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We report a measurement of the branching fraction of the decay B0 ! �0�0, using 386� 106 B �B pairs
collected at the ��4S� resonance with the Belle detector at the KEKB asymmetric-energy e�e� collider.
We detect 51�14

�13 signal events with a significance of 4.2 standard deviations, including systematic
uncertainties, and measure the branching fraction to be B�B0 ! �0�0� � �3:12�0:88

�0:82�stat� �
0:33�syst��0:50

�0:68�model�� � 10�6. We also perform the first measurement of direct CP violating asymmetry
in this mode.

DOI: 10.1103/PhysRevD.73.111105 PACS numbers: 11.30.Er, 12.15.Hh, 13.25.Hw, 14.40.Nd

Tests of the Kobayashi-Maskawa model [1] for CP
violation are ongoing. In particular, B-factories are direct-
ing focus towards measurements of the lesser known an-
gles of the Cabibbo-Kobayashi-Maskawa (CKM) triangle,
�2 and �3. Measurements of �2 typically rely on time-
dependent CP-violation studies of B meson decays to
����, ���� and ���� [2,3], since the leading tree
amplitudes for these processes involve the relevant CKM
phases. However, penguin amplitudes may also contribute
significantly in these decays and—via introducing addi-
tional unknown phases—greatly impair �2 constraints
from the time-dependent measurements. In such cases,
isospin analyses can be employed to separate the tree-level
process from penguin contamination [4].

Measurements of�2 from the �� system rely on knowl-
edge of the B0 ! �0�0 branching fraction [4,5]. Since the
tree amplitude of B0 ! �0�0 decay is color suppressed,
the decay rate is sensitive to the penguin amplitude con-
tribution. Thus, the �0�0 branching fraction plays a critical
role in constraining the �2 uncertainty due to penguin
pollution from time-dependent B0 ! ���� measure-
ments [3,4]. Furthermore, measurement of �2 from the
full B! �� isospin analysis requires the �0�0 branching
fraction along with its CP asymmetry. Since the branching
fractions and CP asymmetries of all the other �� final
states have been measured [6], �0�0 is the only channel
that remains to complete the isospin pentagons. A simpli-

fication, whereby the pentagons collapse into quadrangles,
is also possible if the �0�0 amplitude is sufficiently small.

An alternative technique to measure �2 from the ��
system, even if penguin contamination is large, is a time-
dependent amplitude analysis of B0 ! �����0 [5]. Here,
the interferences between ����, �0�0 and ���� contri-
butions to the �����0 final state provide the critical
information on the unknown phases introduced by penguin
amplitudes. Recently, the first time-dependent studies of
the �����0 Dalitz plot have been performed [7]. In these
studies, a simplification is made with the assumption that
the �0�0 contribution is small. A more complex time-
dependent Dalitz analysis is required if this is not the case.

The Belle Collaboration reported first evidence of the
B0 ! �0�0 decay [8] with a branching fraction larger than
most predictions [9], and a central value above the 90%
confidence-level upper limit set by the BABAR
Collaboration [10]. In this paper, we report an improved
measurement of the B0 ! �0�0 branching fraction [11],
using 2.5 times more data, and perform a first direct CP
violation search in this mode. The results are consistent
with and supersede those reported in our previous publi-
cation. The analysis is based on �385:8� 4:8� � 106 B �B
pairs, collected with the Belle detector at the KEKB
asymmetric-energy e�e� collider [12] that operates at
the ��4S� resonance. The production rates of B�B� and
B0 �B0 pairs are assumed to be equal.
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The Belle detector [13,14] is a large-solid-angle mag-
netic spectrometer that consists of a silicon vertex detector,
a 50-layer central drift chamber (CDC), an array of aerogel
threshold Cherenkov counters (ACC), a barrel-like ar-
rangement of time-of-flight scintillation counters (TOF),
and an electromagnetic calorimeter comprised of CsI(Tl)
crystals (ECL) located inside a superconducting solenoid
coil that provides a 1.5 T magnetic field. An iron flux-
return located outside of the coil is instrumented to detect
K0
L mesons and to identify muons.
The B reconstruction procedure is identical to our pre-

viously published analysis [8]. Charged tracks are required
to originate from the interaction point and have transverse
momenta greater than 100 MeV=c. Pions are identified by
combining information from the ACC, TOF and the CDC
dE=dx measurements. We further reject tracks that are
consistent with an electron hypothesis. Pairs of photons
with invariant masses in the range 0:115 GeV=c2 <m�� <
0:154 GeV=c2 are used to form the�0 mesons. The photon
energy in the laboratory frame is required to be greater than
50(100) MeV in the barrel (endcap) region of the ECL. The
�0 candidates are required to have transverse momenta
greater than 100 MeV=c in the laboratory frame and a
loose requirement is made on �2

�0 , the goodness of fit of
a �0 mass-constrained fit of the two photons. We also veto
possible contributions to �����0 from charmed (b! c)
decays: B0 ! D���, �D0�0 and J= �0.

Signal B candidates are identified with two kinematic
variables: the beam-energy constrained mass Mbc 	��������������������������������������
E2

beam=c
4 � p2

B=c
2

q
and the energy difference �E 	

EB � Ebeam. Here, EB (pB) is the reconstructed energy
(momentum) of the B candidate, and Ebeam is the beam
energy, all expressed in the center-of-mass (CM) frame.
We consider candidate events in the region �0:2 GeV<
�E< 0:4 GeV andMbc > 5:23 GeV=c2; and define signal
regions in �E and Mbc as �0:135 GeV<�E<
0:082 GeV and 5:269 GeV=c2 <Mbc < 5:290 GeV=c2.
To select �0�0 from the �����0 candidates, we require
the ���� invariant mass to be in the range 0:5 GeV=c2 <
m���� < 1:1 GeV=c2 and the �0 helicity angle to satisfy
j cos��helj> 0:5, where ��hel is defined as the angle between
the negative pion direction and the opposite of the B
direction in the � rest frame. We explicitly veto contribu-
tions from B0 ! ���� by the requirement m���0 >
1:1 GeV=c2. This requirement also vetoes the region of
the Dalitz plot where the interference between �0�0 and
���� is strongest. After all selection requirements, 11%
of events have more than one candidate. Among those
candidates the one with the smallest �2

vtx=ndf � �2
�0=ndf

is selected, where �2
vtx is the goodness of fit of a vertex-

constrained fit of ����.
The dominant background originates from continuum

e�e� ! q �q �q � u; d; s; c� production. To separate the
jetlike q �q events, we use event shape variables: five modi-
fied Fox-Wolfram moments [15], combined into a Fisher

discriminant. We further combine the cosine of the B
meson flight direction in the CM system with the output
of the Fisher discriminant into a signal/background like-
lihood variable, Ls=b, and define the likelihood ratio R �
Ls=�Ls �Lb�. Additional discrimination against contin-
uum is achieved through use of the b-flavour tagging
algorithm [16]. We use the parameter r, with values be-
tween 0 and 1, as a measure of the confidence that the
remaining particles in the event (other than �����0)
originated from a flavour specific B meson decay and—
as a corollary—not from a continuum process.

We use an iterative procedure to find the optimal con-
tiguous area in r-R space by maximising Ns=

������������������
Ns � Nb
p

,
where Ns (Nb) is the expected number of signal (back-
ground) events in the �E and Mbc signal regions. Here, the
optimisation procedure assumes a branching fraction for
B0 ! �0�0 of 3:3� 10�6 [17]. Anticipating the use of r
for its primary purpose of flavour tagging in CP asymme-
try fits, the borders of the contiguous area were constrained
to match the six r bins employed in previous analyses. The
result of the optimisation procedure is that we select events
within the region shown in Fig. 1(a). We find 1397 candi-
dates remain in the data.

We obtain the signal yield using an extended unbinned
maximum-likelihood fit to the �E-Mbc distribution of the
selected candidate events. The likelihood function is de-
fined as

 L � exp
�
�
X
j;l

Nj;l

�Y
i

�X
j;l

Nj;lP i
j

�
: (1)

Here, the index i is the event identifier; l distinguishes
events in various r bins; and j runs over all six components
included in the fitting function—one for the signal, and the
others for continuum, b! c combinatorial, and the charm-
less B backgrounds: B� ! ���0, B� ! ���0 and B� !
���0. Nj;l represents the number of events, and P i

j �

Pj�Mi
bc;�E

i� are two-dimensional probability density
functions (PDFs).

The PDFs for signal, b! c and charmless B back-
grounds are taken from smoothed two-dimensional histo-
grams obtained from Monte Carlo (MC) simulations. For
the B� ! ���0 channel, we assume a 100% longitudi-
nally polarised decay [18]. Small corrections to MC peak
positions and widths are applied to the signal PDF. These
factors are derived from control samples of reconstructed
decays B0 ! D
��� (D
� ! �D0��, �D0 ! K���;
�� ! ���0) and B� ! �D0�� ( �D0 ! K���; �� !
���0), in which we require that the �0 momentum be
greater than 1:8 GeV=c in order to mimic the high mo-
mentum�0 in our signal. The two-dimensional PDF for the
continuum background is described as the product of a
first-order polynomial in �E and an ARGUS function [19]
in Mbc. All of the shape parameters describing the contin-
uum background are free parameters in the fit. The normal-
isations of B� ! ���0 (21:7� 4:4 events) and
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B� ! ���0 (21:0� 5:5 events) are fixed in the fit accord-
ing to previous measurements [6,20], and that of b! c
background (62� 62 events) according to MC expectation
(assigning a conservative error); the normalisations of all
other components are allowed to float.

The fit result is shown in Fig. 1(b) and 1(c). The signal
yield is found to be 50:9�14:3

�13:4 with 4:5� significance. The
significance is defined as

�����������������������������������
�2 ln�L0=Lmax�

p
, where Lmax

(L0) denotes the likelihood with the signal yield at its
nominal value (fixed to zero). The contribution from B� !
���0 decays (which peaks in the low �E region) is
obtained from the fit as 43:1�13:2

�12:1 events; this value is
consistent with the MC expectation (33:9�8:1

�9:8 events) based
on our branching fraction measurement of B� ! ���0

[18]. A possible contribution from B! !������0��0

decays is also accounted for by floating the B� ! ���0

PDF, since the two decays have similar distributions in �E
andMbc. To verify that the signal candidates originate from
B0 ! �0�0 decays, we change the criteria on m���� and
cos��hel in turn, and repeat fits to the �E-Mbc distribution.
The yields obtained in each m���� and cos��hel bin are
shown in Fig. 1(d) and 1(e).

The cos��hel distribution is used to limit contributions
from B0 ! ��0, f0�980��0, �0�0, KS�0 and �����0

(nonresonant), which are expected to be flat in this vari-
able. We perform a �2 fit including components for pseu-
doscalar ! pseudoscalar vector (PV � cos2��hel), and
pseudoscalar ! pseudoscalar scalar (PS� flat) decays,
for which the shapes are obtained from our �0�0 signal
MC, and a sample of ��0 MC [21], respectively. We also
include a linear term to allow for possible interference. We
find that the PS level is consistent with zero; taking its
uncertainty into account, we assign a model error of
�0:0� 15:0% to the PV component. The m���� distribu-
tion is consistent with the expectation from B0 ! �0�0

production.
To extract the branching fraction, we determine the

reconstruction efficiency, �4:99� 0:03�%, from MC and

correct for small differences between data and MC in the
pion identification and continuum suppression require-
ments. The correction factor due to charged pion identi-
fication (0.872) is obtained in bins of track momentum and
polar angle from an inclusive D
 control sample (D
� !
�D0��, �D0 ! K���). The corresponding systematic error

is�3:1%. For the continuum suppression requirement on r
and R, we use the control sample B0 ! D��� (D� !
K�����; �� ! ���0) to obtain an efficiency correction
factor of 0.972 and a corresponding systematic error of
�6:0%.

We calculate additional systematic errors from the fol-
lowing sources: PDF shapes by varying parameters by
�1� (� 0:9� 2:0%); �0 reconstruction efficiency by
comparing the yields of �! �0�0�0 and �! �� be-
tween data and MC (� 4:0%); track finding efficiency
from a study of partially reconstructed D
 decays (�
2:4%); and data-MC efficiency differences due to the
�E>�0:2 GeV requirement (� 2:0%). We repeat the
fit after changing the normalization of the fixed back-
ground components according to the given errors and
obtain a systematic error of �2:0� 1:8%. Using a large
MC sample, the total systematic error from possible
charmless B decays not otherwise included, B0 ! K
0�0

(5.4%), B� ! K
��0 (1.5%) and B0 ! K��� (0.5%), is
�5:6%.

When the normalizations of all the backgrounds fixed in
the fit are simultaneously increased by 1�, the statistical
significance decreases from 4:5� to 4:2�; we interpret the
latter value as the significance of our result. Finally, we
estimate the uncertainty due to possible interference with
B0 ! ���� by varying the m���0 veto requirement from
m���0 > 0 MeV=c2 (no veto) to m���0 > 1:7 GeV=c2.
We find the largest change in the result to be within
�16%, and we include this value in the model error, so
that the obtained B0 ! �0�0 branching fraction is

 B � �3:12�0:88
�0:82�stat� � 0:33�syst��0:50

�0:68�model�� � 10�6:
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FIG. 1 (color online). (a) Distribution of signal (continuum) events in r-R space shown with open (shaded) proportional boxes; the
marked region (top-right) indicates the area selected. (b) (c) Distributions of �E�Mbc� in the signal region of Mbc��E�. Projection of
the fit result is shown as the thick solid curve; the thin solid line represents the signal component; the dashed, dotted and dash-dotted
curves represent, respectively, the cumulative background components from continuum processes, b! c decays, and charmless B
backgrounds. (d), (e) Distributions of fit yields in m���� and cos��hel variables for �0�0 candidate events. Points with error bars
represent data fit results, and the histograms show signal MC expectation; the selection requirements described in the text are shown as
dashed lines.
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Having observed a significant B0 ! �0�0 signal, we
utilize the B0/ �B0 separation provided by the flavour tagging
to measure the CP asymmetry. For this purpose we replace
P i
j of Eq. (1) with the expression

 P i
j;l �

1

2
�1� qi  �A0

CP�j;l�Pj�M
i
bc;�E

i�; (2)

in which the indices keep the same meaning. In this equa-
tion, q represents the b-flavour charge [q � �1��1�when
the tagging B meson is a B0 ( �B0)] and A0

CP denotes the
effective charge asymmetry, such that �A0

CP�j;l �

�ACP�j�1� 2�d��1� 2wl�. Here, �ACP�j are the charge
asymmetries for the signal and the background compo-
nents. Further, �d � 0:182� 0:015 [22] is the time-
integrated mixing parameter and wl is the wrong-tag frac-
tion. For continuum background, �d and wl are set to zero.
The data is divided into the six r-bins, and the r-dependent
wrong-tag fractions, wl (l � 1; . . . ; 6), are determined us-
ing a high statistics sample of self-tagged B0 ! D�
����,
D
��� and D
�‘�	 events [16].

The total number of signal, continuum background and
���0 events are free parameters in the fit, and the remain-
ing background components (from b! c, ���0 and
���0 decays) are fixed. Also, the relative fractions for
the signal and continuum background components in dif-
ferent r bins are allowed to float in the fit; for the b! c and
charmless B decay backgrounds, they are fixed. The only
free ACP parameter in the nominal fit is that of our signal;
the others are fixed to be zero (for continuum and b! c)
or at their previously measured values (for charmless B
backgrounds) [20]. We measure the direct CP asymmetry
in B0 ! �0�0 decays to be

 A CP � �0:53�0:67
�0:84�stat��0:10

�0:15�syst�:

The impact of background asymmetry (� 0:058� 0:127)
is the largest contribution to the systematic error; it is
estimated by releasing, in turn, all of the background
ACP parameters (limiting them within�1� range of their
measured values for the charmless B decays), and sum-
ming in quadrature the differences obtained from the cen-
tral ACP value. A similar sum gives �0:059� 0:057 as
the systematic uncertainty obtained by varying all other
fixed parameters in the fit, including �d and wl values, by
�1�. Finally a systematic error of�0:058 is obtained as a
result of a null asymmetry test, when the same analysis
procedure is applied to the B0 ! D��� (D� !
K�����; �� ! ���0) control sample. To illustrate the
asymmetry, we show the results separately for �0�0 can-
didate events tagged as q � �1 and q � �1 in Fig. 2.

In summary, using 386� 106 B �B pairs, we confirm
evidence of B0 ! �0�0 decays with a branching fraction
higher than most theoretical predictions [9]. The central
value remains only slightly above the 90% confidence-

level upper limit set by the BABAR Collaboration [10],
and is in agreement with the upper limit set by the CLEO
Collaboration [6]. Our measurement is consistent with, and
supersedes, our previous result [8]. We have also per-
formed a first measurement of direct CP violation in the
B0 ! �0�0 mode and find no statistically significant
asymmetry.

The large �0�0 branching fraction suggest that one can
only impose a loose constraint on penguin uncertainty in
the determination of�2 from time-dependent B0 ! ����

measurements. It also implies that a useful measurement of
�2 from the full �� isospin analysis may be impractical
even with super B-factory like luminosities [23].
Therefore, we can expect that the best measurements of
�2 from the �� system will come from the full time-
dependent amplitude analysis of B0 ! �����0.
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FIG. 2 (color online). �E and Mbc distributions (with projec-
tions of the fit results) shown separately for events tagged as q �
�1 (left) and q � �1 (right).
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