
hibit clear m3, dependences.

The matrix elements for the A/=3/2 channcel given by
(01)2=(0Q5)> and (Q4) are plotted in Fig. 9. Their statis-

. . 2 . -
tical quality and my, dependence are similar to those for

(Q74)o-

As discussed in Sec. IV A, for extracting the values in the
chiral limit, we adopt a quadratic polynomial form

(0)r= &+ Evmiy+ Exmyy. (4.10)
In addition we also employ the chiral logarithm form
(Qi)1= &+ &yt Eamiyinmy,. 4.11)
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TABLE X. Same as Table 1X for the 24 X 32 lattice.

mya 0.02 0.03 0.04 0.05 0.06
bare (01)e  —0.0235(34) ~0.0205(37) -0.0217(25) -0.0161(22) —0.0196(19)
[GeV?] (020 0.0460(28) 0.0457(27) 0.0378(19) 0.0351(16) 0.0345(11)
(O 0.013(12) 0.021(13) 0.0010(98) 0.0116(81) 0.0003(68)
(Q4)o 0.082(11) 0.087(12) 0.0600(91) 0.0627(74) 0.0544(58)
(Os)o —0.027(14) —0.044(13) —0.0515(97) —0.0393(82) —0.0442(65)
(Qedo  —0.105(26) —0.183(24) -0.167(17) —0.136(14) -0.117(11)
{(O7)0 1.697(15) 2.157(29) 2.563(35) 2.990(40) 3.295(44)
(0o 5.211(44) 6.584(85) 7.84(11) 9.13(12) 10.08(13)
(Qo)o  —0.0417(28) —0.0412(28) —0.0324(20) —0.0299(17) -0.0295(12)
(1o 0.0278(34) 0.0250(38) 0.0267(26) 0.0212(22) 0.0246(19)
(01), 0.013154(43) 0.014163(52) 0.014781(48) 0.015335(45) 0.015853(43)
(Q1): 0.013154(43) 0.014163(52) 0.014781(48) 0.015335(45) 0.015853(43)
(0): 0.3996(15) 0.4222(18) 0.4559(15) 0.4900(14) 0.5184(13)
(04): 1.2119(48) 1.2444(55) 1.3128(45) 1.3783(41) 1.4271(40)
(Qv)2 0.019730(65) 0.021244(78) 0.022172(72) 0.023003(67) 0.023779(65)
(010): 0.019730(65) 0.021244(78) 0.022172(72) 0.023003(67) 0.023779(65)
ma 0.02 0.03 0.04 0.05 0.06
renormalized  (Qy)s  —0.0203(34) -0.0173(36) ~0.0182(25) -0.0130(21) -0.0163(19)
at 1.3 GeV (Q2)a 0.0433(33) 0.0401(34) 0.0322(23) 0.0309(19) 0.0310(14)
[GeV?] (0o 0.015(14) 0.017(14) —0.004(11) 0.0084(88) —0.0014(73)
(04 0.078(13) 0.076(14) 0.048(10) 0.0535(84) 0.0466(65)
(Qs)o —0.008(12) =0.011011) —0.0214(90) —0.0144(74) —0.0231(57)
(@) —0.07220) —0.132(19) ~0.120(14) —0.095(11) —0.0790(84)
(07 0.8415(80) 1.072(15) 1.271(17) 1.488(19) 1.637(21)
Qo 3.631(33) 4.566(60) 5.434(70) 6.352(79) 7.002(86)
(Qodo —0.0376(33) —0.0338(34) —0.0247(24) —0.0233(20) —0.0231(14)
(Q10)o 0.0259(34) 0.0234(37) 0.0256(26) 0.0205(21) 0.0239(19)
(0): 0.013469(44) 0.014499(53) 0.015140(49) 0.015717(46) 0.016253(44)
{Q2)> 0.013295(44) 0.014317(53) 0.014944(49) 0.015507(45) 0.016031(43)
{0:): —0.00002694(11) —0.00003018(14) —0.00003331(13) —0.00003662(13) —0.00003960(13)
(Q4): —0.0002180(15) —0.0002301(17) —0.0002476(15) —0.0002660(13) —0.0002807(13)
{(Qs)2 0.0002037(15) 0.0002142(17) 0.0002312(15) 0.0002492(13) 0.0002634(13)
(Q¢)2 0.0007562(57) 0.0007728(63) 0.0008144(54) 0.0008575(48) 0.0008866(46)
(Q7)2 0.2010(15) 0.2180(17) 0.2409(15) 0.2658(14) 0.2866(14)
(Ox)- 0.8440(64) 0.8618(70) 0.9078(60) 0.9552(53) 0.9872(51)
(Qy)- 0.020281(66) 0.021830(80) 0.022796(74) 0.023666(69) 0.024474(66)
(Q10)2 0.020083(66) 0.021623(80) 0.022575(73) 0.023431(68) 0.024228(66)
In Tables XII and XIII, results from these chiral extrapo- . 9
lations arc summarized with the values of x*/dof. The dif- B{'P=— )_((Ql)o- (4.12)
ferences between two types of fits should be taken as a mea-
sure of systematic error, For {Q4)g. onc obscrves in Fig. 7 an
exceptional behavior of the data at m,=0.02. An additional any_ 2
chiral extrapolation excluding this quark mass is hence also B,"'= ;\’(Q3>° (4.13)
made for comparison and the fit lines indicated in the figures
are obtained. 3
BY™= 2(0so. (4.14)
C. B parameters
We convert renormalized hadronic matrix clements at B = 37<Q5)0, (4.15)

=m.=1.3 GeV into B parameters defined by [41]
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TABLE XI. Renormalized hadronic matrix clements at u
=1.3 GeV in units of GeV* from different matching points ¢*
=1/a (left column) and 7/a (right column). Values are taken at
mya=0.02 on a 24% X 32 lattice.

g*=1a q*=mula
{O1)o —0.0203(34) —0.0152(33)
(@2)o 0.0433(33) 0.0424(33)
{O3)o 0.015(14) 0.019(14)
(Qa)o 0.078(13) 0.076(13)
(Qs)o —0.008(12) —0.005(12)
{Qedo —0.072(20) —0.050(16)
(@10 0.8415(80) 0.7986(77)
(Ox)o 3.631(33) 2.873(26)
(Qs)o -0.0376(33) -0.0317(33)
(Qiodo 0.0259(34) 0.0257(34)
(Q1): 0.013469(44) 0.014314(46)
(Q:): 0.013295(44) 0.013760(45)
{02): 0.2010(15) 0.1912(14)
(Qs): 0.8440(64) 0.6678(51)
(Qs): 0.020281(66) 0.021754(70)
{Qo): 0.020083(66) 0.021149(69)
B{™= _<Q6>0 . (4.16)
(07
B{=—~ =10 —. @.17)
g Y(ret+1)— EX
BYR= ~ (Qudo —. (4.18)
5 Y(rk+1)— EX
G 4.19
1 4 \/—X<Ql ( )
BEIJE)= — &’ (420)
“ yex
6V2  \2
By = - Q). (4.21)
K \/"
2__ T X
where
K= fAf s \/—f_(m,\ m; )
IHZ- 2
y=— 43| 2k _| /= (4.22)
mgtmy| K
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We summarize the values of B parameters in the chiral limit
obtained by the fit with quadratic polynomial or chiral loga-
rithm in Table XIV. Quark masses and other parameters used
in the calculations are given in Appendix B.

Let us compare our values of B parameters with typical
ones quoted in phenomenology (sce. c.g., [41]). For the B
parameters important for the A7=1/2 rule, the experimental
value of Red, indicates BPhp(m,.)=0.453 with AG}
=325 MeV, with which our value B”p’(m(‘)%OA to 0.5 is
consistent. On the other hand, our results B‘,'m(mc)~8 to 9
and BY"(m.)=3 to 4 arc smaller than B{'?(m,)=15 and
B(»',G’[;R(m )=6.6 needed to explain the experimental value of
Re Ay. For the parameter B“m relevant for the direct CP
violation, the largest of our estimate BY'™?(m.)=~0.3 from
the four-point fit of the data from the 243 spatial volume is
still much smaller than B{'? =1 in the 1/N,. approach. while
B&Sm(nl‘.)*O.‘) is comparable to B?' =1 again in the 1/N,
approach. In general the B parameters for /=0 are smaller
than the usual estimates.

Previous  studies  gave  BY® (u=2 GeV.NDR)
=0.58(7) and BP?(w=2 GeV.NDR)=0.81(4) [20],
B (u=2 GeVRI(MOM))=0.38(11) and B (u
=2 GeV,RI(MOM))=0.77(9) [21], B¢ (u
=2 GeVNDR)=0.58(9) and B{?(u=2 GeVNDR)
=0.80(9) [22]. from quenched lattice QCD, and 3‘732)(;1,
=2 GeVNDR)=0.55(12) and B{?(1=2 GeVNDR)
=1.11(28) from dispersive sum rules where m +m,
=100 McV is used [48]. Our values arc BP?(u
=1.3 GeVNDR)=0.62(3) and BY(u=1.3 GeVNDR)
=0.92(4) on a 243X 32 lattice in broad agreement with the
above. Note that the scale u is different between our results
and those of other studies.

V. PHYSICAL RESULTS
A, AI=1/2 rule

The real part of 4, relevant for the A/=1/2 rule is written

as

G
Red=—| Vud|~|Vus|[Z 2dm N QiYitm,)
V2 i=

12

-

10
+(Re 7')23 3',-(1;7()(Q,~),(mc)]. (.1

In Table XV, we list the valucs of Re 4, Re A, and o™
=ReAy/Re A, for cach value of i, and spatial volume, and
for the three choices of the A parameter A‘“:— 325,215, and
435 McV.

Figure 10 plots RCA‘) (left pancl) and Re 4 (right pancl)
as functions of m? y for /\'4’-325 MecV. In both panels,
cmpty and filled symbols dunotc the results from the volume
V=16 and 243, respectively. Signals for ReA, are quite
clean, while those for Re A4 exhibit more fluctuations. Since
both amplitudes show a variation with m?,, we need to ex-
trapolate them to the chiral limit to extract the physical pre-
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FIG. 7. Physical hadronic matrix clements (Q), for i=1,2,3,4,5,6,9, and 10 as a function of m3, from top to bottom. These matrix
clements involve subtractions of unphysical effects. Empty and filled symbols are from the spatial volume ¥=16> and 24%, respectively.
Chiral extrapolations with a quadratic polynomial are shown by solid (#=24%) and dashed (¥=16) lines. Fit crror in the chiral limit is
added for the former.
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FIG. 8. Physical hadronic matrix elements {Q,), as a function of m3,. The organization of each panel is the same as that in Fig. 7.

diction. Following the analysis in Sec. IV A, we cxamine
two types of fit functions given by

ReA,

&+ §,mi,+ §3(mi,)2 (quadratic polynomial),

&+ &y, + ExmyInmy,  (chiral logarithm).
(5.2)

Chiral extrapolations from the quadratic fit arc indicated by
solid lines, and thosc from the chiral logarithm fit by dashed
lines in Fig. 10.

For the A7=3/2 amplitude plotted on the left, the extrapo-
lated values show good agreement with the experimental
value Re4.=1.50X10"*¥ GeV indicated by the horizontal
arrow. On the other hand, the A/=1/2 amplitude Re 4, is
small at measured values of quark masses, and only amounts
to about 50-60% of the experimental value 33.3
X 107# GeV even after the chiral extrapolation.

A breakdown of the amplitudes into contributions from
the ten operators Q; with i=1, .. .,10 is illustrated in Fig. 11
for ma=0.03. The histograms for the V'= 16> and 243 cases
are shown by dashed and solid lines, respectively. The hori-
zontal lines with statistical crrors indicate the total ampli-
tude, the dashed and solid lines corresponds to ¥'=16* and
243, An apparent absence of contributions from the operators
with i=3,...,10 is due to the small value of the parameter
Re 7==0.002; the real part of the decay amplitudes is deter-
mined by the matrix elements {Q,); and {Q,);, with the
latter providing the dominant part.

The ratio @~ '=ReA,/ReA, is shown in Fig. 12. Re-
flecting an insufficient enhancement of the A7=1/2 ampli-
tude, it only rises to about half of the experimental value
@~ '~22. The situation hardly changes for AR=215 or 435

MST
MeV, for which the amplitudes shift by about 5-10 % (sce

Table XV). We collect chiral fit parameters for the case of

larger spatial volume ¥'=243 in Table XVI.
Altogether we find

ReAdg=16.5(2.2)(+4.2)(+0.7)( }%)x 107% [GeV],
(5.3)

ReA,=1.531(26)(— 178)(—4)( 219X 107% [GeV],
(5.4)

0™ '=9.5(1.1)(+2.8)(0.6)( *97). (5.5)

The central values are taken from the result on a 243X 32
lattice from the quadratic polynomial fit with A‘\%
=325 MeV. The first error is statistical, the second one is an
estimate of uncertainty of chiral extrapolation using the chi-
ral logarithm fit, the third onc is finite-size variation esti-
mated by the change of value for the V=163 lattice, and the
fourth one, associated with renormalization, is estimated as
the largest variation under changes of A%, g*. and the
RG-running,. If the chiral symmetry breaking term &_, /m},
is included in the chiral fit (5.2), a nonzero value of &_,
beyond the statistical error is obtained only for Re 4, result-
ing in a 60% increase of the value of ReA,. The disagree-
ment from experiment becomes worse in this case. The scal-
ing violation and the quenching crror, which cannot be
estimated in our calculation, are not included in our system-
atic uncertainty. In particular, the physical scale of lattice
spacing sct by the string tension in this paper may differ by
about 10-20 % from scales determined by other physical
quantities due to the quenched approximation. This uncer-
tainty is not included in the above crror estimate.

B. Direct CP violation (£'/¢)

The formula (1.4) for £'/e can be rewritten as

g'le=Im(VEV [ PP — pED], (5.6)

PUD= 2 im0l = ), (.7)
.

POR= = 3, vl )@ k), (5.8)

where
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0.018 — T T 1 T ; T T TABLE XIl. Hadronic matrix elements in units of GeV? in the
chiral limit m3,—0 on a 16* X 32 lattice. The columns named “qua-
0.016 + <Q,>, e . dratic,” “chiral log.” correspond to two types of fit forms described
in the text. Chiral extrapolations are made using data at all ma
i - =0.02-0.06 (5 points) except for an alternative cxtrapolation of
0.014 | : // ] (Qs)o excluding the point at ma=0.02 (4 points).
0012 / e DiEa quadratic ~ x*/dof  chiral log.  x*/dof
: " 2432 (01)o —0.034(20) 0.14  —0.035(36) 0.14
0.010 | 1 (02)0 0.070(19) 3.03  0.083(34) 3.05
(030 0.033(82) 091  0.06(15) 0.94
0.008 L—i . ; - : . : \ (0o 0.131(78) 1.68  0.17(14) 1.71
0 01 02 °,':Mz [62'\‘,‘:] 05 08 07 08 (94, ~0.008(72) 003 0.03(13) 0.02
(06)o 0.08(12) 264 020021) 2.63
035 — . ; , , . , {Qe)o (4 pts.) —0.04(17) 432 -0.02031) 4.38
; <Q,>, (7)o 0.247(78) 178 0.11(15) 1.69
030 L ¢ o (Qo 1.07(32) 287 0.48(60) 2.77
Lo * (D)o -0.067(19) 332 —0.082(35) 3.35
025l . 4 (0100 0.037(21) 0.17  0.03737) 0.17
- (01 0.01102(54) 034  0.00990(98)  0.29
a0l . ,#k’/#/ (01 0.01087(54) 033  0.00975(97) 028
L . (03, ~0.0000203(12) 049 —0.0000195(21) 0.46
E// E;i,:gg (04)> —-0.000188(12)  0.33 —0.000187(22)  0.37
015 | - (0s)» 0.000177(12) 033 0.000179(23) 034
(06 0.000694(46)  0.31  0.000694(83)  0.31
T ) N (072 0.164(12) 036  0.167(23) 0.38
0 01 02 O:u, [GZ-J;] 05 08 07 08 (g, 0.776(51) 030  0.775(92) 031
(Qo)2 0.01660(81) 034  0.0149(15) 0.29
1.4 , , : . , : (010)> 0.01642(81) 033  0.0147(15) 0.29
<Qg>,
1.0 1 ﬁ//‘ tion of m3,. Results for &'/e are shown in Fig. 14. Since
I = PU is smaller than P2 in our data, &'/e tends to be
e negative.
09 r 3 L ] A breakdown of P and P into contributions from
the operators Q;(i=3, ..., 10) is displayed for the case of
03 . D16%32 mga=0.03 in Fig. 15, where dashed and solid lines denotc
=1  m24%32 data from V'=16% and 243, respectively. This figurc demon-
strates that (Qg)» and (Q,), are, respectively, dominant in
07 . ) \ ‘ P32 and PU2) 35 usually considered. However, the matrix

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
m,f [GeVY)

FIG. 9. Physical hadronic matrix elements (Q,), and (Q74); as
a function of m?,. The organization of each panel is the same as
that in Fig. 7.

GF(.I)
2|€IRCAO

r=

(5.9)

and the parameter 2, ,,=0.25(5) reflects the isospin
breaking. Since the A/=1/2 rule is only partially reproduced
with our data, we employ the experimental values for Re 4,
w, and ¢ as input.

In Fig. 13 our data for P* (left panel) and P*'® (right
panel) calculated with Af{%= 325 MeV are plotted as a func-

clement of (Q¢), is too small; if the experimental value of
€'/e is to be reproduced by a change of this matrix clement,
it has to be increased by about a factor of 5.

Numerical values of P PGP and &'/ for cach ny
are summarized in Table XVII. In addition to the features of
the data discussed 4a)bove, we observe that changing the A

@

parameter from Agg=325 to 215 MeV decreases PR by

20% and P? by 25%. Employing Af\%: 435 MecV lcads to
an increase by similar percentages for the two functions.
Therefore the trend toward a negative value of €'/¢ is not
altered.

If we make a quadratic chiral extrapolation we find €'/¢
=—7.7(2.0) X 10™* with y?/dof=1.75 on a 24> X 32 lattice.
Including the chiral symmetry breaking term &_ /m?‘, in the
fit changes this valuc to +30(20)X10™* with y*/dof
=0.0015. The small x? indicates that morc data points, in
particular data at smaller masses, are necessary to constrain
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TABLE XIIl. Same as Table XII for the 24 X 32 lattice.

quadratic x°/dof chiral log, x*/dof
Q1) ~0.031(12) 0.98 —0.039(21) 1.04
(©Q:2)0 0.066(11) 0.36  0.082(20) 0.43
(030 0.032(48) 0.83  0.044(86) 0.82
(04)o 0.124(45) 069  0.155(82) 0.69
(Qs)o 0.001(40) 044  0.003(73) 0.43
(Q)o 0.014(66) 153 0.16(12) 1.20
(Qe)a(d pts.) —0.19(13) 0.10 —0.18(25) 0.10
(O7)a 0.252(53) 043  0.07(11) 0.45
{Ox)o 1.23(22) 0.27  0.58(43) 0.35
{Qado =0.063(11) 045 —0.082(20) 0.53
{Qoo 0.034(12) .09 0.039(22) 1.14
(0))2 0.01104(19) 455  0.00979(36) 2.99
(0,): 0.01089(19) 479  0.00964(35) 3.16
(03)» —0.00001942(50) 0.25 —0.00001832(96) 0.18
(Q4)2 —0.0001848(59) 1.28 —0.000187(11)  1.25
(Qs)> 0.0001737(61)  1.67  0.000179(11)  1.57
(Q6)2 0.000691(22)  2.08  0.000708(42)  1.98
(07): 0.1580(60) 1.27  0.163(11) 1.18
(O4): 0.772(25) 209  0.792(47) 1.99
(Q9)> 0.01663(28) 448  0.01476(54) 2.94
(O10)- 0.01646(28) 4.66  0.01458(53) 3.07

the fit parameters well. The existence of large uncertaintics
associated with the possible presence of the chiral breaking
term, and also a subtle quenching effect mentioned below,
make it difficult to draw a conclusive estimate of £'/e.
Recently, Golterman and Pallante pointed out that the re-
lation between K— 7 and K— 77 matrix clements in chiral

TABLE XIV. B parameters in the chiral limit with the chiral
logarithm fit.

16>X 32 24332

quadratic  chiral log. quadratic chiral log.
By 8.3(5.0)  86(8.9)  7.72.9) 9.6(5.2)
By 3.43(95)  4.1(1.7) 3.23(55) 4.,04(98)
By 2.7(6.7) 5(12) 2.6(3.9) 3.6(7.1)
B2 3.6Q2.1)  45(3.8) 3.4(1.2) 4.3(2.3)
By™ 0.04(40) —0.I5(71)  0.01Q22)  —0.02(41)
B —-0.14(22) —0.38(38) —0.03(12) -0.29(22)
B4 pts)  0.07(31)  0.03(58)  0.35(25) 0.34(47)
B4R 049(15)  0.22(29)  0.50(10) 0.14(21)
U 0.73(22 0.32(41)  0.83(15) 0.39(29)
By 5.5(1.6) 6.8(2.8) 5.19(92) 6.7(1.7)
B 3.0(1.7) 3.0(3.0) 2.78(98) 3.2(1.8)
B 0.480(24)  0.431(43)  0.4809(82)  0.426(16)
B 0.473(23)  0.425(42)  0.4745(81)  0.420(15)
B 0.640(49)  0.651(88)  0.616(23)  0.634(44)
B 0.924(61)  0.92(11)  0.920(30)  0.944(55)
B3™ 0.482(24)  0.433(43)  0.4830(82)  0.429(16)
B3 0.477(24)  0.428(43)  0.4779(82)  0.423(15)

PHYSICAL REVIEW D 68, 014501 (2003)

perturbation theory should be modified in the quenched
theory [49]. We have applied the modified relation to the

{% matrix clements and found that the cffect is large. rang-
ing between 20% and 100% in magnitude. For example,
the renormalized (Qg)o on a 24°X32 lattice increases in
magnitude to —0.154(17), —0.182(16), —0.144(11),
—0.1238(90), and —0.0969(72) at m,=0.02, 0.03, 0.04,
0.05, and 0.06, respectively. (This modification has been
tested also in the case of the staggered fermion [50], and an
increase of (Q) of a similar magnitude has been observed.)
In terms of &'/e, the modified relation leads to
= 1.70(53). —0.53(51), —1.48(32), —2.09(26), and
—2.85(19) for /\f“=325 MeV. The modification increases
the value of £ /¢, but it is still negative. A complete analysis
still remains to be made both in the theoretical analyses of
the relation in quenched chiral perturbation theory and in
numerical simulations,

VI, CONCLUSIONS

In this paper we have presented results of our investiga-
tion into the reduction method in the framework of chiral
perturbation theory at the lowest order to calculate the K
— 77 decay amplitudes. The K— 7 and K— 0 hadronic ma-
trix clements of four-quark operators were calculated in a
quenched numerical simulation using domain-wall fermion
action for quarks and an RG-improved gauge action for glu-
ons to satisfy the requirements of chiral symmetry on the
lattice. We have seen that the calculation of quark loop con-
tractions which appear in Penguin diagrams by the random
noise method works successfully. As a result the A7=1/2
amplitudes which require subtractions with the quark loop
contractions were obtained with a statistical accuracy of
about 10%. We have investigated the chiral propertics re-
quired for the K— 7 matrix elements. If we leave aside

¢ we have found no strong sign for the existence of the
chiral symmetry breaking cffect within the statistical preci-
sion of our data in the range of quark masses employed in
our simulations. However, Q\”” appears to show an excep-
tionally large chiral symmetry breaking effect compared to
other channcls. It is not clear to us if this is an effect beyond
statistical fluctuation. For the definite conclusion on this
point, more data, particularly at smaller quark masses, will
be needed. Matching the lattice matrix elements to those in
the continuum at = 1/a with the perturbative renormaliza-
tion factor to onc loop order, and running to the scale u
=m.= 1.3 GeV with the renormalization group, we obtained
all the matrix clements needed for the decay amplitudes. Un-
fortunately the physical amplitudes thus calculated show un-
satisfactory features.

One of the pathologies of our results is a poor enhance-
ment of the A/=1/2 decay amplitude; the valuc of Re 4, is
about 50-60 % of the experimental one in contrast to Re A,
which reaches the expected value in the chiral limit. Another
deficiency is a small valuc of the A7/=1/2 contribution to
e'/e; if we assume that the A/=3/2 contribution has a cor-
rect order of magnitude, the A/=1/2 contribution is too
small by about a factor of 5 to explain the experimental value
=2X1073.
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TABLE XV. Values of Re A, Re 45, and w™' obtained at each mya for both lattice sizes, with A%= 325, 215, and 435 MeV.

16 % 32 243X 32
Re Ao[ 107%GeV] Re 4,[107%GeV] ! Re Ay[1073GeV] Re 45[ 107%GeV] w™!

AR=325 MeV

0.02 13.1(1.4) 1.867(22) 7.01(78) 10.80(69) 1.8689(62) 5.78(37)
0.03 9.45(84) 1.992(17) 4.75(43) 9.90(69) 2.0129(74) 4.92(35)
0.04 10.42(68) 2.114(15) 4.93(33) 8.26(45) 2.1006(68) 3.93(22)
0.05 7.66(49) 2.188(14) 3.50(22) 7.61(38) 2.1792(64) 3.49(17)
0.06 7.52(40) 2.267(13) 3.32(17) 7.86(28) 2.2527(61) 3.49(12)
Afg=215 MeV

0.02 12.5(1.4) 1.911(23) 6.55(72) 10.40(66) 1.9130(63) 5.43(34)
0.03 9.12(81) 2,039(18) 4.47(40) 9.59(66) 2.0602(76) 4.66(32)
0.04 10.04(64) 2.164(16) 4.64(31) 8.01(43) 2.1500(70) 3.72(20)
0.05 7.41(47) 2.240(14) 3.31Q21) 7.38(36) 2.2306(65) 3.31(16)
0.06 7.30(38) 2.321(13) 3.15(16) 7.60(26) 2.3058(63) 3.29(12)
AR=435 MeV

0.02 13.7(1.5) 1.821(22) 7.52(84) 11.20(72) 1.8228(60) 6.14(40)
0.03 9.78(89) 1.943(17) 5.03(46) 10.18(73) 1.9635(72) 5.19(38)
0.04 10.80(71) 2.062(15) 5.24(35) 8.50(48) 2.0489(67) 4.15(23)
0.05 7.87(51) 2.134(14) 3.69(24) 7.82(40) 2.1254(62) 3.68(19)
0.06 7.74(42) 2211(12) 3.50(19) 8.11(29) 2.1970(60) 3.69(13)

The hadronic matrix elements for A/= 1/2 involve signifi-
cant subtractions. For some of the matrix clements, this re-
sults in flips of sign and a reduction in the magnitude. Hence
insufficient choices of lattice parameters in simulations may
lead to sizable systematic errors in these matrix clements.
Possible origins of the errors are (i) finite fifth-dimensional
size Ng of the domain wall fermion, (ii) finitc spatial size

25 . . . : . . .
Re A, [10™°GeV]
20t
0 16°x32
m 24’32
W65/ - -~ - chiral log. .
J experiment —— quadratic
1.0 1 1 i 1 1 il I}
0 01 02 03 04 05 06 07 08
m,? [GeV]

N,, (iii) finite lattice spacing «, (iv) quenching effects, and
(v) the neglect of the charm quark. Our use of (vi) renormal-
ization factors in onc-loop order of perturbation theory is
another source of error in the renormalized matrix elements,
Finally (vii) higher order corrections in chiral perturbation
theory is also a possible source of error. It may well be that
the origin of the deficiency resides in physical phenomena

40 — r r r r ’ : .
Re A, [10°GeV]
e
: experiment

F ! s 4
‘ 016°x32

m24’x32
- - - - chiral log.
—— quadratic
20
10
0 J A 1 1 1 i 1 1 1
© 01 02 03 04 05 06 07 08
m,’ [GeV’)

FIG. 10. Re A4, (left) and Re A, (right) in units of GeV as a function of m3,. For chiral extrapolation, quadratic (solid) and chiral
logarithm (dashed) forms are used. For the former, fit errors are shown in the chiral limit. Filled and empty symbols are for the spatial
volume 24% and 163, respectively.
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3-5 T v L L) T T T L} T 12-0 L) L} L] T T T ] L L]
-8
30 | Re A, {107°GeV] | Re A, [10°GeV]
10.0 | T }
s ] RS
20 - 80} . 1
15}
s 6.0 | . .
ol --- 16x32 ] --- 1632
: — 24°x32 — 24%32
05 | | a0t l
0.0 20l |
-05 ;
ol 1 oo

1 2 3 4 5 6 7 8 9 10

FIG. 11. Breakdown of Re 4, (left) and Re A, (right) into contributions from the operators Q;(i=1,

1 2 3 4 5 6 7 8 9 10

.,10) at m,a=0.03. Data points

placed on horizontal lines show total values and crrors. The solid and dashed lines are for the spatial volurm. 24% and 16°, respectively.

such as the effect of o resonance which are difficult to take
into account once the reduction to K— & matrix clements is
made.
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APPENDIX A: DECOMPOSITION OF Q;’s INTO AI=1/2
AND A7I=3/2 PARTS

Four-quark operators which transform under the irreduc-
ible n.pn.ecntatlons of SU(3)L®SU(3)R chiral group and
having definite isospin /=0 or 2 arc given by

X3 = (sd) [ Quu) = (dd) ]+ (su)hud) . (AD)
M= (sd) [ (uu) +2(ddd), — 3(s5),]
+(su)(ud),, (A2)
0= (sd)(uu),— (su) (ud), | (A3)
A= (sd) [ (uu),+2(dd) ,+ 2(55),]
+(su)g(ud),, (A4)
1= (sd) [ g+ (dd) g+ (s9)g). KA. (AS)
= (sd) [ (ur) g (55) ]
—(su)(ud)g. W (A6)
Yia= (sd) [(un)g— (dd)g]
+(su)(ud)g, N, (A7)

where we use the notation of AX's and )’s for the Lorentz
structure L®L and L®R. The subscripts *“i,j” stand for the
representation (i ,j ) of the operator and the superscript (0)
or (2) denotes the isospin. A shorthand notation, c.g.,
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TABLE XVI. Fit parameters for Re d,,, ReAs, and @™ with §(,+§,m‘:‘,+ £&(m3,)* (quadratic fit) and
o+ ._E,mi,-*— §:mi,ln mi, (chiral logarithm fit). Results on a 24% X 32 lattice with Af\%= 325 MeV are shown.

243% 32 & £ & & x*/dof
quadratic ReAg[107*GeV]  16.5(2.2) —27.709.2) 21.8(8.8) 0.34
Re A5[ 107%GeV] 1.531(26) 1.62(12) —-0.86(13) 491
w™! 9.5(1.1) -18.2(4.6) 13.7(4.3) 0.13
chiral log. Redy| 107%GeV]  20.7(4.0) —11.4(2.8) 20.1(8.3) 0.50
Re A, 107¥GeV| 1.353(50) 0.977(31)  —0.82(11) 3.25
w™! 12.3(2.0) -8.0(1.5) 12.9(4.1) 0.26

(sd),=57,(1 = ¥s)d, is cmployed as in Egs. (2.17)-(2.21),
and J4{¢ cquals )4} with its color summation changed to
cross the two currents. In terms of these operators the inde-

pendent local operators are rewritten as
- l_x(m_{_ ]_/?0)_*_ l_ 0 4 l_/tc
Ql_2 8.1 1078 ]5( 271 3 27

_l_ 0) ]_'-0)_*_l 10)
2’ 8.1 10( 8.1

0>

. (A8)

y

15 27.1'*'5’ 27,15

(A9)
— ]X(()) I 2(())

Qa_i s,1+m 8,1 (A10)

< 0s=Y. (A1)
Qs=X1°, (A12)

1 )
0= 71+ Al (A13)
7 L3 T T T T T T
(32)
6| P +
-
.
51} £ ¥ 1
4+ .
3t D 16732 1
2432
2 F i
1+ |
0 1 1 1 1, ' il 1
0 01 02 03 04 05 06 07 08
m,f [GeVz]

! >
Oy= 5[34&:6'*' Yl

(A14)

Therefore the decomposition of the local operators into A/

=1/2 and A/=3/2 parts is summarized as follows:
Al=1/2:

1 — _ _ _
0 5[ = (s,dp) Cupn ) +2(s 1) (upd,)

+(54dy) 1 (dyd) L) (A15)
- _
oY= g[—(sd),‘(uu)L-f-2(su),_(ud)L
+(sd) (dd),]. (A16)
OV = (sd) [(uu),+(dd) + (s5),]. (A17)
©= (sudp)i[tpt1, )+ (dudp) L+ (555a)1].
(A18)
0= (sd) [ (u) g+ (dd) g+ (55)g), (A19)
7 T T T T - T T
6t p? -
0 16°x32
5| »24%32 -
4 }: -
| § § 3
| 1 _
1_ -
00 01 o0z ofa of4 05 ofs 07 08
m? [GeV

FIG. 13. PG (lcft) and P (right) as a function of m?,. Empty and filled symbols are for the spatial volume 16% and 243, respectively.
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sl m24%32 |
| ¥ % ¢
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0.4
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FIG. 14, ¢'/e as a function of mi,. Empty and filled symbols
are for the spatial volume 16* and 243, respectively. Experimental
values quoted in Eq. (1.4) are also shown.

0= (5,dy) L[ 1) p+ (d o)+ (5p5)r]s (A20)

| R— — —_ = - -
0= S(sd), (un)g = (su) (ud) g = () (s5)x],
(A21)

1 — — — _
§0)= 5[(Sadb)L("b“a)R_ (sqttp) (1epdy)p

— (S4dp) (55 0)R], (A22)

1 _ _ —_ _ _
= 5[(sd)L(uu)L—(su)L(ud)L— (sd)(ss),].

(A23)
8 - T T T T T T 8
pe==xs  PRA P2
6 1 ---- 13 8
i — 232
4 4
2 2
[} [}
-2 L -2

FIG. 15. Breakdown of P©*? (left) and P*'? (right) into con-
tributions from the operators Q(i=3,...,10) at ma=0.03. Data
points placed on horizontal lines show total values and errors. The
solid and dashed lines are for the spatial volume 24° and 16°,
respectively.
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1 — _ _ _
o= 5[(5::“'[))1,(11!7"11)1._(Su“b)L(“bdu)L

= ($4dp)L(5p52)L],
AI=3/2:

(A24)

N D — R — S
Q(l"=Q(Z')=§[(sd)L(uu)L+(su)L(ud)L—(sd)L(dd)L],

(A25)
05'=0{"=0"=0¢"=0, (A26)
N P
(7')=5[(5d)L(“")R+(S")L(lld)n_(Sd)L(dd)R],

(A27)
I
Q§(~)= 5[(Sadb)L(”b"a)R+ (su"h)L("bda)R

~(Sudp)L(dyd )R], (A28)
(2) (2)_3 (2)
Oy —Q10_§Q1 5 (A29)

where color indices are understood within each current in the

operators with two color traces. The equivalence between
(2) (2) . . .

OV’ and Q5" is valid due to Fierz rearrangement, hence
=02 follows
9 10 .

APPENDIX B: EXPERIMENTAL INPUT PARAMETERS

We collect the input parameters which were used in our
numerical calculation [51,52].

Quark mass:  m,=5 MeV, m,;=8 MeV, (Bl)
m;=120 MeV, m,=13 GeV, (B2)
mp=4.2 GeV, m,=170 GeV. (B3)

Meson mass:  m;=139.6 McV, mg=497.7 MeV.

(B4)

Deccay constant:  f,=92.4 MeV, fx=113.1 MeV.

(BS)

a=eX/(47)=1/129 (at p=my),
(B6)

Coupling constant:

V2g,?
=182 _ 166X 1075 Gev2 (B7)
8myy

Gr

(my=280.2 GeV).
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TABLE XVII, Values of PU0, P and e'/e at cach ma for both lattice volumes, with A= 325,

215, and 435 MeV.

16" %32 24*%x 32

po piR £'1e[107) pum P /e[ 1077
ASR=325 MeV
0.02 0.1(1.2)  4.93(11) -6.3(1.5) 1.69(50)  4.923(45)  —4.21(64)
0.03 297(61)  S.084(88)  —2.74(78)  3.36(47)  4.944(49)  —2.06(60)
0.04 2.19(44)  5.291(70)  —4.03(56)  3.50(33)  5.200(41)  —2.21(41)
0.05 3.65(29)  5.416(59)  —2.30(37)  3.1926)  5.470(37)  —2.96(33)
0.06 342(22)  5.657(53)  —2.90(28)  3.01(19)  5.632(35)  —3.41(24)
AE=215 MeV
0.02 0.06(94) 371387  —4.7(1.2) 1.3441)  3.70736)  —3.07(52)
0.03 238(50)  3.815(70)  —1.86(63)  2.70(38)  3.701(39)  —1.31(49)
0.04 1.74(36)  3.962(56)  —2.89(45)  2.81(26)  3.892(33)  —1.40(33)
0.05 2.93(24)  4.049(47)  —145(30)  2.56(21)  4.094Q27)  —1.9927)
0.06 275(18)  4.228(42)  —1.92(22)  241(16)  4211(28)  —2.34(19)
AGE=435 MeV
0.02. 0.1(1.4)  6.16(13) -7.8(1.8)  205(61)  6.150(54)  —5.33(78)
0.03 3.63(75)  6.36(11) —3.56(95)  4.09(58)  6.197(58)  —2.74(73)
0.04 267(54)  6.629(84)  —5.15(68)  4.26(40)  6.518(50)  —2.93(50)
0.05 4.43(36)  6.790(71)  —3.06(46)  3.88(32)  6.853(44)  —3.87(40)
0.06 4.16(27)  7.091(64)  —3.82(34)  3.65(24)  7.059(42)  —4.43(29)

Quantities relevant

to Kaon decays: ReAdp=33.3%X10"% GeV, (BS)

ReA>=1.50X10"% GeV, (B9)
|w| =0.045, (B10)
Q. =0.25, (B11)

le]=2.280% 1073, (B12)

CKM eclements: |V, ]=0.22, |V, 4=0.974, (B13)
Im(VAV,)=1.3%X10"% (B14)

:Vl(l
Re7=—Re| — =0.002. (B15)

us” ud

APPENDIX C: RENORMALIZATION FACTORS AND
RG-EVOLUTION MATRIX

In this appendix, we summarize the renormalization fac-
tors and the RG-evolution matrix, and calculate their numeri-
cal values for our choice of paramecters. Throughout this pa-
per, we employ the perturbative calculation in MS scheme
with NDR.

The renormalization formula has the form

(0)"(g*)= Z8(g*a Q™) (1a)
+ ZMq*a ) Qpe(a), (ch

where

latt — (Q3+Q5)

Qpc||=Q4+Q6__N_— (N.=3: No. of color)
¢

(C2)

is the sum of contributions from penguin operators. Since
our matrix elements arc obtained in the form of propagator
ratios, 2% and Z™" ar¢ also ratios of the renormalization
factors Zf; and Z§" calculated from corrcsponding vertex
functions and that of the local axial current Z; [43]:

Zg 7 })cn
2=y 2= (€3)
Z3 z;

The diagonal parts Z%; arc given by
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213 , Zetcoo .
1+ ——|=In(g*a)"+ i=12349.10,
17' N“
8 = { g2 3 * V21 . i=5.7
Z“— |+ ]67}.2 _’Ntln(ll (l) +-|_U21 " 1=,/ (C4)
-9 2l
g |3WN:=-1) ) .
J+ —— | —————In(¢*u)"+z,+v4]. i=6,8,
\ 167.-[ N 2
while for off-diagonal parts, one has
( gz,[— 2 ngtay+ ] (1,/)=(12).(2.1),(3,4).
16w Ne
(4,3),(9,10),(10,9),
. 2 ,, Samnituy—Up ,
z8={ - 3n(g*a)’+ 7 , i=(5,6).(7.8), (C5)
- c
g _
- ——=N.v,, i=(6,5).(8,7),
167
\ 0, others.
i
Simi[arly the contributions from the penguin operators [45] M=1.41979, (C9)
are given by
2= & Co a2 (C6) R o
o1ew? 3 L
z,=—13.612, z_=-10.319, (C11)
whcre C2= l.C3=2,C4=C6=NI.C8=C|0=N"—:‘Vd/z.CQ
=—1, and C;= 0 for other j with N, N, N, being the num-
ber of flavors, up-like quarks, and down-like quarks in Q;’s. _
and z0*" are constants. In our calculation, we should set N, z;==10.063, z,=—16.125, (€12)
=3,N,=1, and N,=2, Finally the axial vector renormaliza-
tion constant has the form
vp=8, vy=1, (C13)
Zy=1+2—-,. (C7)
127" 4.494 (for i=23579)
ZPeh= (C14)

In the above z. .z} ,2,05.v5, and z 4 arc constants de-
pending on the choices of simulation parameters and renor-
malization scheme. With the usce of mean ficld improvement
at one-loop level, we obtain the following values [46] at 8
=2.6 and M= 1.8 for the RG-improved gauge action:

g =gis(1/a)=2273, (C8)

“i 7 13.494 (for i=4.6,8,10).

From the definition of QP", ZP" can be written in the form
of a 10X10 matrix Z™", defined as ZN"=Z0"=
— YN, Z0"=Z0"=20", and ZF"=0 for other j. The
renormalization factor can then be summarized as a 10X 10
matrix given by
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284 Zrn
" 09997 —0.0350 0 0 0
~0.0350 09997 —0.0106 0.0318 —0.0106
0 0 09785 00287 —0.0212
0 0 —00597 10739 —0.0247
0 0 0 0 1.0154
oo 0 —0.0247 00742 —0.0884
0 0 0 0 0
0 0 0 0 0
0 0 0.0106 —0.0318 0.0106
L o 0 0 0 0

For the derivation of the RG-cevolution matrix, we start
with constructing the renormalization group equation (RGE)
of W(u)’s, and hence of U(u,1/a)’s. If we write the renor-
malization of Q; as Q§°‘=Z,-jQ_,~ where the superscript (0)
indicates the value at tree level, RGE for Q;’s are rcadily
obtained as

., d
dlnﬂQi—_'Yiijv ‘}’=(Z I Z) (Cle)

On the other hand, interpreting W¥;’s as coupling constants in
the effective Hamiltonian, renormalization of W;’s is pos-
sible, W\%= Z;W;, in place of that of Q;’s. From the
equlvalcncc of these renormalizations, Z¢=(Z~")7 follows.
Therefore using Eq. (C16) we obtain

T
Tz =

hence

d
_U.. = Ty, K
(Iln/.l,Uu(lL’]/a) (')’ )I"Uk'[(/"”l/a)' (CI7)

Using the 10X 10 anomalous dimension matrix vy, defined in
Eq. (C16), the RGE for U(u,1/a) has been solved for the
QCD g function and anomalous dimension 7y calculated at
next to leading order [53,54]:

(C18)

PHYSICAL REVIEW D 68, 014501 (2003)

0 0 0 0 0
0.0318 0 0 0 0
0.0636 0 0 0 0
0.0742 0 0 0 0
—0.0924 0 0 0 0
1.0190 0 0 0 0
0 1.0154  —0.0924 0 0
0 —0.0637 0.9448 0 0
—-0.0318 0 0 0.9997 —0.0350
0 0 0 —0.0350 0.9997 o
(C15)
I
[IN.—2N,
ﬁ()_—'3—,
34
Bi= N' N Np=2CeNy,
(C19)
9 a 2
eas,a)=7vs(g)+ 7 -T(g), (C20)
a
2y A(0) (Hf =S
Ys(87)=7s 47_'*'75 (417) , (c2n
©) 4 (1) 2
T(g?)=7" 477“ . (C22)
The solution at this order is written as
Ulpy g, @)= Ulpy ) + 3 R(m M2). (C23)
Using the matrix ¥ that diagonalizes the ,y(())r’ we obtain
diag[ ¥91=V""¥ TV and G=V""'¥"TV. Then,
0) ag(pmy) )
Uy p2) = Uy, )+ === U (py p12)
as(pa)
—77(0) -
UD ()=, (C24)
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’

a2 )) o' R

U‘O) M =V(
(p) . Ha) st

J=VHV!,

(0) Bl Gl}

Hij= 282 2 ) _ 0"
By 2Botvpi— Yo;

ii= 9 Ypi

Moreover, with MO =p =107y

27 .
R(.ux,#:)=—EV K™ (. p2)
|3
+E§| K?”(#l,#z) vl
2B,M;"
K(O)(#l-/‘-z)ij= IT]} (0),!7
Ypi ~ Yp;j — 2Bo
X (as(#z))f&'/ﬁp" 1
as(puy) ag(uy)
( ag( #2)) T
as(p)) ag(pa)]’

(C25) K‘ll)(#lvﬂl)ijz
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2BM) [( ag #;)) 7y 260

‘I?i)_ 7(0‘;) asti)
(),
as( ) Yri"Po
C26 —| ==
(C26) (“s(#l)) ' o
(C27) M(])= V—I( ,yil)T_ %yi,())T_*_[ 'yf-stJ] V,
(C31)
Ky, p2)= = ag(ua) KOy, p0) H. (€32)
(C28)
Ky p2)= ag( ) HK Oy ). (€33)

where u,=p.=1.3 GeV, and p,=1/a.

Using the wvalue of the strong coupling constant
ay>(1/a)=030171 and ay>(1.3 GeV)=0.39601 with
1\%= 372 MeV, together with 7 functions presented in Ref.
[41], we obtain the matrix U(m,,1/a,a) given in Eq. (C23)

(U Ym N a)]”

f 0.9738 0.0730  0.0035 —0.0003
0.0731 0.9736 —0.0024 0.0149
0 0 0.9794 0.1043
0 0 0.0731 1.0105
0 0 —0.0083 —0.0065
B 0 0 —0.0090  0.0228
0 0 0 0
0 0 0 0
0 0 0.0021  —0.0149
0 0 —0.0035 —0.0001

(€29) and the RG-evolution matrix:
|

—0.0033 —0.0002 0.0005 0 0.0005 0.0001 1
—0.0053 0.0l16 0.0002 0 0.0001 0.0001
—0.0212  0.0247 —0.0002 0 —-0.0006 —0.0001
—0.0186 0.0306 —0.0005 0 —0.0004 0

1.0465 —0.0996  0.0005 0 0 0
—0.0421  0.7878 0 0.0007 0 0

0.0002 0 1.0349  —0.0929  0.0008 0

0 0.0004 —0.0367 0.7602 0.0001  —0.0001
0.0053 —0.0116 0.0009 0.0001 0.9750 0.0731
0.0032 0.0002 0.0006 0 0.0736 0.9740 J

(C34)
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In order to check the systematic error associated with the
matching procedurc above. we also employ an alternative
procedure in which the RG-cvolution is carried out in the
quenched theory from p>,=g* to p,=pu.=1.3 GeV where
matching to the N,=3 theory is made. For the quenched
RG-cvolution, the two-loop anomalous dimension matrix

7" is modified according to [54]

[ 7?5‘1 )]qncnchv:d=[ )'fql )]full_ A 'st‘l ! 5 (C35)

where A y{"’=diag[T,,T,.T';,T",,T's] with the 2X2 matri-
ces I';, which arc given by
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[2%)
F
o

2Ny
3N, 3

IN, 2N
3 3N.

(C36)

22N,

3N, 3

20CN, 4N,
3 N

<

(C37)

Note that N,=3 in this case. For the gauge coupling in the
quenched theory, we employ ay™(1/a)=0.180891 from Eq.
(C8), and 0213(1.3 GceV)=0.204 39 obtained by the two-

loop running with N,=0.
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