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Lee-Yang zero analysis for the study of QCD phase structure
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We comment on the Lee-Yang zero analysis for the study of the phase structure of QCD at high

temperature and baryon number density by Monte-Carlo simulations. We find that the sign problem for

nonzero density QCD induces a serious problem in the finite volume scaling arlalysis of the Lee-Yang

zeros for the investigation of the order of the phase transition. If the sign problem occurs at large volume,

the Lee-Yang zeros will always approach the real axis of tl-e complex parameter plane in the山ermody-

namic limit. This implies that a scaling behavior which would suggest a crossover transition will not be

obtained. To clarify this problem, we discuss the Lee-Yang zero analysis for SU(3) pure gauge theory as a

simple example without the sign problem, and then consider the case of nonzero density QCD. It is

suggested that the distribution of the Lee-Yang zeros in the complex parameter space obtained by each

simulation could be more important information for the investigation of tlle critical endpoint in the (T, /xq)
plane than the finite volume scaling behavior.
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I. INTRODUCTION

In the last few years, remarkable progress in exploring

the QCD phase structure in the temperature (T) and quark

chemical potential (fij plane have been made in numeri-

cal studies of lattice QCD. The phase transition line.

sepとirating hadron phase and quark一gluon plasilla phase,

was investigated from J▲　= 0 to finite jnQ [1-6], and the

equation of state was also analyzed quantitatively at low

density [4,7-9].

Among others, study of the endpoint of the first order

phase transition line in the (T, fiq) plane, whose existence

is suggested by phenomenological studies [10,1 1], is par-

ticularly important both from the experimental and theo-

retical point of view. To locate the critical endpoint, Fodor

and Katz [2,3] investigated the positions of the Lee-Yang

zeros (to be explained more below) in the conlplex β -

6/g- plane using lattices with different spatial volumes,

and examined the finite-volume scaling behavior of a Lee-

Yang zero closest to the real axis. There are also studies in

which the behavior of the critical endpoint as a function of

山e quark masses is examined by using the property that a

critical endpoint exists at /iq - 0 in the very small quark

mass region for QCD with three flavors having degenerate

quark masses. For extrapolating the result to the case with

physical quark masses, an approach on the basis of the

Taylor expansion in terms of fJLq/T [12] and that of the

・maginary chemical potential [13, 14] have been developed.

Moreover, a study of phase-quenched finite density QCD,

・e. simulations with an isospin chemical potential, has

been discussed in Ref. 【151 The radius of convergence in

the framework of the Taylor expansion of the grand ca-

nonical potential can establish a lower bound of the loca-

llon of the critical endpoint [7,9,16]. Also, the Glasgow

inertlOd 【17】 is an interesting approach for the study of

QCD at nonzero baryon density.
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In this paper, we focus our attention on the method of the

Lee-Yang zero [18] applied to finite density QCD. The

Lee-Yang zero analysis is a popular method that is used to

investigate the order of phase transitions. In order to study

the existence of singularities in the thermodyilamic limit

(infinite volume limit), Lee and Yang proposed the follow-

ing approach: Because there are no thermodyr-amic singu-

lanties as long as the volume is finite, the partition function

Z is always nonzero; it can develop zeros only in the

infinite volume limit. However, if a real parameter of the

model is extended into the complex paran-eter plane, a

singularity, characterized by 2 - 0, can appear in the

complex parameter plane even in a finite volume. These

zeros are called the Lee-Yang zeros. Therefore, one can

find the position of a singularity by exploring the position

of the Lee-Yang zero in the complex parameter plane as a

function of volume, and extrapolating the position of the

Lee-Yang zero in the thenllodynamic limit. For a system

with a first order phase transition, the position of the

nearest Lee-Yarlg zero approaches to the real axis in in-

verse proportion to the volume. On the other hand, the Lee-

Yang zeros do not reach the real axis for crossover tran-

sition, i.e. rapid change without any thermodynamic sin-

gulanties. For QCD at nonzero baryon density, we expect a

rapid crossover transition in the low density regime which

changes into a Rrst order phase transition beyond a critical

value of the density.

As we mentioned, Fodor and Katz have investigated tlle

finite volume dependence of the Lee-Yang zeros in the

complex ft - 6/g plane for various values of the chemi-

cal potential. To carry out such analysis, the reweighting

method [19] is adopted, in which one performs simulations

at fig = 0, and then corrects for the modified Boltzmann

weight in the measurement of observables. In this case a

famous problem arises for large fiq/T and large volume,

which is called "sign problenl." The sign problem is
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caused by complex phase fluctuations of the fermion de-

terminant. In the region of small fJLq/T, the phase fluctua-

tions are not large and the sign problem is not serious.

However, if the sign of the modification factor changes

frequently during subsequent Monte-Carlo steps for large

fiq/T, the statistical error becomes larger than the expec-

tation values in general.

We find that the sign problem induces a serious problem

in the finite-volume scaling analysis of the Lee-Yang zero,

which is used by Fodor and Katz. For any nonzero /xq the

normalized partition function calculated on the real axis

with necessarily limited statistics will numerically always

be consistent with zero once the volumes grow large. This

means that the scaling behavior suggesting a crossover

transition will not be obtained for the case with the sign

problem, which is in contrast with the usual expectation.

Before discussing the case of nonzero density QCD, we

study in Sec. II, as a simple example, the Lee-Yang zeros in

the complex β plane for SU(3) pure gauge theory by

analyzing data from Monte-Carlo simulations. This model

has a first order phase transition [20] and simulations are

much easier than for QCD at nonzero baryon density.

Moreover, the pure gauge theory does, of course, not

have a sign problem. Hence it is a good example to

demonstrate how the Lee-Yang analysis works in the com-

plex β plane. In addition, it will become clear during this

exercise that the comple耳phase fluctuations arising from

the imaginary part of {3 near Lee-Yang zeros are quite

similar to those coming from the quark determinant where

the sign problem exists for nonzero density (〕CD. The

problem of the complex measure is reviewed iil Sec. III.

There we also comment on the reweighting method for the

study at nonzero baryon density. In Sec. IV, we discuss a

problem which arises when we apply the Lee-Yang zero

analysis for nonzero baryon density QCD by using the

reweighting technique, and consider possible other ap-

proaches in the framework of the Lee-Yang zero analysis

for the investigation of the critical endpoint. Conclusions

and discussions are given in Sec. V.

II. LEE-YANG ZERO FOR SU(3) PURE GAUGE

THEORY

A. General remarks

In this section, we apply the method of Lee-Yang zeros

to the SU(3) pure gauge theory (quenched QCD). The

phase transition of the SU(3) pure gauge theory is known to

be of first order [20], which is expected from the corre-

sponding Z(3) spin models. The pure gauge theory is

controlled by only one parameter /3 - 6/g- with the par-
tition function,

A pioneering study has been done for lattices with 〃7 - 2 in

Ref. 【21】.
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Z-
∫
T)Ue6βNihcP　　　　　( 1 )

where P is an averaged plaquette P-

(Ix.M<^i51(A))/(6Nsite), and鳴登is the 1 X 1 Wilson
loop operator for the lattice size Nshc - N^ X NT. Here,

Na and NT are spatial and temporal extension of the lattice.

We extend the real parameter fi into the complex plane

(/3Re, (3¥m), and determine the position of Lee-Yang zeros.

at which Z((3Re, /3Im) - 0 is satisfied, by numerical simu-

lations. We use standard Monte-Carlo techniques; configu-

rations {」/ } are generated with the probability of the

Boltzmann weighC The expectation value of an operator

O[UA (0), is then calculated by taking aP average over
the configurations. We expect that the position of the Lee-

Yang zero (/3-c,成一) approaches the real β axis in the

inhite volume limit; with β?m - i/v ≡ AL3 for a first

order phase transition.

In ca汀ying out the above calculation two problems arise:

One is that the Monte Carlo method is applicable only to

the expectation values of physical quantities but not to the

partition function itself. Another problem is that the mea-

sure is coiliplex for a complex coupling β, and hence we

cannot apply the Monte Carlo method directly, since the

probabilities (Boltzmann weights) must be real and posi-

tive. To avoid these problems, we introduce the normalized

partition function 2,-。m together with the reweighting

technique,

^n。rm'βR。, βI…) ≡
Z(βR。, βlm)

Z(βRe, 0)

f VUe*βR亡十ifitJNAleP

J VUe6β i*N**P

I (e6if3lmNiiKP } (β te.。)

I (e6i/3l-NiilcAP)(β u.。) 「

Here AP-P-(P) and　|exp(6/βIm^si.C(P))l- l.

Because the denominator Z(/3Rc, 0) is always finite for

any finite volume, the position of Z(/3Re, f3lm) - 0 can

be identified by analyzing Znorm. Although the partition

function is not zero for /3Im - 0, it can be zero at some

points in the (βR。, βim) plane, when the complex phase

factor in Eq. (2) changes sign.frequently on the generated

configurations. For the determination of the critical point in

the original theory, i.e. on the real f3 axis, the position of

the nearest Lee-Yang zero should be investigated as a

function of the volume V - Nt.

The mechanism that leads the occurrence of a Lee-Yang

zero in Eq. (2) is quite similar to that which limits the

applicability of the reweighting method for QCD with

月nite chemical potential [4,22]. We will discuss this in

more detail in Sec. III. At a point for which the width of

the probability distribution of 6βim^site^* is smaller than
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o(訂/2),thesignofthecomplexphasedoesnotchange.

Therefore,thestandarddeviationoftheplaquettedistnbu-

tio?isrequiredtobelargerthan汀/(12βNsne)inthe
Inv'site
regionwhereLee-Yangzerosexist.Moreover,becausethe

squareofstandarddeviationisinproportiontothevalueof

theplaquettesusceptibility,thepositionofitsmaximum

mustagreewiththepositioi-whereZnormbecomesminimal

asfunctionofβRcforfixedβIm.Hence,therealpart,βRe,

ofthepositionofthenearestLee-Yangzeromustbe

consistentwiththepeakpositionoftheplaquettesuscep-

tibility.Themethodtofindacriticalpointfromtheloca-

tionofLee-Yangzerosthusisessentiallythesameasthe

methodwhichdeterminesacriticalpointthroughthelo-

cationofthepeakpositionofthesusceptibilityandits

finite-volumescaling.

Here,itisinstructivetointroduceaprobabilitydistnbu-

tionfunctionfortheplaquette,w{P),whichisde丘nedby

w(p')-I f VUS(P'- P)elβK*N**P　　(3)

whereS(x)isthedeltafunction.Then,Eq.(2)canbe

rewrittenas

・normvβ)-IdPe6i^N^pw(p)「(4,

ThismeansthatthepartitionfunctionZnormasafunction

of6βim^sitcisobtainedthroughaFouriertransformation

oflv(P).

Usingthisequation,therelationbetweenthescaling

behavioroftheLee-Yangzerosintheinfinitevolumelimit

andthedistributionfunctionoftheplaquettebecomes

clearer.InMonte-Carlosimulations,con伝gurationswith

probabilitiesproportionaltotheirBoltzmannweightare

generatedbyacomputer,andweobtainadistribution

functionoftheplaquettefromthehistogramofthepla-

quette.ThehistogramhasusuallyaGaussianshapeata

normal,noncriticalpoint,butitdeviatesfromtheGaussian

formnearacriticalpoint,andattainsadoublepeakshape

atafirstordertransitionpoint,correspondingtothecoex-

istenceoftwophases.

Forthecaseofanonsingularpointof/3Reoracrossover

pseudocriticalpoint,wherethedistributionisexpectedto

beaGaussianfunction,thepointofZn。rm-0doesnot

existexceptinthelimitofβNAIInv'site-∞Or-α,because
thefunctionwhichisobtainedthroughaFouriertrans-

formationofaGaussianfunctionagainisaGaussian

function.Ofcourse,resultsofnumericalsimulations

havestatisticale汀ors,henceZn。rmcanbecomezero

"withine汀ors,"iftheexpectationvalueandthee汀Or

becomeofthesameorder.However,inthiscase,thepoint

atwhichZn。rn、-0appearsatrandomintermsofβlmX

Nsite.Therefore,thevolun-edependenceofthepositionof

theLee-Yangzero30
'Re'βjm)doesnotnecessarytobe
βI-i/v(≡A^3)forfixedNT.

PHYSICAL REVIEW D 73, 054502 (2006)

On the other hand, in the case of a丘rst order phase

transition, we expect that the plaquette histogram has two

peaks having the same peak height at the transition point.

Performing the Fourier transformation of such a double

peaked function leads to a function which has zeros pen-

odically. For example, a distribution function w(P) having

two Gaussian peaks at AP - ±A leads to a normalized

partition function Znorm which has zeros at

fitO-pirn
7r(2/I + 1)

¥ 2NsneA
(n -0,1,2,3,・・・)・　　(5)

This is mathematically the same as that for the interference

experiment using a laser and a double-slit. The Lee-Yang

zeros correspond to dark lines (destructive interference)

and they appear periodically as given in Eq. (5)I Moreover,

for a first order phase transition the difference of plaquette

values iil cold and hot phases, 2A, is related to the latent

heat Ae, i.e. the energy difference between the hot and cold

phases,

Ae

~戸 - -¥2ANia雲, (6)

where a is the lattice spacing. Since Ae is nonzero, A does

not vanish in the inhnite volume limit (鶴-∞).
Therefore, we find that in the infinite volume limit the

nearest Lee-Yang zero approaches the real β axis like

βjm - ¥/V, which is consistent with the general argument

on the Lee-Yang zero for a first order phase transition. We

also emphasize that the isolated Lee-Yang zeros appear

periodically. The distances to these points from the real
axis are 1, 3, 5,・・・in units of the distance to the firstLee-

Yang zero. This is also an important property, which is not

observed for a crossover transition.

In addition, the discussion given for the plaquette dis-

tribution function can be extended to the analysis of fourth

order Binder cumulants,

B4 -孟宗　　(7)
which is an alternative to the method of Lee-Yang zeros

often used to identify the order of a phase transition. The

value of the Binder cumulant at the critical point depends

on the universality class. In the case of a first order phase

transition, assuming the plaquette distribution is a double

peaked function, the Binder cumulants are estimated as

β4-
JdPArwiP) _ A4

(fdPAP2w(p))2 (A2)2
-　　　　(8)

where the distance between two peaks is 2A and is wider

than the width of each peak. On the other hand, when the

distribution function can be modeled by a Gaussian func-

tion for a crossover transition, the Binder cumulants are

given by
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B4宕
√万f dP&P*e-x*p-
(yJx/lrJdPAP^-e2--xAP2¥2

-(詣誓)/(-」誓-3. (9)
In a region where a first orderphase transition changes to a

crossover, the Binder cumulant changes rapidly from one

to three. We expect to find such a region for full QCD at

high temperature and density. The value of the Binder

cumulant at the endpoint of the first order transition line,

which is of second order, is determined by the universality

class. Hence, the plaquette distribution function plays an

important role for both methods to identify the order of a

phase transition.

B. Numerical results

We calculate the normalized partition function for SU(3)

pure gauge theory to find Lee-Yang zeros in the complex yS

plane, using data for plaquettes obtained by QCDPAX in

Ref. 【23]. There are丘ve data sets measured at the transitionl

point for〃T - 4 and 6. The spatial lattice sizes are 242 ×

36×4, 122×24×4,362×48×6,243×6,and203×

6. <9(106) con6gurations are available for the analysis of

each data set. The reweighting technique is also used for

the real β direction to analyzとthe Lee-Yang zeros in the

complex β plane for a data set obtained at only one β point

(βRc,仇,,) - (β0, 0). The normalized partition function is

given by

^n。rn、(βR。, βIm) -
(et><PlmNiilcbPe6βReN主itCAP)(β ,.o)

(e6βRcAW AP)(β。.O)

(10)

Figure1showsthecontourplotofZnormforthe24-×

36×4lattice.Thesimulationpointisβ0-3.6492.Inthis

definition,Zn。rmisnormalizedtobeoneontherealβaxis.

CirclesatjO
'ReβEn)-(5.6925,0.0021)and
(5.6931,0.0056)areLee-Yangzeros.SincetheSU(3)

puregaugetheoryhasa伝rstorderphasetransition,Lee-

Yangzerosappearperiodically.Forthisdata,twoclear

peaksarevisibleintheplaquettehistogram[23].The

distancebetweenthesetwopeaksis2A-己0.003.The

positionsoftheLee-YangzerosareconsistentwithβPm～

汀/(¥2NshcA)-0.002and37r/(12NsitcA)-0.006,as

giveninEq.(5).

Theabovepropertyisnotseensoclearlyforlattices

havingsmallNaandlargeNT.Thepositionofthenexトto-

leadingzeropointsofZn。rmappearatrandomfortlleother

datasetsrelativetothenearestzeropoint.Thepositionsof

Lee-YangzerosareshownmTableI.Wecouldnotobtain

clearlyisolatedLee-Yangzerosforthelattices243×6and

20X6.ThesecondnearestLee-Yangzerototherealaxis

couldbemeasuredonlyforthe24-×36×4lattice.The

resultonthe36-×48×6lattice(β0-5.8936)isalso

showninFig.2.OnlythenearestLee-Yangzeroisobtained

FIG. 1. Contour plot of the normalized partition function

Zn。rm in the (βRe.Am) plane measured on the 24- × 36×4

lattice. Values in the right edge are Znorm. The simulation point

isβ　-5.6925.

clearly. The Lee-Yang zero becomes less clear as N-1

increases and Na decreases, hence simulations on lattices

having large N^/Nt seem to be necessary for the study of

Lee-Yang zeros.

Thevaluesforβ-7-n24> × 36 ×4and l22 × 24×4

lattices are 43.9(5) and 42.0(6), respectively. These are

roughly constant and suggest the scaling behavior of

β,m - 1/V for a first order phase transition. Also, in the

previous study for lattices with 〃7 -2 【21], the lル
scaling behavior has been confirmed for AL - 6, 8, 10,

and 12. However, for a more precise quantitative investi-

gation that takes into account the errors, the spatial lattice

size 12- X 24 may not be large enough to check the ¥/V

scaling for NT - 4, since the difference of β?mv is larger
than the statistical error. We should fit the data obtained on

more than two lattices by a curved function of lル, to
confirm through a 1/V scaling analysis that the phase

transition of the SU(3) pure gauge theory is first order.

E.g. for the study of the SU(2) gauge-Higgs model 【24], the

following fitting functions have been used, Im/co(V) -

K昌+CV ′and Im/co(V)-k昌+CV~l +DV~2 for

TABLE I. Positions of Lee-Yang zeros for the SU(3) pure

gauge theory.

Lattice size　　　　　　　　　　　βR。　　　　　βlm

122 × 24 ×　　1st zero　　5.691 78(23)　0.012 16(17)

242 × 36 ×　　1st zero　　5.692 52(5)　　0.002 12(2)

242 X 36 X 4　　2nd zero　　5.693 09(7)　　0.005 56(7)

362 × 48 ×　　1st zero　　5.894 1 1(10)　0.00434(8)
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FIG. 2. Contour plot of the normalized partition function Znonil

for the 362 ×48×6 lattice. The simulation point is β. -
5.8936.

complex parameter k in the model with fitting parameters

Ka,C,D, and v.

III. COMPLEX PHASE FLUCTUATION AND SIGN

PROB LEM

As seen in the previous section, the investigation ofLee-

Yang zeros in the complex β plane seems to be useful to

identify the order of phase transition. However, if we try to

extend this analysis to full QCD at nonzero baryon density,

a serious problem arises. This problem is closely related to

the sign problem for finite density QCD, since the normal-

lzed partition function can be zero in the complex β plane

due to fluctuations of the complex phase related to βIm and

also due to the complex phase from the quark determinant

that causes the sign problem. Before discussing the Lee-

Yang zero analysis for finite density QCD, we would like to

review the sign problem briefly.

The main difficulty for studies at finite baryon density is

tllat the Boltzmann weight is complex if the cllemical

potential is nonzero. In this case the Monte-Carlo method

is not applicable directly, since configurations cannot be

generated with a complex probability. One approach to

avoid this problem is the reweighting method. We perform

simulations at /x - 0, and incorporate the remaining part

of the correct Boltzmann weight for hnite fx in the calcu-

lation of expectation values. Expectation values (O) at

(β, /a) are thus computed by a simulation at (β,0) using

the following identity,

(OW> - (Q」Nt(lndetM(fi) - lndctiW(O)))(β,o)
(eNf(lndetjV/^)- lndet/W(O)))(β..)

(ll)

PHYSICAL REVIEW D 73, 054502 (2006)

where 〟 is tl-e quark matrix and 〃f is the number of

flavors (Nf/4 for staggered type quarks instead of Aff); /jl

is a quark cheillical potential in lattice units, i.e. 〟 ≡

fxqa = fiq/(NTT), and /xq is the quark chemical potential

in physical units. This is the basic formula of the reweighト

ing method. However, because lndetM(yu) is complex, the

calculations of the numerator and denominator in Eq. (1 1)

becomes in practice increasingly more difficult for larger

Ijl. We define the phase of the quark determinant 6 by

(6etM(fi))N</4 - ¥ detM(fji)¥N</4eiO for staggered type

quarks. If the typical value of ♂ becomes larger than

汀/2, the real part of e'e (- cosO) changes its sign fre-

quently. Eventually both the numerator and denominator of

Eq. (ll) become smaller than their statistical errors and

Eq. (ll) can no longer be evaluated. We call it the "sign

problem.

Here, the denominator ofEq. (1 1), or simply (cosの, is a

good indicator for the occurrence of the sign problem. If

this indicator is zero within statistical errors, Eq. (ll)

cannot be computed. In the following we give an estimate

for the value of the complex phase. Since the direct calcu-

lation of the quark determinant is difficult except for

calculations on small lattices, we expand lndet〟(〟) in a

Taylor series,

^ rd"(lndetM)

・ndetM(yu) - lndetM(O) -去〔H-H　∂FLn ¥7i- (12)
Then, we can easily separate it into real and imaginary

parts because the even derivatives of lndetM(yLt) are real

and the odd derivatives are purely imaginary 【4】. The

complex phase ♂ is given by

0-等量Im
uH-. ‖

-1(lndetM) M2"-1

∂V2/1-1 (2ォーl)!'

(13)

forstaggeredtypequarksatsmallfx.TheTaylorexpansion

coefficientsarerathereasytocalculatebyusingthesto-

cllasticnoisenlethod.Thecomparisonbetweenthevalue

of♂withthisapproximationandtheexactvaluehasbeen

doneinRef.[25],andthereliabilityandtheapplication

rangehavebeendiscussed.

WeusedatafortheTaylorexpansioncoefficientsob-

tainedinRef.[9].Thedataweregeneratedbyusing

Symanzik-improvedgaugeandp4-improvedstaggeredfer-
mionactions.CoefficientsuptoO(/u15)havebeencalcu-

lated.Figure3showstheindicator(cosβ)measuredat

P-{3,60,3.65,and3.68},forma-0.1,corresponding

toT/Tc-0.90,1.00,and1.07,respectively,on

lattice.Wealsoestimatethevaluesof/JLq/T三163X4

NTfjiat

"As mentioned in Ref. [4], in the calculation using the sto-
chastic noise method, the error due to the finite number of noise

vector (Afn。ise) is large for the calculation of (cosO> with Nn。ise -

10. For the pu叩ose of this study we increased the number of

noise vector to Nn。ise - 100- We checked that the difference

between the results with Nn。ise - 50 and Nn。ise - 100 is about

lO% for the calculation of the position at which (COsO) - 0.1.
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FIG. 3. The expectation value of the complex phase (cosO) for

QCD with two flavors ofp4-improved staggered quarks at ma -
0.1.

which (cosO) - O.l, 0.01 and 0.0. Results are given in

nlble II. The situation now is quite similar to the non-

singular case of the normalized partition function in the

ZnormCjSRc. ^Im'/*) -

ZI、。rmvβR。, β1m, 〟) ≡

Or

Z(βR。, β1m, 〟)

Z(βRe, 0, 0)

gSip^N^AP gie

Z(βRc, βln、. A)

for staggered type quarks. 0 is the complex phase of

exp[(〃r/4)(lndet〟(〟) - Indet〟(0))]. Since the numera-

tor ofEq. (15), which is the same as Zn。m, in Eq. (14), is

TABLEII.Value

O.01,andO.0Wsitc宝of(xjT

163X4.≡NTfj,atwhich(cosO)=O.l,
T/To　　<cosO> - 0.1　<cosO> - 0.01　<cosO) - 0.0

0.90

0.96

1.00

1.02

1.07

0.70(2)　　　　　1.0(2)

0.80(2)　　　　　1.1(1)

0.87(2)　　　　1.9(2)

0.96(3)　　　　　2.2( 1 2)

1.13(3)　　　　1.8(4)

1 -2(2)

1.1(1)

2.3(4)

2.3(1)

2.0(2)
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complex ft plane discussed in the previous section. This

becomes even more apparent if we consider for simplicity

only the first term in the expansion of 6 which is propor-

tional to /m. Then (cosO), fji and Im[∂(lndetM)/∂yLt] corre-

spond to the normalized partition function, βIm and

plaqLIette, respectively.

Because the distribution of the complex pilaSe ♂ is al-

nlost of Gaussian shape, the indicator, (cosの, decreases

exponentially as 〟. increases, and it may cross zero at a

point where the expectation value becomes smalldr than

the statistical error. Therefore, the points of (cosO) - 0

appear accidentally and the results given in Table II are

unstable. Moreover, ∂(lndet〟)/∂〝 becomes larger as the

volume increases, hence the indicator for the sign problem

vanishes in the infinite volume limit for any nonzero /n,

which means l¥1at the range of applicability for the re-

weighting met!-odとipproaches /x - 0 in the infinite volume

limit.

IV. LEE-YANG ZERO ANALYSIS FOR FINITE

DENSITY QCD

The Lee-Yang zero analysis for finite density QCD has

been performed by Fodor and Katz [2,3]- They measured

the normalized partition function Znorm using the reweight-

ing method, and determined the points where Znorm - 0 as

a function of spatial volume. The normalized partition

function is defined by

,(/Vf/4)(lndctA/(/i) - lndetA/(0))

(e6iPimNサKto*eiO 1 e(ty/4)(lndetAf(/t)I indetA/(O)) I )(β te.0.0)

(eiO ¥ e(N(/4)(lndctA/(/x) -lndetA/(0)) | )(βRc.0.0)

(14)

(15)

required tobe zero atazeropointofZr , inEq. (15), we

consider Eq. (14) as an indicator for the Lee-Yang zero.

Here, we notice that for βIm - 0 this normalized p∬ti-

tion function is exactly the same as the indicator for the

sign problem, i.e. the denominator of Eq. (ll). As dis-

cussed in the previous section, in any practical simulation

this indicator will be consistent with zero within errors for

large values of J上. Moreover, the region where the indicator

is nonzero becomes na汀ower as tlle volume increases, and

this region vanishes in the infinite volume limit. Hence, the

Lee-Yang zeros always approach the /3Im - 0 axis in the

infinite volume limit for any finite ft. This means that the

scaling behavior for crossover will not be obtained for the

case with the sign problem. This is clearly different from
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the usual expectation for the QCD phase diagram in the

(T, fi) plane. Most model calculations suggest that the

trallsition is crossover in the low density region. Tllis mighl

be a problem of the definition of the normalized partition

function, Eq. (14). The normalized partition function on

the real β axis is exactly one for 〟 - 0, but it vanishes for

finite ix in the infinite volume limit. Therefore, it is very

difficult to distinguish the first order transition and cross-

over by investigating the position of Lee-Ya一一g zeros as a

rLIl-ction of spatial volume. This is the n-ost importai-t

difference between the definitions for the pure gauge the-

ory in Sec. II and QCD at nonzero density.
The critical endpoint is shown to be located at /jんB -

3/iq -725(35) MeV in Ref. [2] and 360(40) MeV in
Ref. [3], which is inconsistent with the above argument.

This may be a problem of the fitting function. In Refs. [2,3]

the position of Lee-Yang zeros has been fitted by βPm -

A(1ル) + β品, where A and β㌫ are触ing parameters.
The first order transition and crossover have then been

distinguished by the value of β㌶一. As we discussed in

Sec. II, this fitting function is too simple to fit the data of

Lee-Yang zeros obtained on lattices as small as those used

inRefs. 【2,3], i.e. V ≦ 12. In fact, ifoneassumesacurved

extrapolation function, all data in Table 1 of Ref. 【3] seems

toapproach βIm - 0 in the 1/V- 0 limit.　、

In our argument, the statistical error of Zn ,, which is

controlled by the number of configurations in the Monte-

Carlo simulation, plays an important role. If the statistical

error of Znorm becomes much smaller than the mean value

ofZnorm by increasing the statistics for each simulation, the

method in Refs. [2,3] would be applicable. However, one

cannot satisfy this condition in general simply because we

are looking for the Lee-Yang zero which gives Znorm - 0.

Namely, statistical error cannot be smaller than 0.

Moreover, if the error of Znorm is sizeable, there appear

fake Lee-Yang zeros which are located even closer to the

real /3 axis than the true zero in the region where the mean

value ofZn。rm is smaller than the error. Since we adopt the

closest zero as the Lee-Yang zero in the actual scaling

analysis, we may thus misidentify the true zero by the

fake one.

The above point can be seen explicitly for the second

Lee-Yang zero of the SU(3) gauge theory with NT - 6

sllown in Fig. 2. Theoretically, we expect the secoild Lee-

Yang zero exists around βJm - 0.013, i.e. 3 times larger

than that of the first Lee-Yang zero as shown in Fi虫. 1.

However, we find several /3 which give Znorm - 0 in the

region of >SIm > 0.006, and they distribute randomly. If we

identify the second nearest point as the second Lee-Yang

zero, the resulting βIm is much smaller than the theoretical

expectation. This problem is caused by the existence of the

region in the complex β-plane where the statistical e汀or of

Zn。rm is larger than the mean value as discussed above. As

the statistics is increased for fixed V, such a region should

become smaller and fake Lee-Yang zeros should disappear.

PHYSICAL REVIEW D 73, 054502 (2006)

Now we discuss how the above situation changes by

increasing the volume V. Fortunately, m the SU(3) gauge

theory, the locatioil of Lee-ul。g zero can be determined
better also as tlle volume increases as showll in Sec. II. In

this case, the validity of the scaling assurllption becomes

better as the volume increases. On the other hand, for the

case with the sign problem, the e汀Or I-0rmalized by the

mean value grows exponentially as a function of volume.

Then the size of the region having fake Lee-Yang zeros

cal1not be rllade sillaller unless one has exponentially large

statistics. This leads to the conclusion山at the quality of

the scaling analysis is not improved by increasing the

volume, and any reliable information about Lee-Yang ze-

ros in the infinite volume limit cannot be obtained. This is

the reason why the serious problem of identifying the

critical endpoint is intimately related to the sign problen-・

This discussion suggests that the finite-volume scaling

analysis suffers serious damage through the unsolved sign

problem, and it is very difficult to apply the criterion used

by Fodor and Katz for the investigation of the critical

endpoint in practice. However, the property of the second

nearest Lee-Yang zero characteristic for a hrst order tran-

sition in Fig. 1, i.e. the fact that the distance to the second

Lee-Yang zero from the real axis is 3 timesとirger than that

of the伝rst Lee-Yang zero, could be investigated on a finite

lattice. This study is possible for small fi without taking

the infinite volume limit. On the other hand, we do not

expect any isolated Lee-Yang zero for a crossover transi-

tion, hence we may be able to determine the order of phase

transition by investigating the distribution of Lee-Yang

zeros in the complex f3 plane. Although the measurements

of the second Lee-Yang zero may require large lattice sizes

and high statistics, as seen for the case of pure SU(3) gauge

theory, it may be possible to find the region of the first

order pilase trailsition, if the critical endponlt exists in the

low density region.

V. CONCLUSIONS

We commented on the Lee-Yang zero analysis for the

study of the critical endpoint in the (T, fiq) phase diagram.

It is found that the Lee-Yallg zero analysis at nonzero

baryon density encounters a serious problem. The complex

phases of the quark determinant and the complex β are

mixed at nonzero chemical potential. In this case, in prac-
tical simulations witll limited statistics the normalized

partition function can develop zeros even on the real β

axis for large jxq in finite volumes. Moreover, in the infinite

volume the normalized partition function is always zero

except for fiq = 0. This means that the nearest Lee-Yang

zero always approaches the real /3 axis in the infinite

volume limit. Tlle scaliilg behavior suggesting a crossover

transition thus will not be obtained. This is clearly different

from usual expectations for the QCD phase diagram. To

avoid this problem, the sign problem must be removed by

careful treatments increasing the number of configurations
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exponentially as the volume or ixq/T increases, otherwise

the finite-volume scaling behavior for the position of Lee-

Yang zeros, which has been analyzed by Fodor and Katz

【2,3], does not provide an appropriate criterion for the

investigation of the order of the phase trai-sition.

Tb make the underlying problem more transparent, we

applied the Lee-Yang zero analysis to the SU(3) pure gauge

theory, which does not have a sign problem and for which

the simulations are much easier. Lee-Yang zeros are found

in the complex /3 plane. They appear periodically as ex-

pected by the discussion using a plaqLIette distribution

function for a first order phase transition. The positions

of the first Lee-Yang zero on two lattices having different

volume sizes are roughly consistent with the finite size

scaling behavior for a first order phase transition, i.e.

/3jm - 1/V. However, for quantitative analysis it is neces-

sary to fit data from more than two different lattice sizes by

a curved function to study the order of the phase transition.

It is found, in this analysis, that complex phase fluctuations

arising from the imaginary part of /3 play an important role,

and the mechanism that leads to the appearance of the Lee-

Yang zeros is quite similar to the situation in QCD where

the sign problem is present.

The property ofa first order phase transition that isolated

Lee-Yang zeros appear periodically at f3¥m - C{2n + 1),

where C is the distance to the nearest Lee-Yang zero and n

is an integer, is free from the problems that arise in the

infinite volume limit. Therefore, to investigate the pattern

of the appearance of Lee-Yang zeros in the (βRc, βJm)

plane is important. For this calcLilation, the simulations

PHYSICAL REVIEW D 73, 054502 (2006)

by using high statistics data and large lattice size are

indispensable. Further studies are clearly important to

find the endpoint of the first order phase transition line in

the (T, fiq) plane.

Recently, a close relation between the strength of the

slgll probleill and tlle position of the phase transitioil line

for pion condensation in phase-quenched QCD has been

discussed in Ref. [26]. There it has been found that the

endpoints of the first order transition line determined in

Refi・ 【2,3] are located near the phase transition line ofpion

condensation. These results may relate to our discussion

given here.

Moreover, the pathologies in the Glasgow method have

been discussed in Ref. [17]. Similar problems arise also in

the Glasgow method. It would be interesting to consider

the relation between the pathologies in the Glasgow

method and those in the Lee-Yang zero analysis.
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