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Pentaquark baryon in anisotropic lattice QCD
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The pentaquark (5Q) baryon is studied in anisotropic quenched lattice QCD with renormalized
anisotropy as=at � 4 for a high-precision mass measurement. The standard Wilson action at � � 5:75
and the O�a� improved Wilson quark action with � � 0:1210�0:0010�0:1240 are employed on a 123 � 96
lattice. Contribution of excited states is suppressed by using a smeared source. We investigate both the
positive- and negative-parity 5Q baryons with I � 0 and spin J � 1=2 using a non-NK-type interpolating
field. After chiral extrapolation, the lowest positive-parity state is found to have a mass, m5Q � 2:25 GeV,
which is much heavier than the experimentally observed ���1540�. The lowest negative-parity 5Q state
appears at m5Q � 1:75 GeV, which is near the s-wave NK threshold. To distinguish spatially-localized 5Q
resonances from NK-scattering states, we propose a new general method imposing a ‘‘Hybrid Boundary
Condition (HBC),’’ where the NK threshold is artificially raised without affecting compact five-quark
states. The study using the HBC method shows that the negative-parity state observed on the lattice is not
a compact 5Q state but an s-wave NK-scattering state.
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I. INTRODUCTION

Quantum chromodynamics (QCD) is the fundamental
theory of hadron physics. It specifies elementary interac-
tions at the level of quarks and gluons, which serve as
building blocks to construct complicated interactions
among hadrons. At high energy, the QCD coupling con-
stant diminishes due to asymptotic freedom, and perturba-
tive QCD works well. At low energy, however, with the
growth of the QCD coupling constant, perturbation theory
breaks down, and the system is dominated by nonpertur-
bative effects.

One of the most important features of nonperturbative
QCD is color confinement, i.e., all hadrons are formed as
color singlet combinations of quarks and gluons. In the
conventional picture, mesons consist of a quark and an
antiquark, while baryons are made of three quarks. QCD,
however, allows more general hadrons, often called exotic
hadrons, which contain extra pairs of quark and antiquark,
or gluons. Possible candidates include multiquark hadrons,
glueballs, and hybrid hadrons. Experimental searches
found no manifestly exotic hadrons before the year 2002.
Therefore, the discovery of the manifestly exotic narrow
resonance ���1540� by LEPS group at SPring-8 has an
important impact on the hadron physics [1]. So far, many
experimental groups have confirmed the LEPS results [2–
5], and a few experiments have reported null results [6].

The discovered peak in the nK� invariant mass is cen-
tered at 1:54� 0:01 GeV with a width smaller than
25 MeV. It is confirmed to have baryon number B � 1,
charge Q � �1, and strangeness S � �1. It therefore has
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to contain at least one antistrange quark and its simplest
configuration is uudd �s, which implies that �� is a man-
ifestly exotic pentaquark state. Reference [4] claims that
�� must be isoscalar, since no ��� is observed in the
pK� invariant mass spectrum. We note that the experi-
mental search [1] of �� was motivated by a theoretical
prediction given in Ref. [7], and that �� had been consid-
ered several times in the history [8–10].

Numerous theoretical studies of pentaquark baryons
have appeared since its discovery [10–37]. One of the
important issues is the spin and parity of ��. Although
J� � 1

2
� is suggested in the original work of Ref. [7] based

on the chiral soliton model, there is no direct experimental
information available on spin and parity [38]. An educated
guess for the spin is J � 1=2, since the color-magnetic
interaction favors smaller spin states in general. There is,
however, no consensus on parity at all. Experimental de-
termination of the parity of �� happens to be quite chal-
lenging [39], while opinions are divided in theory [40,41].

Positive parity is supported by various model calcula-
tions, i.e., soliton models [7,10–13,42], chiral bag model
[14], the Jaffe-Wilczek’s diquark model [15], the Karliner-
Lipkin’s diquark-triquark model [16], some quark model
calculations [17–21], and other model calculations
[22,23]. Negative parity is supported by some other quark
model calculations [8,9,24–26], and QCD sum rules [29].

Lattice QCD provides us with the most powerful theo-
retical tool to study QCD in the nonperturbative regime. It
is expected to play an important role in revealing the real
nature of the pentaquark ��. In particular, the issues
concerning the existence of such an exotic state and of its
quantum number are the main objectives. Indeed, there are
several lattice QCD studies of pentaquarks available [43–
-1  2005 The American Physical Society
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48]. However, they have not reached a consensus yet.
Except for Ref. [45], all these calculations support that
negative-parity states are lighter than the positive-parity
ones and that positive-parity pentaquarks appear at the
mass above 2 GeV. References [43,44] claimed existence
of a bound negative-parity pentaquark, whereas Ref. [46]
has observed no evidence for narrow resonances. Although
Ref. [46] seems to present solid analysis, one may naively
explain the negative result by Ref. [46] as a consequence of
their choice of the NK-type interpolating field, which
would couple strongly to NK-scattering states. Therefore,
under these circumstances, it is important to use various
interpolating fields and accumulate more data to give a
precise prediction.

The aim of this paper is twofold. (i) We provide a high-
precision data on the pentaquark baryon �� by using the
anisotropic lattice QCD. (ii) We propose a new method,
which enables us to distinguish compact pentaquark states
from NK-scattering states and apply it to the negative-
parity pentaquark.

The paper is organized as follows. In Sect. II, we discuss
our choice of the interpolating field for the pentaquark ��,
and introduce the parity projection. We adopt the standard
Wilson gauge action at � � 5:75 on the 123 � 96 lattice
with the renormalized anisotropy � � as=at � 4. The use
of the anisotropic lattice is known to serve as a powerful
tool for high-precision measurements of temporal correla-
tors [49–52]. For quark action, we adopt O�a�-improved
Wilson (clover) action with four values of the hopping
parameter as � � 0:1210�0:0010�0:1240. We also employ
a smeared operator to enhance the low-lying spectra.

In Sect. III, we present our numerical results for both
positive- and negative-parity channels. For both cases, we
observe a rather stable plateau in the effective mass plot.
For the positive-parity case, we obtain, after the chiral
extrapolation, m5Q � 2:25 GeV, which is much heavier
than the observed ���1540�. For the negative-parity
case, we obtain m5Q � 1:75 GeV, which is rather close
to the empirical value. Our data thus suggest that the
negative-parity state is the ground state of the pentaquark
spectrum.

To clarify whether this negative-parity state is really a
localized resonance or not, we propose a new general
method with a new ‘‘hybrid boundary condition (HBC)’’
for the quark fields. Section IV is devoted to description of
the HBC method. In the HBC method, the spatial boundary
condition on the quark fields are artificially taken so that N
and K must have nonvanishing spatial momenta, while it
does not affect localized pentaquark states. As a conse-
quence, the HBC raises the s-wave NK threshold by a few
hundred MeV without changing the mass of a compact
pentaquark resonance state.

By applying the HBC method, we investigate the
negative-parity state further. Particularly, we examine dif-
ferences of the spectra between the two boundary condi-
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tions. We find that, in the effective mass plots, the plateau
is raised by about the same amount as the shift of the NK
thresholds. We therefore conclude that there is no localized

resonance state below
�����������������������
m2

N � ~p2
min

q
�

�����������������������
m2

K � ~p2
min

q
with

j ~pminj �
���
3

p
�=L. Thus the state observed under the stan-

dard boundary condition turns out to be an NK-scattering
state.

In Sect. V, a summary is given and possible implications
of our results are presented.
II. INTERPOLATING FIELD AND PARITY
PROJECTION

We consider a non-NK-type interpolating field for the
pentaquark �� as

O� � �abc�ade�bfg�uTdC!5de��uTfCdg��C�sTc ��; (1)

where � denotes the Dirac index, and a-g are color indices.
C � !4!2 denotes charge conjugation matrix. The quan-
tum number of Eq. (1) is spin J � 1=2 and isospin I � 0.
This non-NK-type interpolating field in Eq. (1) was
adopted in Refs. [29,44,45]. In a practical lattice QCD
calculation, it is important to pick up such operators that
have reasonable overlaps with the state of concern. We
adopt Eq. (1) as an attempt to reduce the overlap with NK-
scattering states as a crucial difference from Ref. [46]. The
relation between the NK-type operator and Eq. (1) is
shown in the Appendix using explicit Fierz rearrange-
ments. Of course, we should keep in mind that any inter-
polating field in principle couples to any physical states
with the same quantum number in interacting quantum
field theories. To construct the ideal operator, which does
not couple to NK-scattering states, it is necessary to resort
to the variational method, i.e., constructing a correlator
matrix and performing its diagonalization [48]. Since it
requires a significant numerical cost, we do not follow this
direction in this paper.

Under the spatial reflection, the quark fields transform as

q�t; ~x� ! �!4q�t;� ~x�: (2)

By inserting this relation into Eq. (1), we obtain the spatial
reflection property of Eq. (1) as

O�t; ~x� ! �!4O�t;� ~x�: (3)

Since Eq. (1) transforms in exactly the same manner as the
quark fields, the intrinsic parity of Eq. (1) is positive.
Although the intrinsic parity of Eq. (1) is positive, it
couples to negative-parity states as well [53]. For definite-
ness, we adopt the Dirac (‘‘nonrelativistic’’) representation
of the Dirac gamma matrices in this paper [53]. In this
representation, one sees that the upper (lower) component
creates positive (negative) parity states. In addition, in
lattice formulation with limited temporal extension, it
creates backwardly-propagating state with opposite parity.
-2
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In order to explain our strategy of parity projection, we
consider the asymptotic behavior of the zero-momentum
projected correlator as

G���t� �
1

V

X
~x

hO��t; ~x� �O��0; ~0�i; (4)

in large t and large Nt � t regions. (V and Nt refer to the
spatial volume and the temporal size of the lattice, respec-
tively.) In this region, the correlator is assumed to be
dominated by the lowest-lying states of each parity, and
is decomposed into two parts in the following manner [53]:

G����t� � P��C�e
�m�t � C�e

�m��Nt�t��

� P��C�e�m�t � C�e�m��Nt�t��; (5)

where the choice of ‘‘�’’ depends on the boundary condi-
tion of quark fields in imaginary time, i.e., ‘‘�’’ for peri-
odic boundary condition and ‘‘�’’ for antiperiodic
boundary condition. m� and m� refer to the energies of
lowest-lying states in positive- and negative-parity chan-
nels, respectively. P� � �1� !4�=2 work as projection
matrices onto the ‘‘upper’’ and the ‘‘lower’’ Dirac subspa-
ces, respectively.

We consider the first term in Eq. (5). In the region 0 �
t� Nt=2, C�e�m�t is expected to dominate the correlator,
whereas, in the region Nt=2 � t� Nt, C�e

�m��Nt�t� is
expected to dominate the correlator. In the intermediate
region, i.e., t� Nt=2, the contributions from both terms
cannot be negligible. The second term in Eq. (5) behaves in
a similar manner. In this way, by confining ourselves to the
region 0 � t� Nt=2, we can suppress the backward
propagations. Then, by applying the projection matrices
P��� to G�t�, we can pick up the positive- and negative-
parity states separately.

One may point out that the perfect suppression of the
backwardly-propagating degrees of freedom can be
achieved by summing up G��� and G���, which is some-
times used for ordinary ‘‘three-quark’’ baryons at
quenched level. However, in the case of pentaquark, this
may not work even in quenched level, because the five-
quark system can decompose into N and K so that N may
propagate forward whereas K may propagate backward or
vice versa [48]. We note that yet another prescription is
adopted in Ref. [44,54].
III. NUMERICAL RESULT ON THE 5Q SPECTRUM

A. Lattice parameter set

To generate gauge field configurations, we use the stan-
dard plaquette action on the anisotropic lattice of the size
123 � 96 as
034001
SG �
�
Nc

1

!G

X
s;i<j�3

ReTrf1� Pij�s�g

�
�
Nc
!G

X
s;i�3

ReTrf1� Pi4�s�g; (6)

where P,-�s� 2 SU�3� denotes the plaquette operator in
the ,---plane. The lattice parameter and the bare anisot-
ropy parameter are fixed as� � 2Nc=g

2 � 5:75 and !G �
3:2552, respectively, which reproduce the renormalized
anisotropy as � � as=at � 4 [49]. Adopting the
pseudoheat-bath algorithm, we pick up gauge field con-
figurations every 500 sweeps after skipping 10 000 sweeps
for the thermalization. We use totally 504 gauge field
configurations to construct the temporal correlators. The
lattice spacing is determined from the static quark potential
adopting the Sommer parameter r�1

0 � 395 MeV (r0 �
0:5 fm) as a�1

s � 1:100�6� GeV (as ’ 0:18 fm). Hence
the lattice size 123 � 96 amounts to �2:15 fm�3 �
�4:30 fm� in the physical unit.

For quark fields  and � , we adopt the O�a�-improved
Wilson (clover) action on the anisotropic lattice as [50]

SF �
X
x;y

� �x�K�x; y� �y�;

K�x; y� � 1x;y � �tf�1� !4�U4�x�1x�4̂;y

� �1� !4�U
y
4 �x� 4̂�1x�4̂;yg

� �s
X
i

f�r� !i�Ui�x�1x�î;y

� �r� !i�U
y
i �x� î�1x�î;yg

� �scE
X
i

4i4Fi41x;y � r�scB
X
i>j

4ijFij1x;y; (7)

where �s and �t denote the spatial and temporal hopping
parameters, respectively. F,- denotes the field strength,
which is defined through the standard clover leaf-type
construction. r denotes the Wilson parameter. cE and cB
denote the clover coefficients. To achieve the tadpole
improvement, the link variables are rescaled as Ui�x� !
Ui�x�=us and U4�x� ! U4�x�=ut, where us and ut denote
the mean-field values of the spatial and temporal link
variables, respectively [50,51]. This is equivalent to the
redefinition of the hopping parameters as the tadpole-
improved ones (with tilde), i.e., �s � ~�s=us and �t �
~�t=ut. The anisotropy parameter is defined as !F �
~�t=~�s, which coincides with the renormalized anisotropy
� � a4=a7 for sufficiently small quark mass at the
tadpole-improved level [50]. For given �s, the four pa-
rameters r, cE, cB, and �s=�t should be, in principle, tuned
so that ‘‘Lorentz symmetry’’ holds up to discretization
errors of O�a2�. Here, r, cE, and cB are fixed by adopting
the tadpole-improved tree-level values as
-3



TABLE I. Parameters of the lattice simulation. The spatial lattice spacing a4 is determined with r�1
0 � 385 MeV for the Sommer

parameter. The mean-field values of link variables (u4 and u7) are defined in the Landau gauge. �c denotes the critical value of �.

� !G as=at a�1
s [GeV] Size Nconf u4 u7 !F �c Values of �

5.75 3.2552 4 1.100(6) 123 � 96 504 0.7620(2) 0.9871(0) 3.909 0.12640(5) 0.1240, 0.1230, 0.1220, 0.1210
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r �
1

�
; cE �

1

u4u
2
7
; cB �

1

u3
4
: (8)

Only the value of �4=�7�� !F � �u4=u7�� is tuned non-
perturbatively by using the meson dispersion relation [50].
It is convenient to define � as

1

�
�

1

~�4
� 2�!F � 3r� 4�; (9)

then the bare quark mass is expressed as m0 �
1
2 �1=�� 8�

in the spatial lattice unit in the continuum limit. This �
plays the role of the hopping parameter ‘‘�’’ in the iso-
tropic formulation. For detail, see Refs. [50,51], from
which we take the lattice parameters. The values of the
lattice parameters are summarized in Table I.

We adopt four values of the hopping parameter as � �
0:1210, 0.1220, 0.1230, and 0.1240, which correspond to
m�=m8 � 0:81 , 0.77, 0.72, and 0.65, respectively. For
temporal direction, we impose antiperiodic boundary con-
dition on all the quark fields. For spatial directions, unless
otherwise indicated, we impose periodic boundary condi-
tion on all the quarks. We refer to this boundary condition
as ‘‘standard (spatial) BC.’’

By keeping �s � 0:1240 fixed for s quark, and by
changing � � 0:1210� 0:1240 for u and d quarks, we
perform the chiral extrapolation to the physical quark
mass region. In the following part of the paper, we will use

��s; �� � �0:1240; 0:1220�; (10)

as a typical set of hopping parameters in presenting corre-
lators and effective mass plots. For convenience, we sum-
marize masses of �, 8, K, and N for each hopping
parameter � together with their chirally extrapolated val-
ues in Table II. Here, the chiral extrapolations of these
particles are performed with a linear function in m2

�.
Unless otherwise indicated, we adopt jackknife prescrip-
tion to estimate statistical errors.
TABLE II. Masses of �, 8, K, and N for each hopping
parameter � in the physical unit GeV. �phys: ’ 0:1261 denotes
the value of � which achieves m� ’ 0:14 GeV.

� 0.1210 0.1220 0.1230 0.1240 �phys:

m� 1.005(2) 0.898(2) 0.784(2) 0.656(3) 0.140
m8 1.240(3) 1.161(3) 1.085(4) 1.011(5) 0.850(7)
mK 0.845(2) 0.785(2) 0.723(2) 0.656(3) 0.474(2)
mN 1.878(5) 1.744(5) 1.604(5) 1.460(6) 1.173(9)
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We make a comment on the ambiguity arising from a
particular choice of introducing a scale. In this paper, we
adopt the Sommer parameter r0 to set the lattice spacing
as � 1:100�6� GeV. However, if we adopt hadronic quan-
tity such as mK� � 0:8939 GeV to determine as as in
Refs. [50,51], we have as � 1:053�13�. In this case, except
for the pion mass, chirally extrapolated values of m8, mK,
and mN receive corrections. However, the amount of these
corrections are found to be less than 5%.

In order to enhance the low-energy contributions, we use
a smeared source. This is achieved by employing a spa-
tially extended interpolating field of the Gaussian size 8 ’
0:4 fm in the Coulomb gauge, which is obtained by replac-
ing the quark fields q�x� in Eq. (1) by the smeared quark
fields qsmear�x� defined as

qsmear�t; ~x� � N
X
~y

exp
�
�

j ~x� ~yj2

282

�
q�t; ~y�; (11)

where N is an appropriate normalization factor. For prac-
tical use, we extend Eq. (11) appropriately so as to fit a
particular choice of the spatial boundary condition. In this
paper, we present correlators with a smeared source and a
point sink.

B. NK-scattering states for standard BC

The NK-scattering state with zero total momentum is
obtained as J � 1=2 projection of the following state:

jN� ~p; s�K�� ~p�i � jN�� ~p; s�K� ~p�i; (12)

where ‘‘�’’ is for s-wave and ‘‘�’’ for p-wave. s denotes
the spin degrees of freedom of the nucleon. In finite spatial
box of the size L3, the allowed momentum is quantized as

~p �
2�
L
~n; ~n 2 Z3; (13)

due to the periodic boundary condition. By neglecting the
interaction between N and K, the energy of this state is
approximated as

E� ~p� ’
�������������������
m2
K � ~p2

q
�

�������������������
m2
N � ~p2

q
: (14)

For s-wave, the NK threshold is expressed as Eth � mK �
mN . On the other hand, for p-wave, since Eq. (12) vanishes
for ~p � ~0, the NK threshold starts from Eth � E� ~pmin�
associated with the minimum momentum

j ~pminj �
2�
L
: (15)
-4



TABLE III. Numerical values of NK thresholds (Eq. (14)) for
each hopping parameter � in the physical unit GeV, when spatial
lattice of the size is L ’ 2:15 fm. The rightmost column indi-
cated by ‘‘empirical’’ corresponds to the thresholds calculated
for the physical masses of N and K, mN � 0:94 GeV and mK �
0:5 GeV. The first and the second rows show the NK thresholds
for the s-wave and p-wave states, respectively, when the standard
BC is imposed. The third row shows the NK thresholds for the
HBC. In the HBC, the s-wave and p-wave NK thresholds
coincide.

� 0.1210 0.1220 0.1230 0.1240 empirical

s-wave 2.723 2.528 2.327 2.116 1.440
p-wave 2.987 2.809 2.629 2.442 1.865
HBC 2.924 2.743 2.558 2.367 1.770
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Numerical values of these NK thresholds for each hopping
parameter � are presented in Table III.

C. The pentaquark correlators

In Fig. 1, we show the effective mass plot for the
positive-parity channel, which is obtained from the corre-
lator with a smeared source and a point sink adopting
Eq. (10). The dotted line denotes the p-wave NK threshold
for the spatial lattice size L ’ 2:15 fm.

The effective mass is defined as

meff�t� � log
�

G�t�
G�t� 1�

�
; (16)

where G�t� denotes the correlator. At sufficiently large t,
contributions from excited states diminish, and the corre-
lator is dominated by a single state with energy m as
2.5

3.0

3.5

4.0

 10  20  30  40

m
ef

f(
t)

 [
G

eV
]

t [at]

5Q(Jπ=1/2+)

FIG. 1. The effective mass plot of positive-parity pentaquark
(5Q). Equation (10) is adopted as a typical set of hopping
parameters. The statistical error is obtained with jackknife error
estimate. The solid line denotes the result of the single-
exponential fit performed over the interval 25 � t � 35. The
dotted line denotes the p-wave NK threshold energy correspond-
ing to the spatial lattice size L ’ 2:15 fm.
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G�t� � Ae�mt. Then Eq. (16) gives a constant effective
mass as meff�t� �m. Thus a plateau can be served as an
indicator of the single-state saturation. One is then allowed
to perform the single-exponential fit in the plateau region.

In the region 0 � t & 25 in Fig. 1, the effective mass
meff�t� decreases monotonically, which implies that the
higher spectral contributions are gradually reduced. We
find a plateau in the interval 25 & t & 35, where the
single-state dominance is expected to be achieved.
Beyond t� 35, the data becomes too noisy. In addition,
it is expected to receive the contribution from backwardly-
propagating negative-parity state as mentioned before.
Hence, we simply neglect the data for t * 35, and perform
the single-exponential fit of the correlator with f�t� �
Ae�mt in the plateau region, 25 � t � 35. The solid line
denotes the best-fit result.

In Fig. 2, we show the effective mass plot for the
negative-parity channel adopting Eq. (10). The dotted
line denotes s-wave NK threshold. In the small t region,
i.e., t & 25, meff�t� decreases monotonically, and we see a
rather stable plateau at 25 & t & 35. The single-
exponential fit at 25 � t � 35 gives the solid line.

As mentioned before, � � 0:1240 is kept fixed for s
quark, and � � 0:1210� 0:1240 are varied for u and d
quarks to perform the chiral extrapolation. In Fig. 3, the
masses of positive (triangle) and negative (circle) parity
pentaquark states are plotted against m2

�. The open sym-
bols denote the direct lattice data. Since these data behave
almost linearly inm2

�, the chiral extrapolation is performed
with a linear function. Such a linear behavior against m2

� is
also observed for ordinary non-PS mesons and baryons
[51]. The closed symbols denote the results of chiral
extrapolation. For convenience, we show p-wave (upper)
and s-wave (lower) NK threshold with dotted lines.
2.5

3.0

3.5

4.0

 10  20  30  40

m
ef

f(
t)

 [
G

eV
]

t [at]

5Q(Jπ=1/2-)

FIG. 2. The effective mass plot for negative-parity pentaquark
(5Q) for the typical set of hopping parameters (Eq. (10)). The
solid line denotes the result of the single-exponential fit per-
formed over the interval 25 � t � 35. The dotted line denotes
the s-wave NK threshold.
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TABLE IV. The masses of the lowest-lying pentaquark states
for each value of �. The first line corresponds to the positive-
parity state, and the second line to the negative-parity state.
�phys: ’ 0:1261 denotes the value of � which achieve m� ’ 0:14
GeV.

� 0.1210 0.1220 0.1230 0.1240 �phys:

� parity 3.18(4) 2.99(4) 2.80(6) 2.64(11) 2.25(12)
� parity 2.80(1) 2.59(2) 2.39(2) 2.17(3) 1.75(4)

1.5

2.0

2.5

3.0

3.5

0.0 0.5 1.0

m
5Q

 [
G

eV
]

mπ
2 [GeV2]

Jπ=1/2+

Jπ=1/2-

FIG. 3. The masses of the pentaquark states m5Q for both
parities plotted against m2

�. The triangles denote positive parity,
while the circles denote negative parity. The open symbols
denote the direct lattice QCD data, whereas the closed symbols
denote the results of the chiral extrapolation. The dotted lines
indicate the NK thresholds for p-wave (upper) and s-wave
(lower) cases.
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For the positive-parity state, the chiral extrapolation
leads to m5Q � 2:25 GeV, which is much heavier than
the experimentally observed ���1540�. For negative-
parity state, on the other hand, the chiral extrapolation
leads to m5Q � 1:75 GeV, which is rather close to the
empirical value. Our lattice QCD results thus support that
the negative-parity state is the lowest of the pentaquark
spectrum. Table IV summarizes masses of pentaquark
states of both parities for each hopping parameter together
with their chirally extrapolated values. We note that the
corrections of these values due to the previously mentioned
ambiguity of introducing a scale amount to less than 5%.
TABLE V. The hybrid boundary condition (HBC) imposed on
the quark fields. The second line shows the standard BC for
comparison.

u quark d quark s quark

HBC antiperiodic antiperiodic periodic
standard BC periodic periodic periodic
IV. THE NEW METHOD TO DISTINGUISH ��

AND NK

A. The hybrid boundary condition (HBC)

In the p-wave NK-scattering states, N and K have non-
zero minimum momenta as j ~pminj � 2�=L due to the
finiteness of the spatial box. As a consequence, the NK
threshold is raised by a few hundred MeV depending on the
034001
spatial volume. In studies of positive-parity pentaquark
states, we can utilize this volume dependence to distin-
guish localized resonances from NK-scattering states. In
contrast, in studies of negative-parity pentaquark states,
NK-scattering states are of s-wave, and N and K can have
zero momenta, i.e., j ~pminj � 0. Therefore, the NK thresh-
old has no explicit volume dependence and simply equals
to mN �mK, which is less convenient to distinguish com-
pact pentaquark resonance states from NK-scattering
states.

It would be of great worth, if we could find some
prescription to raise the s-wave NK threshold by changing
the spatial volume. This can be achieved by twisting the
spatial boundary condition in a flavor dependent manner as
follows. We impose the antiperiodic boundary condition on
u and d quarks, whereas the periodic boundary condition
on s quark. (See Table V.) We will refer to this spatial
boundary condition as ‘‘hybrid boundary condition
(HBC).’’

As a consequence of the HBC, hadrons feel the bound-
ary condition in their own ways. Since N(uud, udd) and
K(u�s, d �s) contain odd numbers of the u and d quarks, they
are subject to the antiperiodic boundary condition. In con-
trast, since ��(uudd �s) contain even numbers of u and d
quarks, it is subject to the periodic boundary condition.
Recall that, due to the finite size of the lattice, the allowed
spatial momenta are quantized as

pi �
�

2ni�=L for periodic BC
�2ni � 1��=L for antiperiodic BC;

(17)

with ni 2 Z. Hence, N and K acquire the nonzero mini-
mum momenta as

j ~pminj �

���
3

p
�
L

; (18)

even for the s-wave state. By comparing this with Eq. (15),
we see that HBC can raise the NK threshold like the p-
wave case (see Eq. (15)). In Table III, we also show NK
thresholds for the HBC. Note that, unlike the standard BC,
s-wave threshold and p-wave one coincide in the HBC. We
see, in Table III, that s-wave NK threshold is raised by
about 200–250 MeV in the range of 0:1210 � � � 0:1240
in our calculation.

On the other hand, a localized resonance ���uudd �s�
can have zero momentum as j ~pminj � 0 (see Table VI).
Therefore, the shift of m5Q comes only through the change
-6
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FIG. 4. The effective mass plots of .(uds) baryon under the
standard BC, and under the HBC. Equation (10) is adopted as a
typical set of the hopping parameters. The solid lines denote the
results of the single-exponential fit performed in the region 20 �
t � 30. No significant difference is observed between the two
results.

TABLE VI. The consequence of the HBC on the hadrons.

quark content spatial BC minimum momentum

N uud, udd antiperiodic ~pmin � �� �
L ;�

�
L ;�

�
L� j ~pminj �

���
3

p
�
L

K u �s, d�s antiperiodic ~pmin � �� �
L ;�

�
L ;�

�
L� j ~pminj �

���
3

p
�
L

�� uudd �s periodic ~pmin � �0; 0; 0� j ~pminj � 0
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in its intrinsic structure. In this case, the shift is expected to
be less significant than the shift due to the kinematic reason
as is the case in N and K. Now, if the spatial size of the
pentaquark state is sufficiently smaller than the spatial
lattice size L, then it is safely expected that the mass of
the pentaquark state is insensitive to the change of the
boundary condition.

B. Numerical result on substance of 5Q state

Before presenting the results for pentaquark states, we
have to convince ourselves that localized resonance states
are really insensitive to the change of boundary condition.
For this purpose, we apply the HBC to the .�uds� baryon,
which is an established localized resonance. We take .
rather than the nucleon, because . contains even numbers
of u and d quarks. Hence, . is subject to the periodic
boundary condition, and can have zero spatial momentum.
Therefore, if the mass of . is affected by the choice of the
BC, it is attributed to a change of intrinsic structure. In
Fig. 4, we show effective mass plots of . baryon correla-
tors adopting the typical set of hopping parameter Eq. (10).
The upper one corresponds to the standard BC, and the
lower one to the HBC. We see that the plateau is raised by
only a negligible amount due to the change of the boundary
condition. This example explicitly shows that localized
resonance states are insensitive to the change of the bound-
ary condition.

Now, we present the numerical result of negative-parity
pentaquark states. In Fig. 5, we show the effective mass of
negative-parity pentaquark imposing the HBC adopting
�s � 0:1240 and � � 0:1220. In the region 0< t & 25,
the effective mass decreases monotonically as before.
There is a plateau in the region 25 & t & 35. Beyond t�
35, the plateau breaks down due to the contributions from
backwardly-propagating positive-parity states. Hence, we
simply neglect the data for t & 35, and perform the single-
exponential fit in the plateau region, 25 � t � 35. The
solid line denotes the result of the single-exponential fit.
The dotted line denotes the modified NK threshold, i.e.,�����������������������
m2

N � ~p2
min

q
�

�����������������������
m2

K � ~p2
min

q
with j ~pminj �

���
3

p
�=L due to

the HBC.
Comparing Fig. 5 with Fig. 2, we observe that the

plateau is raised by about 200 MeV, which coincides
with the shift of the NK threshold. In Fig. 6, we compare
the result of HBC with that of standard BC for each
hopping parameter � for the negative-parity pentaquark
states. Closed circles denote the results obtained with best-
034001
fit analysis. Solid lines show the corresponding NK thresh-
olds. For all �, we see that the best-fit masses ( ’ the
location of the plateaus) are raised by about the same
amount as the corresponding NK thresholds. Therefore,
we find that there is no localized resonance states below�����������������������
m2

N � ~p2
min

q
�

�����������������������
m2

K � ~p2
min

q
with j ~pminj �

���
3

p
�=L. As a

result, we conclude that the negative-parity state observed
before is an NK-scattering state.
-7
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C. Comments

(i) The fully antiperiodic boundary condition is less
convenient for our purpose. In fact, in this case, K is
subject to the periodic boundary condition, whereas N
and �� are subject to the antiperiodic boundary condition.
Since K can have the zero momentum, the shift of the NK
threshold is smaller. In addition, �� must have nonzero
momentum, which raises the location of �� due to the
kinematic reason. It is easy to understand that the resulting
spectrum is less convenient for our purpose.

(ii) It is possible to use the HBC in the study of the
positive-parity state. However, since the change of the
minimum momenta amounts to only a minor modification
2.0

2.5

3.0

[G
eV

]

Standard BC Hybrid BC

κ=0.1210

κ=0.1220

κ=0.1230

κ=0.1240

FIG. 6. Comparison of results of standard BC (left-hand side)
and HBC (right-hand side) for each hopping parameter �. Closed
circles denote results obtained from the best-fit analysis. The
solid lines denote the corresponding NK threshold.

034001
from 2�=L to
���
3

p
�=L, the resulting change in the spectrum

is less significant than the negative-parity state.
(iii) The HBC provides us with a general tool, the use of

which is not restricted to the calculation of ��. For in-
stance, it can be used in the study of the hadronic mole-
cules. Hadronic molecules are bound state of two or more
hadrons. The binding energies are typically 10–50 MeV. In
the lattice QCD studies, the gap of 10–50 MeV may be too
small to confirm the existence of the bound state. Therefore
the HBC is useful by enlarging this gap to a few hundred
MeV.

(iv) Careful readers may point out that, besides the stable
plateau which we discussed, there is a small plateaulike
structure in Fig. 2 and Fig. 5 in the region 15 � t � 18.
However, this ‘‘plateau’’ is also raised by about 200 MeV
due to the HBC. This means that this region is not domi-
nated by a single state, and a possible reason of this shift
would be that contaminations of low-lying states becomes
reduced in the HBC. Still, the nature of this small plateau
cannot be determined from our data available so far. At any
rate, we can state that it does not correspond to the experi-
mentally observed ���1540�, because its location is rather
high m ’ 1:95 GeV even after the chiral extrapolation.
Note that we do not find such a plateaulike structure in
the effective mass plot with a point source and a point sink.

(v) HBC requires the quark propagators in antiperiodic
BC in addition to the ones in periodic BC. Therefore, from
the viewpoint of the numerical cost, the method is equiva-
lent to doubling the statistics.

V. SUMMARY AND DISCUSSION

We have studied the pentaquark baryon �� in aniso-
tropic lattice QCD at the quenched level. We have used the
standard plaquette action for gauge field configurations on
the anisotropic lattice of the size 123 � 96 with the renor-
malized anisotropy as=at � 4 at � � 5:75, i.e., as ’
0:18 fm, at ’ 0:045 fm. For quarks, we have adopted
O�a�-improved Wilson (clover) action with four values
of hopping parameters as � � 0:1210�0:0010�0:1240. To
enhance the low-lying spectra, we have adopted a spatially
extended operator.

We have used 504 gauge field configurations to con-
struct the correlator of a non-NK-type interpolating field.
For each parity channel, we have found a rather stable
plateau, where the single-exponential fit has been per-
formed. After the chiral extrapolation, we have found
m5Q � 2:25 GeV for positive-parity state, which is too
heavy to be accepted as the experimentally observed
���1540�. For negative-parity case, we have obtained
m5Q � 1:75 GeV, which is rather close to the empirical
value. Our data have thus suggested that the negative-
parity state is the lowest of the pentaquark spectrum.

In order to clarify whether this negative-parity state is a
localized resonance or not, we have proposed a new
method with HBC, where the antiperiodic spatial boundary
-8
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condition is imposed on the u and d quarks, while the
periodic spatial boundary condition is imposed on the s
quark. As results, N�uud; udd� and K�u �s; d �s�, both of
which contain odd numbers of u and d quarks, are subject
to the antiperiodic spatial boundary condition, whereas
���uudd �s�, which contains even numbers of the u and d
quarks, is subject to the periodic boundary condition. A
remarkable feature of the HBC is that it raises the s-wave
NK threshold by a few hundred MeV without affecting the
localized pentaquark resonance.

By using the HBC method, we have further investigated
the negative-parity state. We have found that the plateau is
raised by about 200 MeV due to the HBC, which is con-
sistent with the shift of the NK threshold. We conclude that

there is no localized resonance state below
�����������������������
m2

N � ~p2
min

q
������������������������

m2
K � ~p2

min

q
with j ~pminj �

���
3

p
�=L. It follows, in particu-

lar, that the negative-parity state observed in the standard
BC is a mere NK-scattering state.

In this way, we have not found any relevant signals of
narrow pentaquark states in both positive- and negative-
parity channels even with a non-NK-type interpolating
field. This result is similar to Ref. [46]. Of course, one of
the possible implications of these two results is that the
narrow resonance ���1540� observed in Refs. [1–5] does
not actually correspond to a resonance pole in S-matrix as
indicated by several null experimental results [6].
However, since the production mechanism of ���1540�
is still unclear, and since it may be afflicted with a strong
process dependence, we discuss possible implications sim-
ply assuming its existence.

Now, these two results suggest that �� may not be
reachable by a simple five-quark interpolating field opera-
tor in lattice QCD— it might have more complicated struc-
ture than expected. Needless to say, it is desirable to
examine the finite volume artifact and discretization error,
as usual. It is also desirable to reduce the ambiguity from
the chiral extrapolation. Concerning the light quark effects,
one might wonder that the dynamical quark effects might
be important, because the narrow resonance �� was origi-
nally predicted by the Skyrme model [7]. After all, the
Skyrmion is a nontrivial configuration of pion. However,
this argument is not quite correct, since the nucleon serves
as a counterexample. A nucleon is indeed the ground state
in the Skyrme model and thus contains a nontrivial con-
figuration of pion. It is however also fairly well reproduced
in quenched lattice QCD with conventional three-quark
interpolating field.

Besides this rather technical stuff, the difficulty may
trace back to our insufficient understanding of the true
nature of the pentaquark. It would be interesting to con-
sider the following possibilities.

(1) Highly nonlocal structure: If the structure of �� is
really the Jaffe-Wilczek type or the Karliner-Lipkin type, it
may be better to invent series of new nonlocal interpolating
034001
fields, which have sufficiently complicated structures so
that they can fit Jaffe-Wilczek/Kaliner-Lipkin pictures. In
this respect, the group theoretical construction of interpo-
lating fields proposed in Ref. [55] together with the varia-
tional method would be interesting. However, it should be
kept in mind that such an analysis could be quite nontrivial
on the lattice.

(2) Other quantum numbers: In most lattice QCD cal-
culations of ��, spin of �� is assumed to be 1=2. Naively,
one may expect that J � 3=2 state would be heavier than
J � 1=2 states. However, since there is no experimental
evidence on the spin of ��, it would be worth keeping J �
3=2 and 5=2 possibilities as candidates. We have to keep in
mind that the positive experiments and various theoretical
results suggest that �� is already a quite mysterious
particle. In addition, although there is no evidence on the
doubly charged ��� in the experiment [4], it might be
worth studying I � 1 and 2 states as well, which have been
suggested by Ref. [37]. Since we do not know the produc-
tion mechanism of the pentaquark, it might be better to
keep them as possible candidates.

(3) K�N heptaquark hypothesis: All the lattice QCD
calculations for �� available so far are based on the
quenched QCD. It is known that some hadrons are difficult
to be reproduced in the quenched QCD. For instance, it is
reported to be hard to reproduce /�1405� in quenched
lattice QCD as a three-quark bound state [51,56]. Indeed,
there is a conjecture that /�1405� may be a �KN bound state
[57,58]. If this is the case, /�1405� is a ‘‘pentaquark.’’
Hence, it would be natural that mass of /�1405� cannot be
properly reproduced in quenched lattice QCD with a stan-
dard three-quark interpolating field. Actually, ���1540�
itself is hypothesized to be a bound state of K�N, i.e., the
heptaquark [22,23,59]. If this is really the case, it would be
natural that ���1540� is difficult to be observed in
quenched lattice QCD with ‘‘ordinary’’ pentaquark inter-
polating fields. However, concerning the heptaquark pic-
ture, we should keep in mind that, in spite of its many good
features, the interaction among K�N system is said to be
too weak to make a bound state with the binding energy of
40 MeV.

In this way, it is necessary to perform more systematic
studies of the pentaquarks in order to reveal its mysterious
nature. The proper use of lattice QCD can help us proceed
in this direction.
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APPENDIX: REARRANGEMENTS OF EQ. (1)

The aim here is to provide the relations between the NK-type operator and Eq. (1). To this end, we use the Fierz
rearrangements. By using an identity �abc�bfg � 1cf1ag � 1cg1af, and by applying the Fierz identity to �uTfCd

g�C�sTc ,
Eq. (1) is rearranged as

�abc�ade�bfg�u
T
dC!5de��u

T
fCdg�C�sTc � �ade�u

T
dC!5de�f�u

T
cCda�C�sTc � �uTaCdc�C�sTc g

� �ade�uTdC!5de� �
1

4

�
�!5da��sc!5uc� � !5ua� �sc!5dc� � da� �scuc�

� ua� �scdc� � !,da� �sc!,uc� � !,ua��sc!,dc� � !5!,da� �sc!5!,uc�

� !5!,ua� �sc!5!,dc� �
1

2
4,-da� �sc4,-uc� �

1

2
4,-ua� �sc4,-dc�

�
; (A1)

where only the first and the second term factorize into the product of the simple local interpolating fields of N and K up to a
factor of !5. We see that Eq. (1) contains the NK-type interpolating field with a factor of 1

4 .
In Eq. (A1), u and d fields in K come from the pseudoscalar diquark operator. There is another contribution, where u and

d fields in K come from the scalar diquark operator. This is obtained by using the identity �abc�ade � 1bd1ce � 1be1cd and
by applying the Fierz identity to �uTdC!5d3�C�sTc in the following way:

�abc�ade�bfg�uTdC!5de��uTfCdg�C�sTc � �bfg�uTfCdg�f�u
T
bC!5dc�C�sTc � �uTcC!5db�C�sTc g

� �bfg�uTfCdg� �
1

4

�
�ub� �sc!5dc� � db� �sc!5uc� � !5ub� �scdc� � !5db� �scuc�

� !5!,ub� �sc!,dc� � !5!,db��sc!,uc� � !,ub� �sc!5!,dc�

� !,db��sc!5!,uc� �
1

2
4,-!5ub� �sc4,-dc� �

1

2
4,-!5db��sc4,-uc�

�
; (A2)

where only the first and the second terms contribute to the product of interpolating fields of N and K up to a factor of !5.
The nucleon interpolating field here has an unfamiliar form. Another Fierz rearrangement of this nucleon interpolating
field can make this into the familiar form, which provides an additional factor of 1

4 . Totally, the ‘‘direct’’ contribution of the
NK-type interpolating field to Eq. (1) in this case involves the factor of 1=16.

However, one should notice that there will be other factors contributing to the NK-type interpolating field arising from
other terms in Eq. (A1) and Eq. (A2). We note that a similar Fierz rearrangement is given in Ref. [46].
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