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We comment on the Lee-Yang zero analysis for the study of the phase structure of QCD at high
temperature and baryon number density by Monte-Carlo simulations. We find that the sign problem for
nonzero density QCD induces a serious problem in the finite volume scaling analysis of the Lee-Yang
zeros for the investigation of the order of the phase transition. If the sign problem occurs at large volume,
the Lee-Yang zeros will always approach the real axis of the complex parameter plane in the thermody-
namic limit. This implies that a scaling behavior which would suggest a crossover transition will not be
obtained. To clarify this problem, we discuss the Lee-Yang zero analysis for SU(3) pure gauge theory as a
simple example without the sign problem, and then consider the case of nonzero density QCD. It is
suggested that the distribution of the Lee-Yang zeros in the complex parameter space obtained by each
simulation could be more important information for the investigation of the critical endpoint in the (T, &)

plane than the finite volume scaling behavior.
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I. INTRODUCTION

In the last few years, remarkable progress in exploring
the QCD phase structure in the temperature (T) and quark
chemical potential (u,) plane have been made in numeri-
cal studies of lattice QCD. The phase transition line,
separating hadron phase and quark-gluon plasma phase,
was investigated from u, = 0 to finite u, [1-6], and the
equation of state was also analyzed quantitatively at low
density [4,7-9].

Among others, study of the endpoint of the first order
phase transition line in the (T, u,) plane, whose existence
is suggested by phenomenological studies [10,11], is par-
ticularly important both from the experimental and theo-
retical point of view. To locate the critical endpoint, Fodor
and Katz [2,3] investigated the positions of the Lee-Yang
zeros (to be explained more below) in the complex 8 =
6/¢* plane using lattices with different spatial volumes,
and examined the finite-volume scaling behavior of a Lee-
Yang zero closest to the real axis. There are also studies in
which the behavior of the critical endpoint as a function of
the quark masses is examined by using the property that a
critical endpoint exists at w4, = 0 in the very small quark
mass region for QCD with three flavors having degenerate
quark masses. For extrapolating the result to the case with
Physical quark masses, an approach on the basis of the
Taylor expansion in terms of p,q/ T [12] and that of the
imaginary chemical potential [13,14] have been developed.
Moreover, a study of phase-quenched finite density QCD,
ie. simulations with an isospin chemical potential, has
been discussed in Ref. [15]. The radius of convergence in
the framework of the Taylor expansion of the grand ca-
nonical potential can establish a lower bound of the loca-
tion of the critical endpoint [7,9,16]. Also, the Glasgow
method [17] is an interesting approach for the study of
QCD at nonzero baryon density.
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In this paper, we focus our attention on the method of the
Lee-Yang zero [18] applied to finite density QCD. The
Lee-Yang zero analysis is a popular method that is used to
investigate the order of phase transitions. In order to study
the existence of singularities in the thermodynamic limit
(infinite volume limit), Lee and Yang proposed the follow-
ing approach: Because there are no thermodynamic singu-
larities as long as the volume is finite, the partition function
Z is always nonzero; it can develop zeros only in the
infinite volume limit. However, if a real parameter of the
model is extended into the complex parameter plane, a
singularity, characterized by Z = 0, can appear in the
complex parameter plane even in a finite volume. These
zeros are called the Lee-Yang zeros. Therefore, one can
find the position of a singularity by exploring the position
of the Lee-Yang zero in the complex parameter plane as a
function of volume, and extrapolating the position of the
Lee-Yang zero in the thermodynamic limit. For a system
with a first order phase transition, the position of the
nearest Lee-Yang zero approaches to the real axis in in-
verse proportion to the volume. On the other hand, the Lee-
Yang zeros do not reach the real axis for crossover tran-
sition, i.e. rapid change without any thermodynamic sin-
gularities. For QCD at nonzero baryon density, we expect a
rapid crossover transition in the low density regime which
changes into a first order phase transition beyond a critical
value of the density.

As we mentioned, Fodor and Katz have investigated the
finite volume dependence of the Lee-Yang zeros in the
complex B = 6/g? plane for various values of the chemi-
cal potential. To carry out such analysis, the reweighting
method [19] is adopted, in which one performs simulations
at ug = 0, and then corrects for the modified Boltzmann
weight in the measurement of observables. In this case a
famous problem arises for large x,/T and large volume,
which is called ‘“‘sign problem.” The sign problem is
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caused by complex phase fluctuations of the fermion de-
terminant. In the region of small u,/T, the phase fluctua-
tions are not large and the sign problem is not serious.
However, if the sign of the modification factor changes
frequently during subsequent Monte-Carlo steps for large
t,/T, the statistical error becomes larger than the expec-
tation values in general.

We find that the sign problem induces a serious problem
in the finite-volume scaling analysis of the Lee-Yang zero,
which is used by Fodor and Katz. For any nonzero p, the
normalized partition function calculated on the real axis
with necessarily limited statistics will numerically always
be consistent with zero once the volumes grow large. This
means that the scaling behavior suggesting a crossover
transition will not be obtained for the case with the sign
problem, which is in contrast with the usual expectation.

Before discussing the case of nonzero density QCD, we
study in Sec. I, as a simple example, the Lee-Yang zeros in
the complex B plane for SU(3) pure gauge theory by
analyzing data from Monte-Carlo simulations. This model
has a first order phase transition [20] and simulations are
much easier than for QCD at nonzero baryon density.
Moreover, the pure gauge theory does, of course, not
have a sign problem. Hence it is a good example to
demonstrate how the Lee-Yang analysis works in the com-
plex B plane. In addition, it will become clear during this
exercise that the complex phase fluctuations arising from
the imaginary part of 8 near Lee-Yang zeros are quite
similar to those coming from the quark determinant where
the sign problem exists for nonzero density QCD. The
problem of the complex measure is reviewed in Sec. III.
There we also comment on the reweighting method for the
study at nonzero baryon density. In Sec. IV, we discuss a
problem which arises when we apply the Lee-Yang zero
analysis for nonzero baryon density QCD by using the
reweighting technique, and consider possible other ap-
proaches in the framework of the Lee-Yang zero analysis
for the investigation of the critical endpoint. Conclusions
and discussions are given in Sec. V.

II. LEE-YANG ZERO FOR SU(3) PURE GAUGE
THEORY

A. General remarks

In this section, we apply the method of Lee-Yang zeros
to the SU(3) pure gauge theory (quenched QCD).! The
phase transition of the SU(3) pure gauge theory is known to
be of first order [20], which is expected from the corre-
sponding Z(3) spin models. The pure gauge theory is
controlled by only one parameter 8 = 6/g> with the par-
tition function,

'A pioneering study has been done for lattices with N, = 2 in
Ref. [21].
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Z = jDUQGBN’i'CP, (1)

where P is an  averaged plaquette P =
(e u<r Wi (x))/(6Ng), and W)K! is the 1 X 1 Wilson
loop operator for the lattice size Ny, = N2 X N,. Here,
N, and N, are spatial and temporal extension of the lattice,
We extend the real parameter 8 into the complex plane
(Bre> Bim), and determine the position of Lee-Yang zeros,
at which Z(Bge, Bim) = 0 is satisfied, by numerical simu-
lations. We use standard Monte-Carlo techniques; configu-
rations {U,} are generated with the probability of the
Boltzmann weight. The expectation value of an operator
O[U,], (O), is then calculated by taking an average over
the configurations. We expect that the position of the Lee-
Yang zero (B3, BY.) approaches the real B axis in the
infinite volume limit; with B ~ 1/V = N33 for a first
order phase transition.

In carrying out the above calculation two problems arise:
One is that the Monte Carlo method is applicable only to
the expectation values of physical quantities but not to the
partition function itself. Another problem is that the mea-
sure is complex for a complex coupling S, and hence we
cannot apply the Monte Carlo method directly, since the
probabilities (Boltzmann weights) must be real and posi-
tive. To avoid these problems, we introduce the normalized
partition function Z,,,, together with the reweighting
technique,

Z(ﬁRcr ,Blm)
Z(BRe’ 0)
fDUe6(ﬁRC+iﬂlm)NsilcP

f DUeGBRcchP

= <eGiBlmNsilcP>
(BR:-O)

= <e6iBIInNsichP>
(ﬁRc»O)

Here AP =P —(P) and |[exp(6iBiNe(P)) = 1.
Because the denominator Z(Bg., 0) is always finite for
any finite volume, the position of Z(Bge, Bim) = 0 can
be identified by analyzing Z..,. Although the partition
function is not zero for B, = 0, it can be zero at some
points in the (Bge, Bim) plane, when the complex phase
factor in Eq. (2) changes sign frequently on the generated
configurations. For the determination of the critical point in
the original theory, i.e. on the real B axis, the position of
the nearest Lee-Yang zero should be investigated as a
function of the volume V = N3,

The mechanism that leads the occurrence of a Lee-Yang
zero in Eq. (2) is quite similar to that which limits the
applicability of the reweighting method for QCD with
finite chemical potential [4,22). We will discuss this in
more detail in Sec. III. At a point for which the width of
the probability distribution of 68, NP is smaller than

z nonn(BRer Blm) =

. )]
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O(m/2), the sign of the complex phase does not change.
Therefore, the standard deviation of the plaquette distribu-
tion is required to be larger than 7/(128,Ng) in the
region where Lee-Yang zeros exist. Moreover, because the
square of standard deviation is in proportion to the value of
the plaquette susceptibility, the position of its maximum
must agree with the position where Z,,,, becomes minimal
as function of By, for fixed By,,.- Hence, the real part, Bg.,
of the position of the nearest Lee-Yang zero must be
consistent with the peak position of the plaquette suscep-
tibility. The method to find a critical point from the loca-
tion of Lee-Yang zeros thus is essentially the same as the
method which determines a critical point through the lo-
cation of the peak position of the susceptibility and its
finite-volume scaling.

Here, it is instructive to introduce a probability distribu-
tion function for the plaquette, w(P), which is defined by

w(P) =5 [ DUSP' — PeSbucbac?,  (3)

where 8(x) is the delta function. Then, Eq. (2) can be
rewritten as

Znonn(B) = |[dPe6iﬁlmNsi|¢AP‘v(P) i (4)

This means that the partition function Z,,, as a function
of 681Ny is obtained through a Fourier transformation
of w(P).

Using this equation, the relation between the scaling
behavior of the Lee-Yang zeros in the infinite volume limit
and the distribution function of the plaquette becomes
clearer. In Monte-Carlo simulations, configurations with
probabilities proportional to their Boltzmann weight are
generated by a computer, and we obtain a distribution
function of the plaquette from the histogram of the pla-
quette. The histogram has usually a Gaussian shape at a
normal, noncritical point, but it deviates from the Gaussian
form near a critical point, and attains a double peak shape
at a first order transition point, corresponding to the coex-
istence of two phases.

For the case of a nonsingular point of B, or a crossover
pseudocritical point, where the distribution is expected to
be a Gaussian function, the point of Z,,, = 0 does not
exist except in the limit of By, N, — © or —oo, because
the function which is obtained through a Fourier trans-
formation of a Gaussian function again is a Gaussian
function. Of course, results of numerical simulations
have statistical errors, hence Z,,,, can become zero
“within errors,” if the expectation value and the error
become of the same order. However, in this case, the point
at which Z,,, = O appears at random in terms of B, X
Ng;io- Therefore, the volume dependence of the position of
the Lee-Yang zero (8%, B,) does not necessary to be
B, ~ 1/V(= N;3) for fixed N..
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On the other hand, in the case of a first order phase
transition, we expect that the plaquette histogram has two
peaks having the same peak height at the transition point.
Performing the Fourier transformation of such a double
peaked function leads to a function which has zeros peri-
odically. For example, a distribution function w(P) having
two Gaussian peaks at AP = *A leads to a normalized
partition function Z,,,,, which has zeros at

o _ m2n+1)

_—’ :O’ , y 'lll .
In 2N A (n 1,2,3--+) ®)

This is mathematically the same as that for the interference
experiment using a laser and a double-slit. The Lee-Yang
zeros correspond to dark lines (destructive interference)
and they appear periodically as given in Eq. (5). Moreover,
for a first order phase transition the difference of plaquette
values in cold and hot phases, 2A, is related to the latent
heat A, i.e. the energy difference between the hot and cold
phases,

E
T

where a is the lattice spacing. Since Ag is nonzero, A does
not vanish in the infinite volume limit (N3 — o).
Therefore, we find that in the infinite volume limit the
nearest Lee-Yang zero approaches the real B axis like

9.~ 1/V, which is consistent with the general argument
on the Lee-Yang zero for a first order phase transition. We
also emphasize that the isolated Lee-Yang zeros appear
periodically. The distances to these points from the real
axis are 1,3,5, - - - in units of the distance to the first Lee-
Yang zero. This is also an important property, which is not
observed for a crossover transition.

In addition, the discussion given for the plaquette dis-
tribution function can be extended to the analysis of fourth
order Binder cumulants,

ap

~ —12AN%a -,
'ada

(6)

_ (APY)

b= ary

@)

which is an alternative to the method of Lee-Yang zeros
often used to identify the order of a phase transition. The
value of the Binder cumulant at the critical point depends
on the universality class. In the case of a first order phase
transition, assuming the plaquette distribution is a double
peaked function, the Binder cumulants are estimated as

_ [dPAP*w(P) _ A*

Bs = (rapartwp)y ~ @27

=1, ®

where the distance between two peaks is 24 and is wider
than the width of each peak. On the other hand, when the
distribution function can be modeled by a Gaussian func-
tion for a crossover transition, the Binder cumulants are
given by
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- ,/x/ﬂ'fdPAP“e_‘“”’2
(Jx/7 [ dPAP*e=*AF%)?

(L T s o

In a region where a first order phase transition changes to a
crossover, the Binder cumulant changes rapidly from one
to three. We expect to find such a region for full QCD at
high temperature and density. The value of the Binder
cumulant at the endpoint of the first order transition line,
which is of second order, is determined by the universality
class. Hence, the plaquette distribution function plays an
important role for both methods to identify the order of a
phase transition. ‘

B. Numerical results

We calculate the normalized partition function for SU(3)
pure gauge theory to find Lee-Yang zeros in the complex 8
plane, using data for plaquettes obtained by QCDPAX in
Ref. [23]. There are five data sets measured at the transition
point for N, = 4 and 6. The spatial lattice sizes are 24% X
36 X 4, 122 X 24 X 4, 36% X 48 X 6, 243 X 6, and 20° X
6. 0(10°) configurations are available for the analysis of
each data set. The reweighting technique is also used for
the real B direction to analyz® the Lee-Yang zeros in the
complex B plane for a data set obtained at only one 3 point
(Bre> Bim) = (Bo, 0). The normalized partition function is
given by

<e6fB1mN;ichPg6BR~‘N"“AP)(ﬁo.O)

(eﬁﬁRchiluAP>(ﬁo'0]

Znorm(ﬁRc’ Blm) =

(10)

Figure 1 shows the contour plot of Z,,, for the 24? X
36 X 4 lattice. The simulation point is 83 = 3.6492. In this
definition, Z,., is normalized to be one on the real B axis.
Circles  at (B3 BY) = (5.6925,0.0021)  and
(5.6931,0.0056) are Lee-Yang zeros. Since the SU(3)
pure gauge theory has a first order phase transition, Lee-
Yang zeros appear periodically. For this data, two clear
peaks are visible in the plaquette histogram [23]. The
distance between these two peaks is 2A =~ 0.003. The
positions of the Lee-Yang zeros are consistent with B9, ~
7/(12Ng.A) = 0.002 and 37/(12Ng.A) = 0.006, as
given in Eq. (5). ‘

The above property is not seen so clearly for lattices
having small N, and large N,. The position of the next-to-
leading zero points of Z,,.,, appear at random for the other
data sets relative to the nearest zero point. The positions of
Lee-Yang zeros are shown in Table 1. We could not obtain
clearly isolated Lee-Yang zeros for the lattices 24* X 6 and
203 X 6. The second nearest Lee-Yang zero to the real axis
could be measured only for the 24% X 36 X 4 lattice. The
result on the 36> X 48 X 6 lattice (8, = 5.8936) is also
shown in Fig. 2. Only the nearest Lee-Yang zero is obtained
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24°x36x4 lattice

0.01 - r

Blm

5.688 5.69 5.692 5.694 5.696

BRc

FIG. 1. Contour plot of the normalized partition function
Zoorm in the (Bre, Bim) plane measured on the 24 X 36 X 4
lattice. Values in the right edge are Z,, . The simulation point
is Bp = 5.6925.

clearly. The Lee-Yang zero becomes less clear as N;
increases and N, decreases, hence simulations on lattices
having large N, /N, seem to be necessary for the study of
Lee-Yang zeros.

The values for 89 V on 242 X 36 X 4 and 12% X 24 X 4
lattices are 43.9(5) and 42.0(6), respectively. These are
roughly constant and suggest the scaling behavior of

0 ~1/V for a first order phase transition. Also, in the
previous study for lattices with N, =2 [21], the 1/V
scaling behavior has been confirmed for N, = 6, 8, 10,
and 12. However, for a more precise quantitative investi-
gation that takes into account the errors, the spatial lattice
size 122 X 24 may not be large enough to check the 1/V
scaling for N, = 4, since the difference of B V is larger
than the statistical error. We should fit the data obtained on
more than two lattices by a curved function of 1/V, to
confirm through a 1/V scaling analysis that the phase
transition of the SU(3) pure gauge theory is first order.
E.g. for the study of the SU(2) gauge-Higgs model [24], the

~ following fitting functions have been used, Imxo(V) =

k§+ CV™" and Imky(V) = «§+ CV~' + DV~2 for a

TABLE I. Positions of Lee-Yang zeros for the SU(3) pure
gauge theory.

Lattice size Bre Bim
122X 24 X 4 Ist zero 5.69178(23) 0.01216(17)
247 X 36 X 4 1st zero 5.69252(5) 0.002 12(2)
242 X 36 X 4 2nd zero 5.69309(7) 0.005 56(7)
36° X 48 X 6 Ist zero 5.894 11(10) 0.004 34(8)
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36°x48x6 lattice
0.008 T T T T T T

T Joon

FIG. 2. Contour plot of the normalized partition function Z,,
for the 36% X 48 X 6 lattice. The simulation point is By =
5.8936.

complex parameter « in the model with fitting parameters
k5, C. D, and v.

IIIl. COMPLEX PHASE FLUCTUATION AND SIGN
PROBLEM

As seen in the previous section, the investigation of Lee-
Yang zeros in the complex S plane seems to be useful to
identify the order of phase transition. However, if we try to
extend this analysis to full QCD at nonzero baryon density,
a serious problem arises. This problem is closely related to
the sign problem for finite density QCD, since the normal-
ized partition function can be zero in the complex 8 plane
due to fluctuations of the complex phase related to 8y, and
also due to the complex phase from the quark determinant
that causes the sign problem. Before discussing the Lee-
Yang zero analysis for finite density QCD, we would like to
review the sign problem briefly.

The main difficulty for studies at finite baryon density is
that the Boltzmann weight is complex if the chemical
potential is nonzero. In this case the Monte-Carlo method
is not applicable directly, since configurations cannot be
generated with a complex probability. One approach to
avoid this problem is the reweighting method. We perform
simulations at & = 0, and incorporate the remaining part
of the correct Boltzmann weight for finite u in the calcu-
lation of expectation values. Expectation values (O) at
(B, n) are thus computed by a simulation at (8, 0) using
the following identity,

(OeNilindetM () ~Indet(©)y
<O)(ﬂ-#) = T/ Ni(IndeiM () — IndetM(0)) 2. )'
(e )B.0)

(n
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where M is the quark matrix and N; is the number of
flavors (N;/4 for staggered type quarks instead of Ng); u
is a quark chemical potential in lattice units, i.e. u =
Mqa = pa/(N,T), and p,, is the quark chemical potential
in physical units. This is the basic formula of the reweight-
ing method. However, because IndetM(u) is complex, the
calculations of the numerator and denominator in Eq. (11)
becomes in practice increasingly more difficult for larger
M. We define the phase of the quark determinant 6 by
(detM(u))M/* = | detM(u)[M/4e?®  for staggered type
quarks. If the typical value of # becomes larger than
/2, the real part of e’® (= cosf) changes its sign fre-
quently. Eventually both the numerator and denominator of
Eq. (11) become smaller than their statistical errors and
Eq. (11) can no longer be evaluated. We call it the “‘sign
problem.”

Here, the denominator of Eq. (11), or simply {cos#), is a
good indicator for the occurrence of the sign problem. If
this indicator is zero within statistical errors, Eq. (11)
cannot be computed. In the following we give an estimate
for the value of the complex phase. Since the direct calcu-
lation of the quark determinant is difficult except for
calculations on small lattices, we expand IndetM(u) in a
Taylor series,

IndetM () — IndetM(0) = Z[a_(‘;_fﬂ)]ﬁ_'

n=1
Then, we can easily separate it into real and imaginary
parts because the even derivatives of IndetM(u) are real
and the odd derivatives are purely imaginary [4]. The
complex phase # is given by

Ne & . 9% I(IndetM) p2~!
0=— 1 ,
4 ,Z MR @n 1)

1=1
for staggered type quarks at small x. The Taylor expansion
coefficients are rather easy to calculate by using the sto-
chastic noise method. The comparison between the value
of 6 with this approximation and the exact value has been
done in Ref. [25], and the reliability and the application
range have been discussed.

We use data for the Taylor expansion coefficients ob-
tained in Ref. [9]. The data were generated by using
Symanzik-improved gauge and p4-improved staggered fer-
mion actions. Coefficients up to O(u>) have been calcu-
lated. Figure 3 shows the indicator {cosf) measured at
B = {3, 60, 3.65, and 3.68}, for ma = 0.1, corresponding
toT/ Tf = (.90, 1.00, and 1.07, respectively, on a 16> X 4
lattice.” We also estimate the values of /T = N, at

a2

(13)

2As mentioned in Ref. [4], in the calculation using the sto-
chastic noise method, the error due to the finite number of noise
vector (N,4.) is large for the calculation of {(cos@) with N, ;. =
10. For the purpose of this study we increased the number of
noise vector to N .. = 100. We checked that the difference
between the results with N, ;. = 50 and Ny, = 100 is about
10% for the calculation of the position at which (cos8) = 0.1.
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FIG. 3. The expectation value of the complex phase {cos6) for
QCD with two flavors of p4-improved staggered quarks at ma =
0.1.

which (cosf) = 0.1, 0.01 and 0.0. Results are given in
Table II. The situation now is quite similar to the non-

singular case of the normalized partition function in the
I

Znorm(ﬂRc’ Bim: /.L) = Z(BR .0,0)

or

BRc' Blm’ /~") —

Z(BRer Im» ,LL)

< 6iBiaNsic AP 4if

<e6iB|mNm,APeio I e(Nf/4)(lndctM(p,)—IndclM(O)) D(ﬁk
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complex B plane discussed in the previous section. This
becomes even more apparent if we consider for simplicity
only the first term in the expansion of 8 which is propor-
tional to u. Then {cos#), u and Im[d(IndetM)/du] corre-
spond to the normalized partition function, By, and
plaquette, respectively.

Because the distribution of the complex phase 8 is al-
most of Gaussian shape, the indicator, {cos6), decreases
exponentially as u increases, and it may cross zero at a
point where the expectation value becomes smaller than
the statistical error. Therefore, the points of {cos#) =0
appear accidentally and the results given in Table II are
unstable. Moreover, d(IndetM)/du becomes larger as the
volume increases, hence the indicator for the sign problem
vanishes in the infinite volume limit for any nonzero u,
which means that the range of applicability for the re-
weighting method approaches & = 0 in the infinite volume
limit,

IV. LEE-YANG ZERO ANALYSIS FOR FINITE
DENSITY QCD

The Lee-Yang zero analysis for finite density QCD has
been performed by Fodor and Katz [2,3]. They measured
the normalized partition function Z,, using the reweight-
ing method, and determined the points where Z,,o;, = 0 as
a function of spatial volume. The normalized partition
function is defined by

e(Nf/4)(lndclM(;L)— IndetAf(0))

>(ﬂRc'0-0)
(14)

0,0)

Z
Znorm(ﬁRe’ Blm’ [.L) = | é(BR .0, /'L)

for staggered type quarks. & is the complex phase of
exp[(N¢/4)(IndetM (w) — IndetM(0))]. Since the numera-
tor of Eq. (15), which is the same as Z,,, in Eq. (14), is

TABLE II.  Values of u,/T = N,u at which {(cosf) = 0.1,
0.01, and 0.0 Ny, = 163 X 4.

T/T, {cos@) = 0.1 {cos8) = 0.01 {cos8) = 0.0
0.90 0.70(2) 1.02) 1.2(2)
0.96 0.80(2) 1.1(1) 1.1(1)
1.00 0.87(2) 1.9(2) 2.3(4)
1.02 0.96(3) 2.2(12) 2.3(1)
1.07 1.13(3) 1.8(4) 2.02)

(15)

( eiol (Ne/4)(IndetM (1) —IndetM(0)) I)(B 0.0)
Re»Ye

f
required to be zero at a zero point of Z,o, in Eq. (15), we
consider Eq. (14) as an indicator for the Lee-Yang zero.
Here, we notice that for B, = 0 this normalized parti-
tion function is exactly the same as the indicator for the
sign problem, i.e. the denominator of Eq. (11). As dis-
cussed in the previous section, in any practical simulation
this indicator will be consistent with zero within errors for
large values of w. Moreover, the region where the indicator
is nonzero becomes narrower as the volume increases, and
this region vanishes in the infinite volume limit. Hence, the
Lee-Yang zeros always approach the By, = 0 axis in the
infinite volume limit for any finite x. This means that the
scaling behavior for crossover will not be obtained for the
case with the sign problem. This is clearly different from

054502-6



LEE-YANG ZERO ANALYSIS FOR THE STUDY OF QCD ...

the usual expectation for the QCD phase diagram in the
(T, 1) plane. Most model calculations suggest that the
transition is crossover in the low density region. This might
be a problem of the definition of the normalized partition
function, Eq. (14). The normalized partition function on
the real B axis is exactly one for u = 0, but it vanishes for
finite g in the infinite volume limit. Therefore, it is very
difficult to distinguish the first order transition and cross-
over by investigating the position of Lee-Yang zeros as a
function of spatial volume. This is the most important
difference between the definitions for the pure gauge the-
ory in Sec. Il and QCD at nonzero density.

The critical endpoint is shown to be located at g =
3u, = 725(35) MeV in Ref. [2] and 360(40) MeV in
Ref. [3], which is inconsistent with the above argument.
This may be a problem of the fitting function. In Refs. [2,3]
the position of Lee-Yang zeros has been fitted by B9 =
A(1/V) + Bi. where A and B are fitting parameters.
The first order transition and crossover have then been
distinguished by the value of Bf,. As we discussed in
Sec. 11, this fitting function is too simple to fit the data of
Lee-Yang zeros obtained on lattices as small as those used
in Refs. [2,3],i.e. V < 123. In fact, if one assumes a curved
extrapolation function, all data in Table 1 of Ref. [3] seems
to approach By, = 0 in the 1/V — 0 limit. .

In our argument, the statistical error of Z,,,, which is
controlled by the number of configurations in the Monte-
Carlo simulation, plays an important role. If the statistical
error of Z,,m becomes much smaller than the mean value
of Z,om by increasing the statistics for each simulation, the
method in Refs. [2,3] would be applicable. However, one
cannot satisfy this condition in general simply because we
are looking for the Lee-Yang zero which gives Z, o, = 0.
Namely, statistical error cannot be smaller than 0.
Moreover, if the error of Z,,., is sizeable, there appear
fake Lee-Yang zeros which are located even closer to the
real B axis than the true zero in the region where the mean
value of Z,,r, is smaller than the error. Since we adopt the
closest zero as the Lee-Yang zero in the actual scaling
analysis, we may thus misidentify the true zero by the
fake one. .

The above point can be seen explicitly for the second
Lee-Yang zero of the SU(3) gauge theory with N. =6
shown in Fig. 2. Theoretically, we expect the second Lee-
Yang zero exists around By, = 0.013, i.e. 3 times larger
than that of the first Lee-Yang zero as shown in Fig. 1.
However, we find several 8 which give Z,,, = O in the
region of By, > 0.006, and they distribute randomly. If we
identify the second nearest point as the second Lee-Yang
zero, the resulting By, is much smaller than the theoretical
expectation. This problem is caused by the existence of the
region in the complex SB-plane where the statistical error of
Z,om is larger than the mean value as discussed above. As
the statistics is increased for fixed V, such a region should
become smaller and fake Lee-Yang zeros should disappear.
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Now we discuss how the above situation changes by
increasing the volume V. Fortunately, in the SU(3) gauge
theory, the location of Lee-Yang zero can be determined
better also as the volume increases as shown in Sec. II. In
this case, the validity of the scaling assumption becomes
better as the volume increases. On the other hand, for the
case with the sign problem, the error normalized by the
mean value grows exponentially as a function of volume.
Then the size of the region having fake Lee-Yang zeros
cannot be made smaller unless one has exponentially large
statistics. This leads to the conclusion that the quality of
the scaling analysis is not improved by increasing the
volume, and any reliable information about Lee-Yang ze-
ros in the infinite volume limit cannot be obtained. This is
the reason why the serious problem of identifying the
critical endpoint is intimately related to the sign problem.

This discussion suggests that the finite-volume scaling
analysis suffers serious damage through the unsolved sign
problem, and it is very difficult to apply the criterion used
by Fodor and Katz for the investigation of the critical
endpoint in practice. However, the property of the second
nearest Lee-Yang zero characteristic for a first order tran-
sition in Fig. 1, i.e. the fact that the distance to the second
Lee-Yang zero from the real axis is 3 times larger than that
of the first Lee-Yang zero, could be investigated on a finite
lattice. This study is possible for small p without taking
the infinite volume limit. On the other hand, we do not
expect any isolated Lee-Yang zero for a crossover transi-
tion, hence we may be able to determine the order of phase
transition by investigating the distribution of Lee-Yang
zeros in the complex B plane. Although the measurements
of the second Lee-Yang zero may require large lattice sizes
and high statistics, as seen for the case of pure SU(3) gauge
theory, it may be possible to find the region of the first
order phase transition, if the critical endpoint exists in the
low density region.

V. CONCLUSIONS

We commented on the Lee-Yang zero analysis for the
study of the critical endpoint in the (7, u,) phase diagram.
It is found that the Lee-Yang zero analysis at nonzero
baryon density encounters a serious problem. The complex
phases of the quark determinant and the complex 3 are
mixed at nonzero chemical potential. In this case, in prac-
tical simulations with limited statistics the normalized
partition function can develop zeros even on the real 3
axis for large u, in finite volumes. Moreover, in the infinite
volume the normalized partition function is always zero
except for u, = 0. This means that the nearest Lee-Yang
zero always approaches the real B axis in the infinite
volume limit. The scaling behavior suggesting a crossover
transition thus will not be obtained. This is clearly different
from usual expectations for the QCD phase diagram. To
avoid this problem, the sign problem must be removed by
careful treatments increasing the number of configurations
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exponentially as the volume or u,/T increases, otherwise
the finite-volume scaling behavior for the position of Lee-
Yang zeros, which has been analyzed by Fodor and Katz
[2,3], does not provide an appropriate criterion for the
investigation of the order of the phase transition.

To make the underlying problem more transparent, we
applied the Lee- Yang zero analysis to the SU(3) pure gauge
theory, which does not have a sign problem and for which
the simulations are much easier. Lee-Yang zeros are found
in the complex B plane. They appear periodically as ex-
pected by the discussion using a plaquette distribution
function for a first order phase transition. The positions
- of the first Lee-Yang zero on two lattices having different
volume sizes are roughly consistent with the finite size
scaling behavior for a first order phase transition, i.e.
B, ~ 1/V. However, for quantitative analysis it is neces-
sary to fit data from more than two different lattice sizes by
a curved function to study the order of the phase transition.
It is found, in this analysis, that complex phase fluctuations
arising from the imaginary part of 8 play an important role,
and the mechanism that leads to the appearance of the Lee-
Yang zeros is quite similar to the situation in QCD where
the sign problem is present.

The property of a first order phase transition that isolated
Lee-Yang zeros appear periodically at B, ~ C(2n + 1),
where C is the distance to the nearest Lee-Yang zero and »
is an integer, is free from the problems that arise in the
infinite volume limit. Therefore, to investigate the pattern
of the appearance of Lee-Yang zeros in the (Bge, Bim)
plane is important. For this calculation, the simulations
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by using high statistics data and large lattice size are
indispensable. Further studies are clearly important to
find the endpoint of the first order phase transition line in
the (T, u,) plane.

Recently, a close relation between the strength of the
sign problem and the position of the phase transition line
for pion condensation in phase-quenched QCD has been
discussed in Ref. [26]. There it has been found that the
endpoints of the first order transition line determined in
Refs. [2,3] are located near the phase transition line of pion
condensation. These results may relate to our discussion
given here.

Moreover, the pathologies in the Glasgow method have
been discussed in Ref. [17]. Similar problems arise also in
the Glasgow method. It would be interesting to consider
the relation between the pathologies in the Glasgow
method and those in the Lee-Yang zero analysis.
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