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Detailed analysis of the tetraquark potential and flip-flop in SU(3) lattice QCD
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We perform the detailed study of the tetraquark (4Q) potential V4Q for various QQ- �Q �Q systems in
SU(3) lattice QCD with � � 6:0 and 163 � 32 at the quenched level. For about 200 different patterns of
4Q systems, V4Q is extracted from the 4Q Wilson loop in 300 gauge configurations, with the smearing
method to enhance the ground-state component. We calculate V4Q for planar, twisted, asymmetric, and
large-size 4Q configurations, respectively. Here, the calculation for large-size 4Q configurations is done
by identifying 162 � 32 as the spatial size and 16 as the temporal one, and the long-distance confinement
force is particularly analyzed in terms of the flux-tube picture. When QQ and �Q �Q are well separated, V4Q

is found to be expressed as the sum of the one-gluon-exchange Coulomb term and multi-Y-type linear
term based on the flux-tube picture. When the nearest quark and antiquark pair is spatially close, the
system is described as a ‘‘two-meson’’ state. We observe a flux-tube recombination called a ‘‘flip-flop’’
between the connected 4Q state and the two-meson state around the level-crossing point. This leads to
infrared screening of the long-range color forces between (anti)quarks belonging to different mesons, and
results in the absence of the color van der Waals force between two mesons.
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I. INTRODUCTION

The interquark force is one of the elementary quantities
for the study of the multiquark system in the quark model.
Since the first application of lattice QCD simulations was
done for the interquark potential between a quark and an
antiquark using the Wilson loop in 1979 [1], the study of
the interquark force has been one of the important issues in
lattice QCD [2]. Actually, in hadron physics, the interquark
force can be regarded as an elementary quantity to connect
‘‘the quark world’’ to ‘‘the hadron world,’’ and plays an
important role to hadron properties.

In addition to the Q �Q potential [1–4], recent lattice
QCD studies clarify the three-quark (3Q) potential [5–8],
which is responsible to the baryon structure. In fact, our
group recently studied the 3Q potential V3Q in detail with
lattice QCD, and clarified that it obeys the Coulomb plus
Y-type linear potential [5–8]. However, no one knows the
interquark force from QCD in the exotic multiquark system
such as tetraquark mesons (QQ- �Q �Q ), pentaquark baryons
(4Q- �Q), dibaryons (6Q), and so on.

In these years, various candidates of multiquark hadrons
have been experimentally observed. 	��1540� [9–12],
����1862� [13], and 	c�3099� [14] are considered to be
pentaquark (5Q) states [15,16] because of their exotic
quantum numbers, although some high-energy experi-
ments report null results [17]. X�3872� [18–21] and
Ds�2317� [22,23] are expected to be tetraquark (4Q) states
[24–32] from the consideration of their mass, narrow
decay width and decay mode.
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These discoveries of multiquark hadrons are expected to
reveal new aspects of hadron physics, especially for the
interquark force such as the quark confinement force, the
color-magnetic interaction, and the diquark correlation
[33]. According to these experimental results, it is desired
to investigate the interquark force in the multiquark system
directly based on QCD [34– 42], which would present the
proper Hamiltonian for the quark-model calculation of
multiquarks [43–45].

As for the 4Q candidates, X�3872� was discovered in the
process B� ! K� � X�3872� ! K� � ����J= at
KEK (Belle) in 2003 [18], and its existence was confirmed
by Fermilab (CDF [19], D0 [20]) and SLAC (BABAR) [21].
Ds�2317� was also found in the B- �B reaction at ��4S�
resonance at SLAC (BABAR) [22] and consecutively at
KEK (Belle) [23] in 2003. As the unusual features of
X�3872�, its mass is rather close to the threshold of
D0�c �u� and �D0��u �c�, and its decay width is very narrow
as �< 2:3 MeV (90% C.L.). These facts seem to indicate
that X�3872� is a 4Q state [24,25] or a molecular state of
D0�c �u� and �D0��u �c� [26–29] rather than an excited state of
a c �c system [30–32]. Also, Ds�2317� cannot be regarded
as the simple meson of c�s, but is conjectured to be a 4Q
state from the similar reasons on the mass and the narrow
decay width.

Also in the light quark sector, the possibility of 4Q
hadrons has been pointed out. For instance, Jaffe proposed
in 1977 that the light scalar nonet including f0�980� and
a0�980� can be interpreted as QQ �Q �Q rather than Q �Q [46].
-1  2005 The American Physical Society
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Since then, many studies of the scalar nonet have been
done in terms of the 4Q state [47,48].

As an analytical guiding model for the multiquark sys-
tem, the flux-tube picture [49–56] has been investigated
for the structure and the reaction of hadrons and is sup-
ported by recent lattice QCD studies [5,6,35– 41,57]. In
this picture, valence quarks are linked by the color flux
tube as a quasi-one-dimensional object. The flux tube has a
large string tension of about � ’ 0:89 GeV=fm, and there-
fore its length is to be minimized. For the multiquark
system, this picture predicts an interesting phenomenon
of the ‘‘flip-flop,’’ i.e., a recombination of the flux-tube
configuration so as to minimize the total length of the flux
tube in accordance with the change of the quark location
[55,56]. This process is important not only for the structure
of multiquark systems but also for the reaction process of
hadrons.

In this paper, we study the 4Q potential, i.e., the inter-
action between quarks in the 4Q system directly from QCD
by using SU(3) lattice QCD at the quenched level, and
investigate the hypothetical flux-tube picture for the multi-
quark system and the flip-flop in terms of QCD. Here, the
lattice QCD Monte Carlo simulation is the first-principle
calculation of QCD and is considered as the only reliable
method for nonperturbative QCD at present. We note that
lattice QCD is also a useful method to select out the correct
picture for nonperturbative QCD in the low-energy region
through the comparison with the lattice results.

The organization of this paper is as follows. In Sec. II,
after a brief review on the lattice studies of static quark
potentials, we present a theoretical form for the 4Q poten-
tial based on the flux-tube picture. In Sec. III, we present
the formalism for the 4Q Wilson loop and the 4Q potential.
The lattice QCD results are shown in Sec. IV. In Sec. V, we
compare the lattice QCD results with the theoretical form,
and discuss the flux-tube picture and the flip-flop.
Section VI is devoted to the summary and concluding
remarks.
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FIG. 1 (color online). The lattice QCD result for the 3Q
confinement potential Vconf

3Q , i.e., the 3Q potential subtracted by
its Coulomb and constant parts, plotted against Y-shaped flux-
tube length Lmin at � � 5:8, 6.0, and 6.2 in the lattice unit. The
clear linear correspondence between 3Q confinement potential
Vconf
3Q and Lmin indicates the Y Ansatz for the 3Q potential.
II. THEORETICAL CONSIDERATION FOR THE
4Q POTENTIAL

A. Q �Q, 3Q, and 5Q potentials

To begin with, we give a theoretical consideration for the
multiquark potential. From a lot of lattice QCD studies [1–
6], the staticQ �Q potential is known to be well described by

VQ �Q � �
AQ �Q

r
� �Q �Qr� CQ �Q; (1)

where r denotes the distance between the quark and the
antiquark. The first term is considered to be the Coulomb
term due to the one-gluon exchange (OGE) and AQ �Q

denotes the Coulomb coefficient. The second term is the
linear confinement term with the string tension, �Q �Q ’

0:89 GeV=fm.
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From the recent detailed studies in lattice QCD with
(� � 5:7, 123 � 24), (� � 5:8, 163 � 32), (� � 6:0,
163 � 32), and (� � 6:2, 244) [5–8,37–40], the 3Q poten-
tial is clarified to be the sum of the OGE Coulomb term and
the Y-type linear confinement term as

V3Q � �A3Q

X
i<j

1

jri � rjj
� �3QLmin � C3Q: (2)

Here, Lmin denotes the minimal value of the total flux-tube
length, which corresponds to the Y-shaped flux tube link-
ing the three quarks. In fact, the lattice data of the 3Q
potential, Vlatt

3Q , can be well reproduced with only three
parameters, A3Q, �3Q, and C3Q.

To demonstrate the validity of the Y Ansatz, we show in
Fig. 1 the lattice QCD data of the 3Q confinement potential
Vconf
3Q , i.e., the 3Q potential subtracted by its Coulomb and

constant parts,

Vconf
3Q � Vlatt

3Q �

(
�A3Q

X
i<j

1

jri � rjj
� C3Q

)
; (3)

plotted against Y-shaped flux-tube length Lmin, at � � 5:8,
6.0, and 6.2 in the lattice unit. For each �, clear linear
correspondence is found between 3Q confinement poten-
tial Vconf

3Q and Lmin as Vconf
3Q ’ �3QLmin, which indicates the

Y Ansatz for the 3Q potential [38–40].
This lattice QCD result strongly supports the flux-tube

picture for baryons, and the Y-type flux-tube formation is
-2
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actually observed in lattice QCD through the direct mea-
surement of the action density in the presence of spatially
fixed three quarks [37–40,57]. The Y Ansatz for the 3Q
system is also supported by recent further lattice QCD
studies [58,59] and analytical studies [60,61].

As for the relation between VQ �Q and V3Q, we have found
the OGE result A3Q ’ 1

2AQ �Q and the universality of the
string tension �3Q ’ �Q �Q, which also supports the flux-
tube picture [49–56] and the strong-coupling expansion
scheme [50,51].

Very recently, the 5Q potential is also studied in lattice
QCD [36– 42]. It is well described by the OGE Coulomb
plus the multi-Y-type linear potential [36–41]. With the
minimal length Lmin of the flux tube, the 5Q potential can
be well described as

V5Q �
g2

4�

X
i<j

Tai T
a
j

jri � rjj
� �5QLmin � C5Q

� �A5Q

��
1

r12
�

1

r34

�
�

1

2

�
1

r15
�

1

r25
�

1

r35
�

1

r45

�

�
1

4

�
1

r13
�

1

r14
�

1

r23
�

1

r24

��
� �5QLmin � C5Q;

(4)

with �A5Q; �5Q� fixed to be �A3Q; �3Q� following the OGE
result and the universality of the string tension. This lattice
result also supports the flux-tube picture.

B. Theoretical Ansätze for the 4Q potential

Now, we investigate the theoretical form of the 4Q
potential V4Q with respect to the flux-tube picture, which
seems workable for Q �Q mesons and baryons. For the
argument of the low-lying 4Q states, we consider the 4Q
state of ��QQ��3-� �Q �Q�3�1 as shown in Fig. 2. Here, �QQ��3
denotes that two quarks form the �3 representation of the
color SU(3). The meaning of � �Q �Q�3 is similar. By combin-
ing �QQ��3 with � �Q �Q�3, the 4Q system can be constructed
as a color-singlet state. We note that another possible 4Q
system of ��QQ�6 � � �Q �Q��6�1 is expected to be a highly
excited state, since the attractive (repulsive) force acts
between quarks, when the QQ cluster belongs to �3 (6)
Q

Q

1

2

Q 3

Q 4

33

FIG. 2. The tetraquark (QQ- �Q �Q ) state. TheQQ ( �Q �Q ) cluster
belongs to �3 (3) representation of the color SU(3).
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representation in a perturbative sense, which leads to the
�3 diquark picture [33].

In the flux-tube picture, the flux tube is formed so as to
minimize the total flux-tube length of the system for the
low-lying state. For the low-lying 4Q system, there are two
candidates for the flux-tube configuration according to the
4Q location. One is the connected flux-tube system where
all quarks and antiquarks are connected with the single flux
tube as shown in Fig. 3. The other is the disconnected flux
tubes corresponding to a ‘‘two-meson’’ state as shown in
Fig. 4. Note that the 4Q state of ��QQ��3 � � �Q �Q�3�1 gen-
erally includes such a two-meson state of �Q �Q�1�Q �Q�1 as
shown in the Appendix. For each case, we consider below
the theoretical form of the tetraquark potential V4Q.

1. OGE plus multi-Y Ansatz for the connected 4Q system

For the connected 4Q system, we propose the ‘‘OGE
plus multi-Y Ansatz’’ as a theoretical form of V4Q from the
viewpoint of the flux-tube picture. This type of the flux-
tube configuration is plausible when the distance between
QQ and �Q �Q is long enough compared with the size of
these clusters. For such a system, all quarks and antiquarks
are linked by the connected double-Y-shaped flux tube as
3

QQ 42

FIG. 4. The disconnected tetraquark system, which corre-
sponds to a ‘‘two-meson’’ state.
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FIG. 5. The 4Q Wilson loop for the calculation of the 4Q
potential V4Q. The contours Mi (i � 1; 2) are linelike, and
Li; Ri (i � 1; 2) are staplelike. The 4Q gauge-invariant state is
generated at t � 0 and is annihilated at t � T. The four quarks
(QQ �Q �Q ) are spatially fixed in R3 for 0< t < T.
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shown in Fig. 3, and the 4Q potential V4Q is described by
the OGE Coulomb plus multi-Y linear potential Vc4Q as

V4Q �
g2

4�

X
i<j

Tai T
a
j

jri � rjj
� �4QLmin � C4Q

� �A4Q

��
1

r12
�

1

r34

�
�

1

2

�
1

r13
�

1

r14
�

1

r23
�

1

r24

��
� �4QLmin � C4Q � Vc4Q (5)

with rij � jri � rjj and Lmin being the minimal value of
the total flux-tube length. Here, ri denotes the location of
the ith (anti)quark in Fig. 3.

The first term describes the Coulomb term due to the
OGE process. Note that there appear two kinds of Coulomb
coefficients (A4Q, 1

2A4Q) in the 4Q system, while only one
Coulomb coefficient, AQ �Q or A3Q, appears in theQ �Q or the
3Q system. In this definition, the Coulomb coefficient A4Q

is expected to satisfy A4Q ’ 1
2AQ �Q as the OGE results. The

brief derivation of the OGE Coulomb terms is shown in the
Appendix.

The second term is the linear confinement term with the
string tension �4Q, which is expected to satisfy �4Q ’

�Q �Q ’ 0:89 GeV=fm as the universality of the string ten-
sion. Similar to the 3Q and the 5Q systems, the Y-type
junction appears in this case, and Lmin is expressed by the
length of the double-Y-shaped flux tube as shown in Fig. 3.

In the extreme case, e.g., r12 � r34 � r13 � r24, the
lowest connected 4Q system takes an X-shaped flux tube,
although the energy of such system is larger than that of the
two-meson state in most cases.

2. The two-meson Ansatz for the disconnected 4Q system

For the disconnected 4Q system corresponding to the
two-meson state as shown in Fig. 4, we adopt the ‘‘two-
meson Ansatz’’ for V4Q. Such a flux-tube configuration is
plausible when the nearest quark and antiquark pair is
spatially close and the system can be regarded as the
‘‘two-meson state’’ rather than an inseparable 4Q state.
For such a system as shown in Fig. 4, the total potential
V4Q for the 4Q system would be approximated to be the
sum of two Q �Q potentials in Eq. (1) as

V4Q � VQ �Q�r13� � VQ �Q�r24�

� �AQ �Q

�
1

r13
�

1

r24

�
� �Q �Q�r13 � r24� � 2CQ �Q

� V2Q �Q; (6)

assuming that the intermeson force is subdominant.

C. The 4Q potential form and the flip-flop

For the lowest 4Q system, the 4Q potential V4Q would be
expressed with lower energy of the connected 4Q system or
014505
the two-meson system,

V4Q � min�Vc4Q; V2Q �Q�: (7)

As a physical consequence of Eq. (7) based on the flux-
tube picture, there can occur a physical transition between
the connected 4Q state and the two-meson state according
to the change of the 4Q location. This phenomenon occurs
through the recombination of the flux tube and is called
the flip-flop. (A popular usage of the flip-flop may be for
the simple flux-tube recombination between two-meson
states. We here use this term as the general flux-tube
recombination.)

The flip-flop is important for the properties of 4Q states
especially for the decay process into two mesons. In addi-
tion, the flux-tube recombination between two-meson
states can be realized through the two successive flip-flops
between the two-meson state and the connected 4Q state.
Therefore, this type of the flip-flop is important also for the
reaction mechanism between two mesons.
III. FORMALISM FOR THE 4Q POTENTIAL IN
LATTICE QCD

In this section, we present the formalism to extract the
static 4Q potential. Similar to the derivation of the Q �Q
potential from the Wilson loop, the 4Q potential V4Q can be
derived from the gauge-invariant 4Q Wilson loop W4Q as
shown in Fig. 5 [38,41,42].

The 4Q Wilson loop is defined by

W4Q �
1

3
tr� ~M1

~L12
~M2

~R12�: (8)

~Mi, ~Li, ~Ri (i � 1, 2) are given by

~M i; ~Li; ~Ri � P exp

(
ig

Z
Mi;Li;Ri

dx$A$�x�

)
2 SU�3�c:

(9)

Here, ~L12 and ~R12 are defined by
-4
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FIG. 7. A twisted configuration of the tetraquark system.Q1Q2

is perpendicular to �Q3
�Q4, and H1H2 is perpendicular to Q1Q2

and �Q3
�Q4. We call the cases with d1 � d2 � d3 � d4 � d as

‘‘symmetric twisted 4Q configurations.’’
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~L a0a
12 �

1

2
&abc&a

0b0c0Lbb
0

1 Lcc
0

2 ; (10)

~R a0a
12 �

1

2
&abc&a

0b0c0Rbb
0

1 Rcc
0

2 : (11)

The ground-state 4Q potential V4Q is extracted as

V4Q � � lim
T!1

1

T
lnhW4Qi: (12)

In general, the 4Q Wilson loop hW4Qi contains excited-
state contributions and is expressed as

hW4Qi �
X1
n�0

Cne
�VnT; (13)

where V0 denotes the ground-state 4Q potential V4Q and Vn
�n � 1; 2; 3; . . .� the nth excited-state potential. In princi-
ple, V4Q can be obtained from the behavior of hW4Qi at the
large T region where the ground-state contribution be-
comes dominant. In the practical simulation, however,
the accurate measurement of V4Q is not easy for large T,
since hW4Qi decreases exponentially with T.

To extract the ground-state potential V4Q in lattice QCD,
we adopt the gauge-covariant smearing method [2–7] to
enhance the ground-state component of the 4Q state in the
4Q Wilson loop. The smearing is known to be a powerful
method for the accurate measurement of the Q- �Q [2–4]
and the 3Q potentials [5–7] and is expressed as the iterative
replacement of the spatial link variables Ui�s� (i � 1; 2; 3)
by the obscured link variables �Ui�s� 2 SU�3�c which max-
imizes Re trf �Uy

i �s�Vi�s�g with

Vi�s� � +Ui�s� �
X
j�i

X
�

fU�j�s�Ui�s� ĵ�Uy
�j�s� î�g

(14)

with the simplified notation of U�j � Uy
j �s� ĵ�. We here

adopt the smearing parameter + � 2:3 and the iteration
number Nsmr � 30, which enhance the ground-state com-
ponent in the 4Q Wilson loop at � � 6:0 in most cases (see
the next section).
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FIG. 8. A typical example of the ground-state-overlap quantity
C0 � hW4Q�T�i

T�1=hW4Q�T � 1�iT plotted against the iteration
number Nsmr at + � 2:3 for the symmetric planar 4Q configu-
ration with �d; h� � �1; 5�. C0 takes a large value close to unity
around Nsmr � 30.
IV. LATTICE QCD RESULTS FOR THE 4Q
POTENTIAL

The lattice QCD simulations are performed with the
standard plaquette action at � � 6:0 on the 163 � 32 lat-
tice at the quenched level. The lattice spacing a is esti-
mated as a ’ 0:104 fm, which leads to the string tension
�Q �Q ’ �427 MeV�2 in the Q �Q potential, using the numeri-
cal relation �Q �Q ’ 0:0506a�2 obtained from the fitting
analysis on the on-axis data of the Q �Q potential in lattice
QCD at � � 6:0 [6,8]. The gauge configurations are taken
every 500 sweeps after 5000 sweeps using the pseudo-heat-
bath algorism. We use 300 configurations for the 4Q po-
014505-5
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tential simulation. For the estimation of the statistical error
of the lattice data, we adopt the jackknife error estimate.

On the 163 � 32 lattice, we investigate the typical con-
figuration of 4Q systems as shown in Figs. 6 and 7. In
Fig. 6, the 4Q system has a planar structure. In Fig. 7, the
4Q system has a twisted (three-dimension) structure. In
particular, we analyze in detail the symmetric planar and
twisted 4Q configurations with d1 � d2 � d3 � d4 � d,
although more general asymmetric 4Q configurations with
various �d1; d2; d3; d4� are also investigated.

For the 4Q configurations with h � 8, we identify 163 as
the spatial size and 32 as the temporal one. On the other
hand, the calculation for the large-size 4Q configurations
with h > 8 is performed by identifying 162 � 32 as the
TABLE I. A part of the lattice QCD results
configuration as shown in Fig. 6 with d1 � d2
systems are labeled by �d; h�. We list also the
02=NDF, the minimal flux-tube length Lc4Qmin fo
theoretical Ansätze. V th

c4Q denotes the OGE Coul
fixed to be �A3Q; �3Q� in V3Q in Ref. [6]. V th

2Q �Q
de

Ref. [6]. All the quantities are measured in the la

(d; h) V4Q
�C Tmin-Tm

(1,1) 0.8590(45) 0.4970(135) 6-11
(1,2) 1.2124(31) 0.9049(111) 4-9
(1,3) 1.3218(17) 0.9572(48) 3-9
(1,4) 1.3938(11) 0.9627(19) 2-8
(1,5) 1.4531(13) 0.9556(22) 2-8
(1,6) 1.5051(33) 0.9354(95) 3-9
(1,7) 1.5644(19) 0.9434(32) 2-7
(1,8) 1.6184(20) 0.9375(36) 2-8
(1,9) 1.6706(22) 0.9295(35) 2-4
(1,10) 1.7269(28) 0.9286(48) 2-7
(1,11) 1.7774(30) 0.9177(48) 2-4
(1,12) 1.8234(37) 0.8983(62) 2-7
(1,13) 1.8797(44) 0.8979(74) 2-7
(1,14) 1.9285(49) 0.8838(78) 2-6
(1,15) 1.9787(55) 0.8722(91) 2-7
(1,16) 2.0365(62) 0.8741(101) 2-6
(2,1) 0.8263(46) 0.3324(93) 6-13
(2,2) 1.2633(183) 0.5646(514) 5-9
(2,3) 1.4592(111) 0.7457(328) 4-7
(2,4) 1.5950(17) 0.9223(29) 2-7
(2,5) 1.6619(21) 0.9286(36) 2-6
(2,6) 1.7215(23) 0.9285(41) 2-7
(2,7) 1.7791(29) 0.9283(51) 2-6
(2,8) 1.8279(31) 0.9121(54) 2-6
(2,9) 1.8827(34) 0.9101(57) 2-7
(2,10) 1.9366(38) 0.9049(64) 2-6
(2,11) 1.9917(45) 0.9026(73) 2-5
(2,12) 2.0419(49) 0.8911(82) 2-5
(2,13) 2.0954(55) 0.8856(90) 2-6
(2,14) 2.1387(61) 0.8619(101) 2-5
(2,15) 2.1990(67) 0.8683(111) 2-5
(2,16) 2.2482(78) 0.8567(122) 2-5
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spatial size and 16 as the temporal one. In both cases, we
use corresponding translational and rotational symmetries
on lattices for the calculation of hW4Qi.

For these types of 4Q configurations, we construct the
4Q Wilson loop W4Q with the junctions locating at H1 and
H2, and calculate the 4Q potential V4Q from hW4Qi using
the smearing method.

For the suitable choice of the smearing parameter + and
the iteration number Nsmr in Eq. (14), we perform some
numerical tests with various values of + and Nsmr, and
finally adopt + � 2:3 and Nsmr � 30, which are found to
enhance the ground-state component in the 4Q Wilson loop
at � � 6:0 in most cases. For the demonstration, we show
in Fig. 8 a typical example of the ground-state-overlap
of the 4Q potential V4Q for the planar 4Q
� d3 � d4 � d. The symmetric planar 4Q
ground-state overlap �C, the fit range of T,
r the connected 4Q configuration, and the
omb plus multi-Y Ansatz (5) with �A4Q; �4Q�

notes the two-meson Ansatz (6) with VQ �Q in

ttice unit at � � 6:0, i.e., a ’ 0:104 fm.

ax 02=NDF Lc4Qmin V th
c4Q V th

2Q �Q

0.140 4.47 1.1293 0.8224
0.710 5.46 1.2560 1.2004
0.195 6.46 1.3352 1.3939
0.755 7.46 1.3999 1.5412
0.633 8.46 1.4579 1.6701
0.072 9.46 1.5123 1.7897
0.336 10.46 1.5643 1.9041
0.124 11.46 1.6150 2.0152
0.119 12.46 1.6646 2.1241
0.184 13.46 1.7136 2.2314
0.001 14.46 1.7620 2.3377
1.094 15.46 1.8100 2.4431
0.351 16.46 1.8577 2.5478
0.899 17.46 1.9052 2.6521
0.361 18.46 1.9525 2.7559
0.702 19.46 1.9996 2.8594
0.624 8.25 1.3992 0.8224
0.727 8.94 1.5022 1.2004
0.119 9.93 1.5734 1.3939
0.643 10.93 1.6340 1.5412
0.779 11.93 1.6896 1.6701
0.653 12.93 1.7426 1.7897
0.089 13.93 1.7938 1.9041
0.631 14.93 1.8439 2.0152
0.111 15.93 1.8932 2.1241
0.108 16.93 1.9419 2.2314
0.785 17.93 1.9902 2.3377
0.215 18.93 2.0381 2.4431
0.445 19.93 2.0857 2.5478
1.272 20.93 2.1331 2.6521
1.103 21.93 2.1804 2.7559
0.687 22.93 2.2274 2.8594
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quantity

C0 � hW4Q�T�i
T�1=hW4Q�T � 1�iT (15)

plotted against the iteration numberNsmr at + � 2:3 for the
symmetric planar 4Q configuration with �d; h� � �1; 5�.
Here, the ground-state-overlap quantity C indicates the
magnitude of the ground-state component [5,6] and is
found to take a large value close to unity around Nsmr �
30. (Note here that the enhancement of the ground-state
component is the aim of the smearing, and hence any
approximate optimization is applicable as long as the
ground-state overlap is enough large.)

Because of the smearing, the ground-state component is
largely enhanced in most cases, and therefore the 4Q
Wilson loop hW4Qi composed with the smeared link vari-
able exhibits a single-exponential behavior as hW4Qi ’

e�V4QT even for a small value of T. Then, for each 4Q
configuration, we extract V4Q from the least squares fit with
the single-exponential form
TABLE II. A part of the lattice QCD results of
4Q configuration labeled by �d; h�. The notations

(d; h) V4Q
�C Tmin-Tm

(3,1) 0.8281(20) 0.3242(33) 5-12
(3,2) 1.2143(228) 0.3390(387) 5-9
(3,3) 1.5031(168) 0.5540(370) 4-7
(3,4) 1.6992(68) 0.7751(158) 3-7
(3,5) 1.8185(31) 0.8797(53) 2-6
(3,6) 1.8896(35) 0.8922(60) 2-6
(3,7) 1.9459(37) 0.8849(63) 2-4
(3,8) 2.0016(45) 0.8808(76) 2-5
(3,9) 2.0544(45) 0.8739(73) 2-4
(3,10) 2.1123(52) 0.8748(85) 2-6
(3,11) 2.1658(57) 0.8698(92) 2-7
(3,12) 2.2234(65) 0.8720(105) 2-5
(3,13) 2.2698(73) 0.8548(118) 2-5
(3,14) 2.3192(88) 0.8418(143) 2-5
(3,15) 2.3843(94) 0.8564(154) 2-6
(3,16) 2.4393(112) 0.8530(185) 2-5
(4,1) 0.8228(21) 0.3069(34) 5-12
(4,2) 1.2510(77) 0.3541(110) 4-9
(4,3) 1.4643(247) 0.3390(336) 4-7
(4,4) 1.7452(112) 0.5783(194) 3-7
(4,5) 1.9147(159) 0.7137(337) 3-5
(4,6) 2.0168(230) 0.7591(518) 3-7
(4,7) 2.1167(49) 0.8435(84) 2-4
(4,8) 2.1712(56) 0.8341(89) 2-4
(4,9) 2.2444(62) 0.8611(102) 2-6
(4,10) 2.2970(84) 0.8505(138) 2-5
(4,11) 2.3430(84) 0.8332(133) 2-6
(4,12) 2.3976(96) 0.8309(149) 2-5
(4,13) 2.4503(109) 0.8225(168) 2-4
(4,14) 2.5043(123) 0.8178(194) 2-4
(4,16) 2.6037(177) 0.7952(276) 2-4

014505
hW4Qi � �Ce�V4QT (16)

in the range of Tmin � T � Tmax listed in Tables I, II, III,
IV, V, and VI. The prefactor �C physically means the
ground-state overlap, and �C ’ 1 corresponds to the real-
ization of the quasiground state. Here, we choose the fit
range of T such that the stability of the ‘‘effective mass’’

V�T� � lnfhW4Q�T�i=hW4Q�T � 1�ig (17)

is observed in the range of Tmin � T � Tmax � 1.
To see how excited-state contamination is removed in

this calculation, we show in Fig. 9 several effective-mass
plots, V�T� vs T, for planar and twisted 4Q configurations
at small, intermediate, and large distances, respectively.
Owing to the smearing, the effective mass V�T� seems to
be stable even for small T. To show the quality of the
single-exponential fit for hW4Qi as in Eq. (16), we list the
chi square per degree of freedom, 02=NDF, for each fit in
the 4Q potential V4Q for the symmetric planar
are the same as in Table I.

ax 02=NDF Lc4Qmin V th
c4Q V th

2Q �Q

0.502 12.17 1.6129 0.8224
0.237 12.65 1.7043 1.2004
2.112 13.42 1.7636 1.3939
0.654 14.39 1.8213 1.5412
0.446 15.39 1.8756 1.6701
0.299 16.39 1.9275 1.7897
1.708 17.39 1.9780 1.9041
0.933 18.39 2.0276 2.0152
0.003 19.39 2.0766 2.1241
0.116 20.39 2.1250 2.2314
0.241 21.39 2.1731 2.3377
0.373 22.39 2.2208 2.4431
0.168 23.39 2.2683 2.5478
0.417 24.39 2.3157 2.6521
0.653 25.39 2.3628 2.7559
0.469 26.39 2.4098 2.8594
0.586 16.12 1.8119 0.8224
0.528 16.49 1.8975 1.2004
0.247 17.09 1.9482 1.3939
0.910 17.89 1.9972 1.5412
1.694 18.86 2.0493 1.6701
0.425 19.86 2.1007 1.7897
0.041 20.86 2.1507 1.9041
0.436 21.86 2.2000 2.0152
0.363 22.86 2.2486 2.1241
1.626 23.86 2.2968 2.2314
0.514 24.86 2.3447 2.3377
0.544 25.86 2.3923 2.4431
0.030 26.86 2.4397 2.5478
0.070 27.86 2.4869 2.6521
2.015 29.86 2.5809 2.8594
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Tables I, II, III, IV, V, and VI. For most cases, 02=NDF takes
a small value less than unity, and the fitting seems to be
plausible. [We note that the errors listed in Tables I, II, III,
IV, V, and VI are statistical ones, and there are some
systematical errors in the lattice QCD calculation. For
instance, when Tmin � 2 is adopted for large 4Q systems
as �d; h� � �3; 16�, the systematical error originating from
the fit-range choice seems to be several times larger than
the statistical error.]

In this way, we calculate the tetraquark potential V4Q for
various 4Q systems, i.e., planar, twisted, asymmetric, and
large-size 4Q configurations, respectively. We summarize
in Tables I, II, III, IV, V, and VI the lattice QCD results for
V4Q together with the ground-state overlap �C, the fit range
of T, 02=NDF, the minimal flux-tube length Lc4Qmin for the
connected 4Q configuration, and the theoretical Ansätze
V th
c4Q and Vth

2Q �Q
presented in Sec. II.
TABLE III. A part of the lattice QCD results
configuration as shown in Fig. 7 with d1 � d2
systems are labeled by �d; h�. The notations are t

(d; h) V4Q
�C Tmin-Tm

(1,1) 1.1779(06) 0.9695(11) 2-8
(1,2) 1.2577(06) 0.9687(11) 2-5
(1,3) 1.3311(08) 0.9676(15) 2-8
(1,4) 1.3960(11) 0.9642(20) 2-6
(1,5) 1.4532(13) 0.9546(23) 2-8
(1,6) 1.5100(35) 0.9497(99) 3-8
(1,7) 1.5661(18) 0.9472(32) 2-7
(1,8) 1.6177(21) 0.9357(37) 2-7
(1,9) 1.6712(24) 0.9300(41) 2-7
(1,10) 1.7144(68) 0.8956(180) 3-5
(1,11) 1.7751(32) 0.9134(53) 2-5
(1,12) 1.8302(38) 0.9109(65) 2-6
(1,13) 1.8778(45) 0.8946(76) 2-6
(1,14) 1.9306(49) 0.8879(79) 2-6
(1,15) 1.9860(56) 0.8856(90) 2-6
(1,16) 2.0378(62) 0.8771(99) 2-5
(2,1) 1.4571(27) 0.9244(72) 3-6
(2,2) 1.5027(32) 0.9296(89) 3-8
(2,3) 1.5613(14) 0.9445(24) 2-4
(2,4) 1.6152(18) 0.9388(31) 2-7
(2,5) 1.6713(18) 0.9367(31) 2-4
(2,6) 1.7249(22) 0.9305(38) 2-4
(2,7) 1.7780(27) 0.9241(47) 2-7
(2,8) 1.8305(29) 0.9162(50) 2-4
(2,9) 1.8752(35) 0.8945(58) 2-6
(2,10) 1.9335(40) 0.8985(68) 2-6
(2,11) 1.9882(45) 0.8961(74) 2-6
(2,12) 2.0295(51) 0.8681(82) 2-5
(2,13) 2.0933(56) 0.8818(92) 2-4
(2,14) 2.1470(62) 0.8768(102) 2-5
(2,15) 2.1910(70) 0.8552(115) 2-7
(2,16) 2.2315(76) 0.8272(119) 2-5

014505
(1) T
of the
� d3 �
he sam

ax 0
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ables I and II show V4Q for the symmetric planar
4Q configurations as shown in Fig. 6 with d1 �
d2 � d3 � d4 � d. V4Q is shown in terms of d
and h.
(2) T
ables III and IV show V4Q for the symmetric
twisted 4Q configurations as shown in Fig. 7 with
d1 � d2 � d3 � d4 � d. V4Q is shown in terms of d
and h.
(3) T
able V shows V4Q for the asymmetric planar 4Q
configurations as shown in Fig. 6 with various
�d1; d2; d3; d4� for h � 8.
(4) T
able VI shows V4Q for the asymmetric twisted 4Q
configurations as shown in Fig. 7 with various
�d1; d2; d3; d4� for h � 8.
Thus, we obtain the tetraquark potential V4Q for about 200
different patterns of 4Q systems.
4Q potential V4Q for the twisted 4Q
d4 � d. The symmetric twisted 4Q

e as in Table I.

2=NDF Lc4Qmin V th
c4Q V th

2Q �Q

0.695 4.47 1.1693 1.1305
0.009 5.46 1.2611 1.2967
0.465 6.46 1.3362 1.4435
0.676 7.46 1.4002 1.5737
0.546 8.46 1.4580 1.6941
0.221 9.46 1.5123 1.8088
0.305 10.46 1.5644 1.9200
0.311 11.46 1.6150 2.0288
0.416 12.46 1.6646 2.1360
0.006 13.46 1.7136 2.2421
0.890 14.46 1.7620 2.3472
0.039 15.46 1.8100 2.4518
0.689 16.46 1.8577 2.5558
0.543 17.46 1.9052 2.6595
0.649 18.46 1.9525 2.7628
0.100 19.46 1.9996 2.8658
0.130 8.25 1.4778 1.3939
0.131 8.94 1.5221 1.4656
0.033 9.93 1.5800 1.5578
0.339 10.93 1.6365 1.6576
0.499 11.93 1.6907 1.7598
0.266 12.93 1.7431 1.8626
0.439 13.93 1.7941 1.9655
0.044 14.93 1.8441 2.0683
2.241 15.93 1.8933 2.1708
0.989 16.93 1.9420 2.2732
0.776 17.93 1.9902 2.3755
1.912 18.93 2.0381 2.4776
0.042 19.93 2.0857 2.5796
0.015 20.93 2.1331 2.6815
0.874 21.93 2.1804 2.7833
0.884 22.93 2.2274 2.8850



TABLE IV. A part of the lattice QCD results of the 4Q potential V4Q for the symmetric twisted
4Q configuration labeled by �d; h�. The notations are the same as in Table I.

(d; h) V4Q
�C Tmin-Tmax 02=NDF Lc4Qmin V th

c4Q V th
2Q �Q

(3,1) 1.6641(20) 0.9086(34) 2-8 1.052 12.17 1.7093 1.5889
(3,2) 1.6980(21) 0.9095(35) 2-4 0.227 12.65 1.7359 1.6314
(3,3) 1.7444(25) 0.9098(43) 2-6 0.649 13.42 1.7769 1.6941
(3,4) 1.7960(26) 0.9085(46) 2-5 0.278 14.39 1.8275 1.7700
(3,5) 1.8473(31) 0.9017(53) 2-5 0.747 15.39 1.8787 1.8540
(3,6) 1.9015(36) 0.8995(60) 2-6 0.151 16.39 1.9292 1.9431
(3,7) 1.9563(39) 0.8969(66) 2-6 0.334 17.39 1.9790 2.0355
(3,8) 2.0077(46) 0.8888(75) 2-6 0.216 18.39 2.0282 2.1301
(3,9) 2.0609(47) 0.8838(77) 2-6 0.067 19.39 2.0769 2.2261
(3,10) 2.1146(52) 0.8787(86) 2-5 0.121 20.39 2.1252 2.3232
(3,11) 2.1695(56) 0.8763(91) 2-4 0.104 21.39 2.1732 2.4210
(3,12) 2.2284(65) 0.8805(109) 2-6 0.053 22.39 2.2209 2.5194
(3,13) 2.2684(69) 0.8513(112) 2-6 0.676 23.39 2.2684 2.6182
(3,14) 2.3303(82) 0.8597(133) 2-4 0.373 24.39 2.3157 2.7174
(3,15) 2.3725(96) 0.8357(151) 2-5 0.631 25.39 2.3629 2.8168
(3,16) 2.4051(112) 0.7968(168) 2-6 0.378 26.39 2.4099 2.9165
(4,1) 1.8453(33) 0.8666(56) 2-6 0.389 16.12 1.9179 1.7598
(4,2) 1.8396(124) 0.7745(285) 3-6 1.225 16.49 1.9368 1.7897
(4,3) 1.8832(135) 0.7758(315) 3-6 1.204 17.09 1.9671 1.8363
(4,4) 1.9745(44) 0.8706(71) 2-4 0.193 17.89 2.0072 1.8960
(4,5) 2.0271(47) 0.8670(79) 2-6 0.321 18.86 2.0549 1.9655
(4,6) 2.0749(52) 0.8536(85) 2-5 0.226 19.86 2.1040 2.0422
(4,7) 2.1306(52) 0.8522(86) 2-4 0.543 20.86 2.1528 2.1241
(4,8) 2.1932(66) 0.8640(108) 2-6 0.250 21.86 2.2012 2.2099
(4,9) 2.2409(62) 0.8510(101) 2-5 0.801 22.86 2.2494 2.2985
(4,10) 2.2867(66) 0.8331(107) 2-4 0.060 23.86 2.2973 2.3893
(4,11) 2.3324(87) 0.8152(135) 2-4 0.680 24.86 2.3450 2.4818
(4,12) 2.3951(107) 0.8247(166) 2-5 0.199 25.86 2.3925 2.5756
(4,13) 2.4477(110) 0.8173(174) 2-6 2.138 26.86 2.4398 2.6705
(4,14) 2.4910(128) 0.7958(196) 2-5 0.053 27.86 2.4870 2.7662
(4,15) 2.5625(154) 0.8210(238) 2-6 0.904 28.86 2.5341 2.8626
(4,16) 2.5995(155) 0.7897(238) 2-5 0.099 29.86 2.5810 2.9596
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V. DISCUSSIONS

A. Comparison with theoretical Ansätze

In this section, we compare the lattice QCD results of the
4Q potential V4Q with the theoretical Ansätze presented in
Sec. II, i.e., the OGE plus multi-Y Ansatz (5) and the two-
meson Ansatz (6).

For the OGE plus multi-Y Ansatz (5), we set the pa-
rameters (A4Q; �4Q) to be (A3Q; �3Q) in the 3Q potential
V3Q in Ref. [6], i.e., A4Q � A3Q ’ 0:1366, �4Q � �3Q ’

0:0460a�2. Note that there are no adjustable parameters
except for an irrelevant constant C4Q ’ 1:2579a�1.

For the two-meson Ansatz (6), we adopt the lattice result
for the Q �Q potential VQ �Q in Ref. [6], i.e., AQ �Q ’ 0:2768,
�Q �Q ’ 0:0506a�2, CQ �Q ’ 0:6374a�1. Then, there are no
adjustable parameters also for the two-meson Ansatz.

We demonstrate the two Ansätze for the symmetric
planar 4Q configurations as shown in Fig. 6 with d1 �
014505
d2 � d3 � d4 � d. In this case, the OGE Coulomb plus
multi-Y Ansatz for the connected 4Q system reads

Vc4Q�d; h� � �A4Q

�
1

d
�

1

h
�

1																			
h2 � 4d2

p

�
� �4QLmin

� C4Q: (18)

In the case of h � 2		
3

p d, the lowest connected 4Q system

takes the double-Y-shaped flux tube, and the minimal value
of the total flux-tube length is expressed as

Lmin � h� 2
			
3

p
d: (19)

In the case of h � 2		
3

p d, the lowest connected 4Q system

takes the X-shaped flux tube with Lmin � 2
																			
h2 � 4d2

p
,

although it must be unstable against the decay into two
mesons. On the other hand, the two-meson Ansatz reads
-9



TABLE V. Lattice QCD results for the 4Q potential V4Q for the asymmetric planar 4Q
configuration as shown in Fig. 6 with various �d1; d2; d3; d4� for h � 8. The notations are the
same as in Table I.

�d1; d2; d3; d4� V4Q
�C Tmin-Tmax 02=NDF Lc4Qmin V th

c4Q V th
2Q �Q

(0,1,0,1) 1.4227(18) 0.9368(31) 2-10 0.610 9.73 1.3983 2.0152
(0,1,1,0) 1.4243(17) 0.9377(29) 2-10 0.265 9.78 1.4008 2.0220
(0,1,1,1) 1.5215(19) 0.9385(34) 2-8 0.544 10.61 1.5073 2.0186
(0,1,2,0) 1.5170(39) 0.9054(103) 3-7 0.424 10.70 1.5118 2.0321
(0,1,1,2) 1.5689(43) 0.8991(115) 3-8 0.596 11.46 1.5697 2.0220
(0,1,2,1) 1.5830(21) 0.9353(36) 2-7 0.155 11.51 1.5718 2.0287
(0,1,3,0) 1.5926(21) 0.9289(36) 2-7 0.086 11.64 1.5781 2.0483
(0,2,1,1) 1.6211(21) 0.9300(38) 2-7 0.388 11.51 1.6171 2.0220
(0,2,2,0) 1.6301(22) 0.9310(40) 2-7 0.199 11.64 1.6234 2.0422
(0,1,1,3) 1.6281(22) 0.9200(38) 2-8 0.687 12.34 1.6219 2.0321
(0,1,2,2) 1.6231(49) 0.9144(132) 3-8 0.221 12.34 1.6219 2.0321
(0,1,3,1) 1.6326(23) 0.9253(40) 2-7 0.758 12.42 1.6258 2.0449
(0,2,1,2) 1.6809(22) 0.9262(39) 2-6 0.779 12.34 1.6784 2.0186
(0,2,2,1) 1.6834(23) 0.9273(42) 2-8 0.762 12.42 1.6824 2.0321
(0,2,3,0) 1.6934(23) 0.9208(39) 2-5 0.470 12.58 1.6902 2.0584
(1,1,1,2) 1.6784(23) 0.9324(41) 2-7 0.510 12.34 1.6784 2.0186
(0,1,2,3) 1.6668(61) 0.9034(165) 3-6 0.309 13.20 1.6687 2.0422
(0,1,3,2) 1.6732(25) 0.9199(45) 2-6 0.502 13.23 1.6705 2.0483
(0,2,1,3) 1.7270(25) 0.9125(45) 2-6 0.683 13.20 1.7296 2.0220
(0,2,3,1) 1.7349(25) 0.9210(43) 2-7 0.323 13.35 1.7370 2.0483
(0,3,1,2) 1.7441(26) 0.9177(47) 2-7 0.369 13.23 1.7426 2.0220
(0,3,2,1) 1.7473(26) 0.9191(46) 2-7 0.503 13.35 1.7482 2.0422
(0,3,3,0) 1.7604(25) 0.9172(45) 2-7 0.166 13.53 1.7573 2.0747
(1,1,1,3) 1.7295(26) 0.9259(45) 2-7 0.880 13.23 1.7314 2.0287
(1,1,2,2) 1.7218(24) 0.9221(45) 2-6 0.307 13.20 1.7296 2.0220
(1,2,1,2) 1.7398(24) 0.9311(44) 2-6 0.254 13.20 1.7408 2.0152
(1,2,2,1) 1.7299(66) 0.9013(176) 3-9 0.298 13.23 1.7426 2.0220
(0,1,3,3) 1.7159(29) 0.9127(49) 2-6 0.559 14.07 1.7142 2.0584
(0,2,3,2) 1.7754(29) 0.9167(49) 2-9 0.893 14.14 1.7807 2.0449
(0,3,3,1) 1.8006(28) 0.9162(49) 2-6 1.013 14.28 1.8033 2.0584
(1,1,2,3) 1.7687(27) 0.9179(47) 2-9 0.558 14.07 1.7772 2.0321
(1,2,2,2) 1.7866(27) 0.9268(49) 2-6 0.192 14.07 1.7928 2.0186
(1,2,3,1) 1.7900(28) 0.9208(49) 2-6 0.436 14.14 1.7963 2.0321
(1,2,2,3) 1.8273(31) 0.9109(55) 2-6 0.881 14.93 1.8395 2.0220
(1,2,3,2) 1.8311(30) 0.9170(54) 2-7 0.284 14.96 1.8412 2.0287
(1,3,3,1) 1.8437(32) 0.9191(57) 2-6 0.449 15.06 1.8506 2.0422
(1,3,3,2) 1.8845(35) 0.9154(59) 2-6 0.173 15.87 1.8946 2.0321
(2,2,2,3) 1.8774(34) 0.9131(60) 2-7 0.197 15.80 1.8914 2.0186
(2,3,2,3) 1.9213(37) 0.9050(63) 2-6 0.030 16.66 1.9380 2.0152
(2,3,3,3) 1.9648(39) 0.8987(65) 2-6 0.603 17.53 1.9832 2.0186

FUMIKO OKIHARU, HIDEO SUGANUMA, AND TORU T. TAKAHASHI PHYSICAL REVIEW D 72, 014505 (2005)
V2Q �Q�h� � 2� VQ �Q�h�; (20)

which is independent of d.
We show in Fig. 10(a) the lattice QCD results of the 4Q

potential V4Q for symmetric planar 4Q configurations
[38,41,42] with d � 1� 4. The symbols denote lattice
QCD results. The curves describe the theoretical form:
the solid curve denotes the OGE plus multi-Y Ansatz (5),
and the dash-dotted curve the two-meson Ansatz (6).
014505
For the large value of h compared with d, the lattice data
seem to coincide with the OGE Coulomb plus multi-Y
Ansatz [38,41]. On the other hand, for small h, the lattice
data tend to agree with the two-meson Ansatz and seem
independent of d [38,41]. These tendencies were also
observed in a recent lattice work by another group [42].
This would correspond to the transition from the connected
4Q state into the two-meson state as h decreases, as will be
discussed in the next subsection.
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TABLE VI. Lattice QCD results for the 4Q potential V4Q for the asymmetric twisted 4Q
configuration as shown in Fig. 7 with various �d1; d2; d3; d4� for h � 8. The notations are the
same as in Table I.

�d1; d2; d3; d4� V4Q
�C Tmin-Tmax 02=NDF Lc4Qmin V th

c4Q V th
2Q �Q

(0,1,0,1) 1.4179(34) 0.9197(92) 3-8 0.857 9.76 1.3997 2.0220
(0,1,1,1) 1.5239(18) 0.9435(34) 2-10 0.590 10.61 1.5074 2.0254
(0,1,0,2) 1.5152(129) 0.8961(453) 4-9 0.173 10.66 1.5100 2.0320
(0,1,1,2) 1.5819(47) 0.9340(132) 3-7 0.262 11.49 1.5709 2.0354
(0,1,0,3) 1.5896(21) 0.9257(37) 2-9 0.525 11.58 1.5756 2.0481
(0,2,1,1) 1.6248(20) 0.9373(36) 2-5 0.889 11.52 1.6176 2.0354
(0,2,0,2) 1.6259(22) 0.9263(38) 2-7 0.367 11.57 1.6202 2.0417
(0,1,1,3) 1.6279(53) 0.9144(143) 3-7 0.538 12.39 1.6241 2.0515
(0,1,2,2) 1.6252(50) 0.9204(140) 3-9 0.070 12.34 1.6219 2.0455
(0,2,1,2) 1.6813(24) 0.9250(42) 2-8 0.770 12.39 1.6811 2.0452
(0,2,0,3) 1.6923(23) 0.9233(38) 2-7 0.545 12.49 1.6858 2.0575
(1,1,1,2) 1.6790(22) 0.9334(39) 2-7 0.652 12.34 1.6785 2.0388
(0,1,2,3) 1.6724(24) 0.9192(43) 2-8 0.221 13.22 1.6696 2.0616
(0,2,1,3) 1.7335(25) 0.9213(45) 2-7 0.040 13.29 1.7343 2.0609
(0,3,1,2) 1.7462(25) 0.9187(45) 2-7 0.323 13.31 1.7467 2.0609
(0,3,0,3) 1.7567(27) 0.9166(47) 2-6 0.557 13.41 1.7514 2.0726
(1,1,1,3) 1.7293(25) 0.9252(45) 2-7 0.392 13.24 1.7317 2.0549
(1,1,2,2) 1.7220(24) 0.9222(45) 2-6 0.420 13.20 1.7296 2.0488
(1,2,1,2) 1.7388(27) 0.9280(46) 2-6 0.721 13.22 1.7420 2.0485
(0,1,3,3) 1.7198(27) 0.9199(47) 2-8 0.746 14.08 1.7141 2.0778
(0,2,2,3) 1.7734(28) 0.9138(49) 2-7 0.497 14.12 1.7798 2.0710
(0,3,1,3) 1.7979(28) 0.9145(49) 2-6 0.096 14.21 1.7999 2.0761
(1,1,2,3) 1.7687(29) 0.9174(53) 2-8 0.832 14.07 1.7772 2.0649
(1,2,2,2) 1.7840(28) 0.9210(49) 2-7 0.820 14.07 1.7930 2.0585
(1,2,1,3) 1.7890(30) 0.9201(51) 2-7 1.063 14.12 1.7952 2.0643
(1,2,2,3) 1.8312(30) 0.9169(53) 2-6 0.095 14.95 1.8407 2.0743
(1,3,1,3) 1.8393(31) 0.9128(54) 2-7 0.474 15.02 1.8484 2.0794
(1,3,2,3) 1.8853(34) 0.9164(58) 2-6 1.208 15.85 1.8939 2.0894
(2,2,2,3) 1.8807(33) 0.9180(55) 2-4 0.032 15.80 1.8917 2.0840
(2,3,2,3) 1.9171(36) 0.8943(64) 2-5 0.564 16.68 1.9394 2.0992
(2,3,3,3) 1.9653(40) 0.8968(69) 2-6 0.128 17.54 1.9838 2.1149
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Here, we comment on the transition in terms of the
ground-state overlap �C listed in Table I. For large h, the
ground-state overlap �C is almost unity, which implies the
realization of the quasiground state in the present calcu-
lation with the smeared 4Q Wilson loop based on the
connected 4Q configuration. For small h, however, �C tends
to be small, and hence, for accurate measurements, we
have to take relatively large values of T as the fit range.
This would indicate that the ground-state configuration is
largely different from the connected 4Q configuration for
small h. (In other words, it may be nontrivial to obtain the
result indicating the two-meson state for small h from the
4Q Wilson loop based on the connected 4Q configuration.)

Next, we investigate the twisted 4Q configuration
[38,41] as shown in Fig. 7. We show in Fig. 10(b) the
lattice QCD results of the 4Q potential for symmetric
twisted 4Q configurations with d � 1� 4. The symbols
denote lattice QCD results for each d, and the curves
014505
describe the theoretical form of the OGE plus multi-Y
Ansatz.

The lattice data seem to agree with the OGE plus multi-
YAnsatz in the wide region of h [38,41]. In the twisted 4Q
configuration, the distance between the nearest quark and
antiquark cannot take a smaller value than the ‘‘interdi-
quark distance’’ h, and therefore Vc4Q is smaller than V2Q �Q

in most cases except for extreme configurations as d > h
[see Fig. 10(b)]. Then, different from the planar case, it is
not easy to make the transition from the connected 4Q state
into the two-meson state for the twisted case. Also from the
lattice data, the ground-state overlap �C is found to be
almost unity for all twisted 4Q configurations, which in-
dicates that the ground state resembles a connected 4Q
state. In other words, the twisted 4Q configuration seems to
be rather stable against the transition into the two Q �Q
mesons, which may indicate a stability of the ‘‘twisted
structure’’ or the ‘‘tetrahedral structure’’ of the 4Q system.
-11
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FIG. 9. The effective-mass plots, V�T� vs T, for several 4Q configurations at small, intermediate, and large distances: the symmetric
planar and twisted 4Q configurations with �d; h� � �1; 2�, �d; h� � �2; 7�, and �d; h� � �3; 16�. The fit range of Tmin � T � Tmax � 1,
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from the least square fit with the single-exponential form.
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We also investigate more general asymmetric 4Q con-
figurations with various �d1; d2; d3; d4� for both planar and
twisted cases, as shown in Tables V and VI. Also for the
asymmetric planar and twisted 4Q configurations, V4Q

seems to be well described with the OGE plus multi-Y
Ansatz in the case of h > 2		

3
p di �i � 1; 2; 3; 4�. Note here

that some 4Q configurations are physically equivalent, e.g.,
the planar cases with �d1; d2; d3; d4� � �1; 1; 1; 2� and
(0,2,1,2), although the corresponding smeared 4Q Wilson
loops are different. For such cases, the lattice QCD results
are found to be almost the same. In fact, the extracted
0
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FIG. 10. The 4Q potential V4Q (a) for symmetric planar 4Q con
configurations as shown in Fig. 7. The symbols denote the lattice Q
curves denote the OGE plus multi-Y Ansatz, and the dash-dotted cu
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lattice results are almost independent of the way the 4Q
Wilson loop is constructed, as long as the spatial locations
of the static four quarks are the same. This indicates that
the ground-state contribution is properly extracted in the
present calculation.

As the conclusion, the OGE plus multi-Y Ansatz well
describes the 4Q potential V4Q, whenQQ and �Q �Q are well
separated, e.g., the interdiquark distance h is large in
comparison with the ‘‘diquark size’’ d. On the other
hand, when the nearest quark and antiquark pair is spatially
close, the system is described as a two-meson state.
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h
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d=3
d=4V4Q

(b)

figurations as shown in Fig. 6; (b) for symmetric twisted 4Q
CD results. The curves describe the theoretical form: the solid
rves the two-meson Ansatz.

-12



DETAILED ANALYSIS OF THE TETRAQUARK . . . PHYSICAL REVIEW D 72, 014505 (2005)
Together with the previous studies [5,6,36–41] for the
interquark potentials in lattice QCD, we have found the
universality of the string tension as

�Q �Q ’ �3Q ’ �4Q ’ �5Q ’ �420 MeV�2; (21)

and the OGE result for the Coulomb coefficient as

AQ �Q ’ 2A3Q ’ 2A4Q ’ 2A5Q ’ 0:27: (22)

In particular, these lattice QCD studies [36–41] indicate a
fairly good agreement among �3Q, �4Q, and �5Q, which
seem to be slightly smaller than �Q �Q. (As an interesting
possibility, the numerical similarity among �3Q, �4Q, and
�5Q may reflect the similar structure of the Y-type flux tube
in the multiquark systems.) The universality of the string
tension observed in our lattice QCD studies [5,6,36– 41]
seems to be consistent with the hypothetical flux-tube
picture [49–56] or the strong-coupling expansion scheme
[50,51], although strong-coupling QCD does not have a
continuum limit and is far from real QCD. As for the
irrelevant constant, CQ �Q, C3Q, C4Q, and C5Q are nonscaling
unphysical quantities appearing in the lattice regulariza-
tion, and we find an approximate relation as

CQ �Q

2
’
C3Q

3
’
C4Q

4
’
C5Q

5
’ 0:32a�1 (23)

in lattice QCD [5,6,36–41].

B. The quark confinement force in 4Q systems

While the short-distance OGE Coulomb force can be
understood with perturbative QCD, the long-distance con-
finement force is a typical nonperturbative quantity and
highly nontrivial particularly for multiquark systems. To
specify the long-distance property of V4Q is important to
clarify the confinement mechanism from a wide viewpoint
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FIG. 11. The 4Q potential V4Q plotted against Lc4Qmin (a) for planar 4
the minimal flux-tube length for the connected 4Q configuration. We
d � 1 (solid circles), d � 2 (solid squares), d � 3 (open triangles)
diamonds).
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including multiquarks, and it also leads to a proper quark-
model Hamiltonian to describe multiquark systems.
Therefore, we perform a further analysis for the long-
distance force in 4Q systems.

To clarify the long-distance force in the 4Q system, we
plot V4Q against Lc4Qmin for planar and twisted 4Q configu-
rations in Figs. 11(a) and 11(b), respectively. Here, Lc4Qmin
denotes the minimal flux-tube length for the connected 4Q
system. In both planar and twisted cases, for large Lc4Qmin ,
V4Q approaches a linearly arising function of Lc4Qmin .

To single out the long-distance confinement force, we
consider the 4Q potential subtracted by the Coulomb part.
Here, we subtract the OGE Coulomb part VCoul

c4Q of Vc4Q in
Eq. (5) for the connected 4Q system, with the Coulomb
coefficient A4Q fixed to be A3Q in the 3Q potential V3Q in
Ref. [6]. We plot V4Q � VCoul

c4Q against Lc4Qmin for planar and
twisted 4Q configurations in Figs. 12(a) and 12(b), respec-
tively. For the planar 4Q system, V4Q � VCoul

c4Q approaches
�4QL

c4Q
min � C4Q except for a small h region, where the flip-

flop into a two-meson state can take place. For the twisted
4Q system, we observe remarkable agreement between the
lattice QCD data of V4Q � VCoul

c4Q and �4QL
c4Q
min � C4Q for

the wide region of Lmin, which corresponds to the fact that
the flip-flop into the two-meson state does not occur in
most twisted 4Q configurations.

Thus, the confinement potential in the 4Q system as
shown in Fig. 2 is proportional to Lmin, which indicates
that the quark confinement force is genuinely 4-body and
the flux tube is multi-Y-shaped.

C. The flip-flop, the level crossing, and absence of the
color van der Waals force

Finally, we investigate the flip-flop between the con-
nected 4Q state and the two-meson state. Since the flux
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Q configurations; (b) for twisted 4Q configurations. Lc4Qmin denotes
plot all the lattice QCD data of V4Q for the symmetric case with

, and d � 4 (crosses) together with the asymmetric case (open
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FIG. 12. The 4Q potential subtracted by the OGE Coulomb part of the connected 4Q system, V4Q � VCoul
c4Q , plotted against Lc4Qmin

(a) for planar 4Q configurations; (b) for twisted 4Q configurations. We plot all the lattice QCD data including asymmetric cases. The
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c4Q
min � C4Q.
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tube changes its shape so as to have the minimal length, the
multi-Y-type flux tube is expected to change into a two-
meson state for small h.

This type of flip-flop is physically important for the
properties of 4Q states especially for their decay process
into two mesons. Note also that, in the flux-tube picture,
the meson-meson reaction is described by the flux-tube
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FIG. 13. The typical lattice QCD results for the flip-flop between th
planar 4Q configuration with fixed d. The symbols denote lattice Q
curves denote the OGE plus multi-Y Ansatz, and the dash-dotted cu
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recombination between the two mesons, and this process
can be realized through the two successive flip-flops be-
tween the two-meson state and the connected 4Q state.
Therefore, this type of flip-flop is important also for the
reaction mechanism between two mesons.

As a clear signal of the flip-flop, we again show the 4Q
potential V4Q for the symmetric planar 4Q configuration
0
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e connected 4Q state and the two-meson state for the symmetric
CD results. The curves describe the theoretical form: the solid
rve the two-meson Ansatz.
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with d � 1; 2; 3 separately in Fig. 13. The solid curves
denote Vc4Q for the OGE plus multi-Y Ansatz, and the
dash-dotted curves V2Q �Q � 2VQ �Q�h� for the two-meson
Ansatz. For large h, V4Q coincides with the energy Vc4Q
of the connected 4Q system. For small h, V4Q coincides
with the energy 2VQ �Q of the two-meson system composed
of two flux tubes. In the intermediate region of h, one can
observe the crossover from one Ansatz to another.

Thus, in these particular cases, we can observe a clear
evidence of the flip-flop as

V4Q�d; h� ’ min�Vc4Q�d; h�; 2VQ �Q�h��; (24)

which indicates the transition between the connected 4Q
state and the two-meson state around the level-crossing
point where these two systems are degenerate as
Vc4Q�d; h� � 2VQ �Q�h�. This result also supports the flux-
tube picture even for the 4Q system.

The present lattice QCD results on the flip-flop lead to
infrared screening and disappearance of the long-range
color interactions, i.e., the confining force and the OGE
Coulomb force, between (anti)quarks belonging to differ-
ent ‘‘mesons.’’ This physically results in the absence of the
tree-level color van der Waals force between two mesons
[62–64].
VI. SUMMARY AND CONCLUDING REMARKS

We have performed the detailed study of the tetraquark
(4Q) potential V4Q for various QQ- �Q �Q systems in SU(3)
lattice QCD with � � 6:0 and 163 � 32 at the quenched
level. For about 200 different patterns of 4Q systems, we
have extracted V4Q from the 4Q Wilson loop in 300 gauge
configurations, with the smearing method to enhance the
ground-state component. We have calculated V4Q for pla-
nar, twisted, asymmetric, and large-size 4Q configurations,
respectively. The calculation for large-size 4Q configura-
tions has been done by identifying 162 � 32 as the spatial
size and 16 as the temporal one, and the long-distance
confinement force has been particularly analyzed in terms
of the flux-tube picture.

When QQ and �Q �Q are well separated, V4Q is found to
be expressed as the sum of the one-gluon-exchange
Coulomb term and multi-Y-type linear term based on the
flux-tube picture. In this case, all four quarks are linked by
the connected double-Y-shaped flux tube, where the total
flux-tube length is minimized. On the other hand, when the
nearest quark and antiquark pair is spatially close, the
system is described as a two-meson state rather than the
connected 4Q state.

We have observed a flux-tube recombination called a
flip-flop between the connected 4Q state and the two-
meson state around the level-crossing point. This flip-flop
leads to infrared screening of the long-range color inter-
actions between (anti)quarks belonging to different mesons
014505
and results in the absence of the tree-level color
van der Waals force between two mesons.

As a next step, it is interesting to investigate the tran-
sition in terms of the level crossing between the connected
4Q state and the two-meson state through the diagonaliza-
tion of the correlation matrix with various 4Q states [34].
Through the investigation of the excited-state levels of the
4Q system, a realistic picture for the reaction mechanism
between two mesons may be obtained.

The dynamical quark effect for the flux-tube picture and
the flip-flop would be also an interesting subject. In this
context, the string-breaking effect may cause a more com-
plicated variation of the transition between the single Q �Q
meson and the multiquark system.

In any case, recent lattice QCD studies begin to shed
light on the realistic picture in hadron physics and to reveal
even the properties of the multiquark system.
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APPENDIX: OGE COULOMB TERMS IN THE 4Q
POTENTIAL

In the Appendix, we briefly show the derivation of the
OGE Coulomb terms in the 4Q potential in Eq. (5) by
calculating hTjTai T

a
j jTi for the 4Q state jTi.

In the quark picture, the 4Q state jTi corresponding to
Fig. 2 is expressed as

jTi � j�Q1Q2��3� �Q3
�Q4�3i1

�
1

2
			
3

p &abc&ab
0c0 jQb

1Q
c
2
�Qb0
3
�Qc0
4 i; (A1)

where the indices denote the SU(3) color indices of (anti)-
quarks. Here, jTi is normalized as

hT j Ti �
1

12
&abc&ab

0c0&def&de
0f0 � 1: (A2)

The color matrix factor Tai T
a
j in the OGE process can be

expressed with the Casimir operator C2�R� as

Tai T
a
j �

1

2
f�Tai � Tbj �

2 � �Tai �
2 � �Taj �

2g

�
1

2
fC2�Ri�j� � C2�Ri� � C2�Rj�g

�
1

2
C2�Ri�j� �

4

3
; (A3)

where Ri�j denotes the total SU(3) color representation of
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the �i� j� system. Here, C2�Ri� � C2�Rj� �
4
3 has been

used for each (anti)quark belonging to 3 (�3).
In this 4Q system, the two quarks,Q1 andQ2, form the �3

representation, i.e., C2�R1�2� � C2��3� � 4
3 , and then one

gets hTjTa1T
a
2 jTi � � 2

3 . This type of the Coulomb coeffi-
cient between two quarks is the same as that in the 3Q
system. Similarly, one gets hTjTa3T

a
4 jTi � � 2

3 for the two
antiquarks, �Q3 and �Q4.

Next, we consider the Coulomb interaction between the
quark and the antiquark. Owing to the symmetry, we only
have to investigate the interaction between Q1 and �Q3. To
this end, we rewrite the 4Q state jTi in terms of the
irreducible representation for the Q1 � �Q3 system. Since
Q1 and �Q3 can form the singlet (1) or the octet (8) repre-
sentation, the 4Q state jTi can be rewritten as

jTi � C1j�Q1
�Q3�1�Q2

�Q4�1i � C8j�Q1
�Q3�8�Q2

�Q4�8i1

(A4)

with appropriate constants C1 and C8 satisfying

jC1j
2 � jC8j

2 � 1: (A5)

After some calculation, one finds

j11i � j�Q1
�Q3�1�Q2

�Q4�1i �
1

3
jQa

1Q
b
2
�Qb
3
�Qb
4i; (A6)

j88i � j�Q1
�Q3�8�Q2

�Q4�8i1

�
1

2
			
2

p

�
jQa

1Q
b
2
�Qb
3
�Qa
4i �

1

3
jQa

1Q
b
2
�Qa
3
�Qb
4i

�
; (A7)

which satisfy the orthonormal condition,

h11 j 11i � h88 j 88i � 1; h11 j 88i � 0: (A8)

Using Eqs. (A1), (A6), and (A7), C1 and C8 can be ob-
tained as
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C1 � h11 j Ti

�
1

6
			
3

p &abc&ab
0c0 hQd

1Q
e
2
�Qd
3
�Qe
4 j Q

b
1Q

c
2
�Qb0
3
�Qc0
4 i

�
1

6
			
3

p &abc&abc �
1			
3

p ; (A9)

C8 � h88 j Ti

�
1

4
			
6

p &abc&ab
0c0 hQd

1Q
e
2
�Qe
3
�Qd
4 j Q

b
1Q

c
2
�Qb0
3
�Qc0
4 i

�
1

12
			
6

p &abc&ab
0c0 hQd

1Q
e
2
�Qd
3
�Qe
4 j Q

b
1Q

c
2
�Qb0
3
�Qc0
4 i

�
1

4
			
6

p &abc&acb �
1

12
			
6

p &abc&abc � �

			
2

3

s
: (A10)

Then, using Eq. (A1), C2�1� � 0 and C2�8� � 3, we get

hTjTa1T
a
3 jTi � jC1j

2h11jTa1T
a
3 j11i � jC8j

2h88jTa1T
a
3 j88i

� jC1j
2

�
1

2
C2�1� �

4

3

�
� jC8j

2

�
1

2
C2�8� �

4

3

�

� �
1

3
: (A11)

In this way, for the Coulomb interaction in the 4Q
system as shown in Fig. 3, we obtain

hTjTa1T
a
2 jTi � hTjTa3T

a
4 jTi � �

2

3
; (A12)

hTjTa1T
a
3 jTi � hTjTa1T

a
4 jTi � hTjTa2T

a
3 jTi

� hTjTa2T
a
4 jTi � �

1

3
; (A13)

and derive the Coulomb terms in Eq. (5).
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