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We discuss the nature of the phase transition for lattice QCD at finite temperature and density. We

propose a method to calculate the canonical partition function by fixing the total quark number

introducing approximations allowed in the low density region. An effective potential as a function of

the quark number density is discussed from the canonical partition function. We analyze data obtained in a

simulation of two-flavor QCD using p4-improved staggered quarks with bare quark mass m=T ¼ 0:4 on a

163 � 4 lattice. The results suggest that the finite density phase transition at low temperature is of first

order.
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I. INTRODUCTION

The study of the QCD phase diagram at nonzero tem-
perature (T) and quark chemical potential (�q) is one of

the most important topics among studies of lattice QCD. In
particular, the study of the end point of the first order phase
transition line in the ðT;�qÞ plane is interesting both from

the experimental and theoretical point of view. The exis-
tence of such a critical point is suggested by phenomeno-
logical studies [1–3]. The appearance of the critical point
in the ðT;�qÞ plane is closely related to hadronic fluctua-

tions in heavy ion collisions and may be experimentally
examined by an event-by-event analysis of heavy ion
collisions. Many trials have been made to find the critical
point by first principle calculation in lattice QCD [4–12].
However, no definite conclusion on this issue is obtained so
far.

One of the interesting approaches is to construct the
canonical partition function ZCðT;NÞ by fixing the total
quark number (N) or quark number density (�) [13–18].
The canonical partition function is obtained from the grand
canonical partition function ZGCðT;�qÞ by an inverse

Laplace transformation. The relation between
ZGCðT;�qÞ and ZCðT;NÞ is given by

Z GCðT;�qÞ ¼
Z

DUðdetMð�q=TÞÞNfe�Sg

¼ X
N

ZCðT;NÞeN�q=T; (1)

where detM is the quark determinant, Sg is the gauge

action, and Nf is the number of flavors. Nf in this equation
must be replaced by Nf=4 when one uses a staggered type
quark action. In order to investigate the net quark number
giving the largest contribution to the grand canonical par-
tition function at ðT;�qÞ, it is worth introducing an effec-

tive potential Veff as a function of N,

VeffðNÞ � � lnZCðT;NÞ � N
�q

T
¼ fðT;NÞ

T
� N

�q

T
;

(2)

where f is the Helmholtz free energy. If there is a first order
phase transition region, we expect this effective potential
has minima at more than one value of N. At the minima,
the derivative of Veff satisfies

@Veff

@N
ðN; T;�qÞ ¼ �@ðlnZCÞ

@N
ðT;NÞ ��q

T
¼ 0: (3)

Hence, in the first order transition region of T, we expect
@ðlnZCÞ=@NðT;NÞ � ���

q=T takes the same value at dif-

ferent N. Here, ��
qðT;NÞ is the chemical potential which

gives a minimum of the effective potential at ðT;NÞ.
The phase structure in the ðT; �Þ plane and the expected

behavior of ��
q=T are sketched in the left and right panels

of Fig. 1, respectively. The thick lines in the left figure are
the phase transition line. We expect that the transition is
crossover at low density and becomes of first order at high
density. Since two states coexist on the first order transition
line, the phase transition line splits into two lines in the
high density region and the two states are mixed in the
region between two lines. The expected behavior of ��

q

along the lines A and B are shown in the right figure. When
the temperature is higher than the temperature at the criti-
cal point Tpc (line A), ��

q increases monotonically as the

density increases. However, for the case below Tcp (line

B), this line crosses the mixed state. Because the two states
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FIG. 1 (color online). Phase structure in the ðT; �Þ plane and
the behavior of ��

q=T as a function of �.
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of �1 and �2 are realized at the same time, ��
q does not

increase in this region between �1 and �2.
The Glasgow method [14,15] has been a well-known

method to compute the canonical partition function.
Recently, such a behavior at a first order phase transition
has been observed by Kratochvila and de Forcrand in 4-
flavor QCD with staggered fermions on a 63 � 4 lattice
[18] calculating the quark determinant by the Glasgow
algorithm. However, with present day computer resources,
the study by the Glasgow method is difficult except on a
small lattice. Therefore, it is important to consider a
method available for a simulation on a large lattice. In
this paper, we propose such a method for the calculation of
the canonical partition function introducing approxima-
tions allowed in the low density region.

The method proposed in this paper is based on the
following ideas. We adopt a saddle point approximation
for the inverse Laplace transformation from ZGC to ZC.
This approximation is valid when the volume size is suffi-
ciently large. We moreover perform a Taylor expansion of
ln detMð�qÞ in terms of �q around �q ¼ 0 and calculate

the expansion coefficients, as proposed in [19]. The Taylor
expansion coefficients are rather easy to calculate by using
the random noise method. The saddle point approximation
is also based on a Taylor expansion around the saddle
point. We estimate the Taylor expansion coefficients at
the saddle point from the Taylor expansion at �q ¼ 0.

Although we must cut off this expansion at an appropriate
order in �q, this approximation is applicable when the

saddle point is not far from �q ¼ 0, and we can estimate

the application range where the approximation is valid for
each analysis.

For the calculation ofZC two further technical problems
must be solved. The first problem is the problem of im-
portance sampling in Monte Carlo simulations (overlap
problem). Since the method proposed in this paper is a
kind of reweighting method, the configurations which give
important contributions will change when the weight factor
is changed by �q [20,21]. To avoid this problem, we

combine configurations generated at many simulation
points � ¼ 6=g2 covering a wide range of the temperature
using a method introduced in [22]. The second problem is
the sign problem. We must deal with an expectation value
of a complex number in this method. If the fluctuation of
the complex phase is large, the statistical error becomes
larger than the mean value. We use a technique introduced
in [12]. We consider the probability distribution function in
terms of the complex phase of the complex operators. We
assume the distribution function is well approximated by a
Gaussian function and perform the integration over the
phase. Once this assumption is adopted, the sign problem
is completely solved. This assumption is reasonable for
sufficiently large volume and small �q=T.

During the process of this calculation, we will find out
why the quark number density changes sharply at the

transition point and why the density approaches the value
of the free quark gas in the high density limit even at low
temperature. The configurations generated in �q ¼ 0

simulations at low temperature are gradually suppressed
as the density increases.
In the next section, we explain the method to calculate

the canonical partition function using the inverse Laplace
transformation of ZGC within a saddle point approxima-
tion. The problem of the Monte Carlo sampling is dis-
cussed in Sec. III. The sign problem is discussed in Sec. IV.
We evaluate @ðlnZCÞ=@N using data obtained with two
flavors of p4-improved staggered quarks in [6]. The result
is shown in Sec. V. The behavior of @ðlnZCÞ=@N suggests
that the phase transition is of first order in the low tem-
perature and high density region. Conclusions are given in
Sec. VI.

II. CANONICAL PARTITION FUNCTION

We calculate the canonical partition function using
N3

s � Nt lattice and investigate the effective potential
VeffðNÞ. From Eq. (1), the canonical partition function
can be obtained by an inverse Laplace transformation
[13,16–18],

ZCðT;NÞ ¼ 3

2�

Z �=3

��=3
e�Nð�0=Tþi�I=TÞ

�ZGCðT;�0 þ i�IÞd
�
�I

T

�
; (4)

where �0 is an appropriate real constant and �I is a real
variable. Note that ZGCðT;�q þ 2�iT=3Þ ¼ ZGCðT;�qÞ
[23]. The grand canonical partition function can be eval-
uated by the calculation of the following expectation value
at �q ¼ 0:

ZGCðT;�qÞ
ZGCðT; 0Þ

¼ 1

ZGC

Z
DU

�
detMð�q=TÞ
detMð0Þ

�
Nf

�ðdetMð0ÞÞNfe�Sg

¼
��

detMð�q=TÞ
detMð0Þ

�
Nf
�
ðT;�q¼0Þ

: (5)

However, with presentday computer resources, the exact
calculation is difficult except on small lattices. We consider
an approximation which is valid for large volume and low
density. If we select a saddle point as �0 in Eq. (4) when
the volume is sufficiently large, the information which is
needed for the integral is only the value of detM around the
saddle point. Furthermore, if we restrict ourselves to study
the low density region, the value of detMð�q=TÞ near the
saddle point can be estimated by a Taylor expansion
around �q ¼ 0. The calculations by the Taylor expansion

are much cheaper than the exact calculations and the
studies using large lattices are possible.
First, we perform the integral in Eq. (4) by a saddle point

approximation. We denote the quark number density in a
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lattice unit and physical unit as �� ¼ N=N3
s and �=T3 ¼

��N3
t , respectively. We assume that a saddle point z0 exists

in the complex �q=T plane for each configuration, which

satisfies

½D0ðzÞ � ���z¼z0 ¼ 0; (6)

where ðdetMðzÞ= detMð0ÞÞNf ¼ exp½N3
sDðzÞ� and D0ðzÞ ¼

dDðzÞ=dz.
We then perform a Taylor expansion around the saddle

point and obtain the canonical partition function,

Z CðT; ��VÞ ¼ 3

2�
ZGCðT; 0Þ

�Z �=3

��=3
e�Nðz0þixÞ

�
detMðz0 þ ixÞ

detMð0Þ
�
Nf

dx

�
ðT;�q¼0Þ

¼ 3

2�
ZGCðT; 0Þ

�Z �=3

��=3
exp

�
V

�
Dðz0Þ � ��z0 � 1

2
D00ðz0Þx2 þ � � �

��
dx

�
ðT;�q¼0Þ

� 3ffiffiffiffiffiffiffi
2�

p ZGCðT; 0Þ
�
exp½VðDðz0Þ � ��z0Þ�e�i�=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

VjD00ðz0Þj

s �
ðT;�q¼0Þ

: (7)

Here, D00ðzÞ ¼ d2DðzÞ=dz2, V � N3
s , and D00ðzÞ ¼

jD00ðzÞjei�. We chose a path which passes the saddle point.
Higher order terms in the expansion of DðzÞ becomes
negligible when the volume V is sufficiently large, since
the saddle point approximation is a 1=V expansion.

Next, we calculate the quark determinant by the Taylor
expansion around �q ¼ 0. We define

Dn ¼ 1

n!N3
sNt

�
@n lndetMð�q=TÞ

@ð�q=TÞn
�
�q¼0

: (8)

The even derivatives of ln detM are real and the odd
derivatives are purely imaginary [19]. The calculation of
Dn is rather easy using the stochastic noise method. DðzÞ,
D0ðzÞ, and D00ðzÞ in Eqs. (6) and (7) can be evaluated by

DðzÞ ¼ NfNt

X1
n¼1

Dnz
n; D0ðzÞ ¼ NfNt

X1
n¼1

nDnz
n�1;

D00ðzÞ ¼ NfNt

X1
n¼2

nðn� 1ÞDnz
n�2: (9)

Because ImðD1Þ � ReðD2Þ, the saddle point, i.e. the solu-
tion of Eq. (6), is distributed near the real axis and Reðz0Þ
increases as � increases. Moreover, for the case that the
saddle point z0 is on the real axis, the saddle point condi-
tion is the same as the condition where ReðDðzÞ � ��zÞ is
minimized. Hence, exp½VReðDðz0Þ � ��z0Þ� in Eq. (7) de-
creases exponentially as Reðz0Þ increases.

In this study, we want to focus on the derivative of the
effective potential with respect to N or �. Since the effec-
tive potential VeffðNÞ is minimized in the thermodynamic
limit, i.e. @ logZC=@N þ�q=T ¼ 0, we denote the deriva-

tive by

��
q

T
¼ � @ lnZCðT;NÞ

@N
¼ � 1

V

@ lnZCðT; ��VÞ
@ ��

: (10)

Within the framework of the saddle point approximation,
this quantity can be evaluated by

��
q

T
�

hz0 exp½VðDðz0Þ � ��z0Þ�e�i�=2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
VjD00ðz0Þj

q
iðT;�q¼0Þ

hexp½VðDðz0Þ � ��z0Þ�e�i�=2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
VjD00ðz0Þj

q
iðT;�q¼0Þ

:

(11)

This equation is similar to the formula of the reweighting
method for finite �q. The operator in the denominator

corresponds to a reweighting factor, and ��
q=T is an ex-

pectation value of the saddle point calculated with this
modification factor. We denote the real and imaginary parts
of the logarithm of the weight factor by F and �,

Fþ i� � V

�
NfNt

X1
n¼1

Dnz
n
0 � ��z0

�
� 1

2
ln½VjD00ðz0Þj�

� i�

2
: (12)

We define the complex phase of the weight factor by � and
the absolute value of the reweighting factor is expðFÞ. This
weight factor plays an important role around the phase
transition point at finite density.
In the calculation to derive Eq. (7), we replaced the order

of the path integral of gauge fields and the integral for the
inverse Laplace transformation. This replacement is essen-
tially important. If one calculates ZC from ZGC using
Eq. (4) after the path integral, the equation which is sat-
isfied at a saddle point is

N ¼ ��V ¼ @ðlnZGCÞ=@ð�q=TÞ: (13)

Hence, in the thermodynamic limit, i.e. when we ignore the
finite volume correction, ��

q is just equal to the inverse

function of �ð�qÞ at the saddle point. Therefore, �ð�qÞ
must be a discontinuous function or a multivalued function
at a first order phase transition to obtain the behavior of
��

qð�Þ shown in Fig. 1. However, if we calculate lnZGC by

a Taylor expansion in �q at a temperature in the hadron

phase, �ð�qÞ cannot be a discontinuous function.
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In this study, we use Eq. (11). As we will discuss in
detail, we can obtain the behavior of ��

q=T suggesting a

first order phase transition, although the calculations of z0
and the weight factor in Eq. (11) are based on the Taylor
expansion. The important point is that the weight factor
expðFþ i�Þ gives the same effect when the temperature
changed and configurations which give important contri-
butions to the calculation of ��

q=T change gradually as �

increases. Hence ��
q=T does not need to increase monoto-

nously as a function of � even if the saddle point z0 is a
monotonous function of � for each configuration.

III. MONTE CARLO ANALYSIS AND
REWEIGHTING METHOD FOR � DIRECTION

We analyze data obtained in a simulation of two-flavor
QCD using p4-improved staggered quarks with bare quark
mass m=T ¼ 0:4 [6]. These data are obtained at 16 simu-
lation points from � ¼ 3:52 to 4.00. The corresponding
temperature normalized by the pseudocritical temperature
is in the range of T=Tc ¼ 0:76 to 1.98, and the pseudo-
critical point ðT=Tc ¼ 1Þ is �pc � 3:65. The ratio of pseu-

doscalar and vector meson masses is mPS=mV � 0:7 at
� ¼ 3:65. The lattice size Nsite ¼ N3

s � Nt is 163 � 4.
The number of configurations Nconf is 1000–4000 for
each �. Further details on the simulation parameters are
given in [6].

We use the data of the Taylor expansion coefficients Dn

up to Oð�6
qÞ. The saddle point is found by the following

procedure: (1) Because absolute values of the odd terms of
Dn are much smaller than the even terms, we first find a
solution when the odd terms are neglected, i.e. a solution of
NfNt

P
n2nD2nz

2n�1 � �� ¼ 0. The odd terms of Dn are
purely imaginary and the even terms are real. Although
some fake solutions may appear at large z due to the
truncation of the higher order terms, the solution is found
on the real axis in the low density regime. (2) Next, in the
vicinity of this solution, we calculate r2 �
jNfNt

P
nnDnz

n�1 � ��j2 and find the point where r2 is
zero. For the data we used in this analysis, the saddle point
could be found for every configuration by this procedure
except in the very low density region of �=T3 < 0:37.
Figure 2 shows an example of the distribution of the saddle
points, obtained at � ¼ 3:55, 3.63, 3.70 with �=T3 ¼ 2:0.

For the calculation of the derivative of lnZC, the appli-
cation of the reweighting method for � direction is crucial.
Configurations in a Monte Carlo simulation are generated
with the probability in proportion to the product of the
weight factor ðdetMÞNfe�Sg and the state density of the link
fields fU�ðxÞg. The expectation value is then estimated by

taking an average of the operatorO½U�� over the generated
configurations fU�ðxÞg,

hOið�Þ � 1

Nconf

X
fU�ðxÞg

O½U��: (14)

However, if the value ofO½U�� changes very much during

a Monte Carlo simulation and the change of O½U�� is

much larger than the size of the probability pðO; �Þ, the
Monte Carlo method is no longer valid. For example,
configurations which have large O� pðO; �Þ are impor-
tant for the evaluation of hOið�Þ, but such configurations are
not generated if pðO; �Þ is too small. Such a problem
occurs in the calculation of Eq. (11). This problem is called
an ‘‘overlap problem.’’
To clarify the problem of the importance sampling, we

rewrite Eq. (11) as

��
q

T
¼

Rhz0 exp½Fþ i��iPwðP;�ÞdPRhexp½Fþ i��iPwðP;�ÞdP : (15)

P is the plaquette value, h� � �iP denotes the expectation
value for fixed P at �q ¼ 0, and wðP;�Þ is the probability
distribution of P at �,

wðP0; �Þ ¼
Z

DU�ðP� P0ÞðdetMð0ÞÞNfe�Sgð�Þ

/ h�ðP� P0Þið�;�q¼0Þ: (16)

This kind of analysis is called the density of state method
[24–29]. We define the average plaquette as P ¼
�Sg=ð6Nsite�Þ for later discussions. This P is the plaquette

value for the standard gauge action but is a linear combi-
nation of Wilson loops for improved gauge actions.
Because

hXiP0 � hX�ðP� P0Þið�;�q¼0Þ
h�ðP� P0Þið�;�q¼0Þ

¼
R
DUX�ðP� P0ÞðdetMð0ÞÞNfR
DU�ðP� P0ÞðdetMð0ÞÞNf

; (17)
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FIG. 2 (color online). Distribution of the saddle point at � ¼
3:55, 3.63, 3.70 with �=T3 ¼ 2:0.
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hXiP is independent of � for an operator X which does not
depend on � explicitly. Hence, hXiP can be computed at an
appropriate �. The probability distribution functions wðPÞ
and� lnwðPÞ are given in Fig. 3. We show the values of �
and corresponding T=Tc above these figures. To obtain
wðPÞ, we grouped the configurations by the value of P
into blocks and counted the number of configurations in
these blocks. � lnwðPÞ is normalized by the minimum
value for each �. Because the transition from the hadron
phase to the quark-gluon phase is a crossover for two-
flavor QCD, the distribution is always of Gaussian type,
and the width of the distribution becomes narrower as the
volume increases. Moreover, since the suppression factor
is expð6Nsite�PÞ, the peak position of the distribution wðPÞ
moves to the right as � increases.

We also calculate the expectation value of jz0j and F
when P is fixed,

hjz0jiP0 ¼ hjz0j�ðP� P0Þi=h�ðP� P0Þi;
hFiP0 ¼ hF�ðP� P0Þi=h�ðP� P0Þi: (18)

The result of hjz0jiP is plotted in Fig. 4, and solid lines in
Fig. 5 are hFiP for each �=T3. (Dashed lines will be
explained in the next section.) For the calculation of these
quantities, we use the delta function approximated by a
Gaussian function, �ðxÞ � 1=ð� ffiffiffiffi

�
p Þ exp½�ðx=�Þ2�. If

making � small, this approximation becomes better but
statistical errors become larger. Hence, the size of � must
be adjusted appropriately. In this study, we adopt � ¼
0:0025.

Let us now consider hexp½Fþ i��iP � wðPÞ in Eq. (15).
Since hFiP increases linearly for P & 0:85, Fig. 5 suggests
that hexp½Fþ i��iP increases exponentially as P increases
in this range. Moreover, the slope of hFiP is increasing as
�=T3 increases. Therefore, for large �=T3, this hexp½Fþ
i��iP � wðPÞ may not decrease even if wðPÞ decreases

exponentially at the tail of the distribution generated by a
simulation. If the value of hexp½Fþ i��iP � wðPÞ is still
large even in the region where the configurations are not
generated, the calculation by the Monte Carlo method is
completely wrong. Because the width of wðPÞ becomes
narrow for large V, it is essentially important to solve this
problem if we want to use a large lattice which is required
for the saddle point approximation.
To avoid this problem, we combine all configurations

obtained in simulations with many different � values,
using the Ferrenberg and Swendsen method [22]. The
expectation value hOi� can be calculated from the data

obtained by more than one simulation point, �i (i ¼
1; 2; � � � ; N�) by the following equation:

0.78 0.8 0.82 0.84 0.86 0.88 0.9 0.92 0.94

P

0

2

4

-l
n 

W
(P

,β
)

0.78 0.8 0.82 0.84 0.86 0.88 0.9 0.92 0.94

W
(P

,β
)

T/T
c
=0.76 1.00 1.981.360.90

β=3.52 3.60 3.65 3.80 4.00

FIG. 3 (color online). Plaquette histogram wðP;�Þ at �q ¼ 0.

0.8 0.85 0.9

P

0

1

2

3

4

5

6
ρ/T3=10.0
ρ/T3=9.0
ρ/T3=8.0
ρ/T3=7.0
ρ/T3=6.0
ρ/T3=5.0
ρ/T3=4.0
ρ/T3=3.0
ρ/T3=2.0
ρ/T3=1.0

<|z
0
|>

P

FIG. 4 (color online). Expectation value of jz0j with fixed P for
each �=T3.
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FIG. 5 (color online). Expectation vale of F with fixed P for
each �=T3.
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hOi� � hOGð�;PÞiall
hGð�;PÞiall : (19)

Here, the weight factor Gð�;PÞ is

Gð�;PÞ ¼ e6Nsite�PPN�

i¼1 Nie
6Nsite�iPZ�1

GCð�iÞ
; (20)

where Ni is the number of configurations at simulation
points �i and h� � �iall means the average over all configu-
rations generated at all �i. The derivation of this equation
is given in Appendix A.

The partition function ZGCð�iÞ is determined by a con-
sistency condition for each i,

Z GCð�iÞ ¼ hGð�i; PÞiall: (21)

This equation can be solved except for the normalization
factor. The result of � ln½ZGCð�Þ=ZGCð3:65Þ� is plotted in
Fig. 6.

We should note that Gð�;PÞ is independent of the
simulation points �i at which the operators are measured
and the expectation value is simply given by the average
over all configurations generated at many �. If we perform
simulations at many different � and combine the data, the
configurations are distributed in a wide range of P. (See
Fig. 3.) Among these configurations, important configura-
tions for each calculation are selected by O and Gð�;PÞ
automatically. This method is particularly important when
the volume is large, since the distribution wðPÞ is narrow if
we generate configurations on a large lattice with single �.
The overlap problem is solved by this method. However,
the statistical error is enlarged by the fluctuations of
exp½Fþ i�� when the density is increased, hence the ap-
plication range of � is determined by the statistical error.
Also, we should check that the important configurations

are within the range of the plaquette distribution for each
calculation. We will discuss this point in Sec. V again.

IV. SIGN PROBLEM

Next, we discuss the sign problem that also shows up in
the calculation of the canonical partition function. Because
z0 and the additional weight factor in Eq. (11) are complex
numbers, the calculation of Eq. (11) suffers from the sign
problem [21,30]. If the weight factor changes the sign
frequently, both the numerator and denominator of
Eq. (11) become smaller than their statistical errors. To
avoid the sign problem, we use a method proposed in [12].
As in Eq. (12), we define the complex phase of the weight
factor by

� � Im

�
V

�
NfNt

X1
n¼1

Dnz
n
0 � ��z0

��
� �

2
: (22)

In this definition, � is not restricted to the range from ��
to � because there is no reason that the imaginary part of
Eq. (12) must be in the finite range. In fact, this quantity
becomes larger as the volume increases.
It has been discussed in [12] that histograms of Dn are

well approximated by Gaussian functions if a simulation is
performed at a point away from the critical point with
sufficiently large volume. The Taylor expansion coeffi-
cients in Eq. (12) are given by combinations of traces of
products of @nM=@ð�q=TÞn andM�1. (See the appendix of

[6].) Therefore,Dn are obtained by the sum of the diagonal
elements of such matrices. When the correlation among
the diagonal elements is small and the volume is suffi-
ciently large, the distribution functions of the expansion
coefficients and � should be of Gaussian type due to the
central limit theorem. For example, the diagonal element
of the first coefficient, Im½@ðlndetMÞ=@ð�q=TÞ� ¼
Im½tr½M�1ð@M=@ð�q=TÞÞ��, is the imaginary part of the

local number density operator at �q ¼ 0. If the spatial

density correlation is not very strong, a Gaussian distribu-
tion is expected.
Figure 7 is the histogram of the complex phase � at

�=T3 ¼ 2:0 for the two-flavor QCD simulations with p4-
improved staggered quarks at � ¼ 3:55 (left), 3.63
(middle), and 3.70 (right). These figures suggest that the
distribution of � is well approximated by a Gaussian
function. We fit the data of the histogram by a Gaussian
function. Dashed lines are the fit results. The width of the
Gaussian function is different for each distribution ob-
tained by a different parameter. If we restrict the phase to
the range from �� to � by subtracting 2�n (n: integer),
the complex phase distribution is almost flat for the case
that the width is much larger than �, and the flatness
indicates the seriousness of the sign problem. However,
the measurement of the width of the Gaussian distribution
is easier than the estimation of the flatness of the restricted
phase distribution.
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FIG. 6. � dependence of � lnZGC determined by the consis-
tency condition Eq. (21).
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Once we assume a Gaussian distribution for �, the
problem of complex weights can be avoided. We introduce
the probability distribution �w as a function of the plaquette
P, F, and �,

�wðP0; F0; �0Þ �
Z

DU�ðP0 � PÞ�ðF0 � FÞ�ð�0 � �Þ
� ðdetMð0ÞÞNfe6�NsiteP: (23)

The distribution function itself is defined as an expectation
value at �q ¼ 0, however F and � are functions of �. The

denominator of Eq. (11), hexp½Fþ i��i, is given by

heFei�iðT;�q¼0Þ ¼ 1

ZGC

Z
dP

Z
dF

Z
d�eFei� �wðP;F; �Þ;

(24)

where ZGC ¼ R
dP

R
dF

R
d� �wðP;F; �Þ. Because we cal-

culate this expectation value by the reweighting method
using Eq. (19), the operator in the calculation of Eq. (24) is
a function of P, F, and �.

Since the partition function is real even at nonzero
density, the distribution function is symmetric under the

change from � to ��. Therefore, the distribution function
is a function of �2, e.g., �wð�Þ 	 exp½�ða2�2 þ a4�

4 þ
a6�

6 þ � � �Þ�. And, the distribution function is expected
to be well approximated by a Gaussian function when the
system size is sufficiently large in comparison to the cor-
relation length. We assume the following distribution func-
tion in terms of � when P and F are fixed:

�wðP;F;�Þ�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2ðP;FÞ

�

s
�w0ðP;FÞexp½�a2ðP;FÞ�2�: (25)

The coefficient a2ðP; FÞ is given by

1

2a2ðP0; F0Þ ¼
Z

d� �2 �wðP0; F0; �Þ
�Z

d� �wðP0; F0; �Þ

¼ h�2�ðP0 � PÞ�ðF0 � FÞiðT;�q¼0Þ
h�ðP0 � PÞ�ðF0 � FÞiðT;�q¼0Þ

� h�2iðP;FÞ: (26)

The integration over � can be carried out easily and we
obtain the denominator of Eq. (11),

heFei�iðT;�q¼0Þ � 1

ZGC

Z
dP

Z
dF

Z
d�

ffiffiffiffiffi
a2
�

r
�w0ðP; FÞe�a2�

2
eFei�

¼ 1

ZGC

Z
dP

Z
dF �w0ðP; FÞeFe�1=ð4a2Þ

¼ 1

ZGC

Z
DUeFe�1=ð4a2ðP;FÞÞðdetMð0ÞÞNfe�Sg

¼ heFe�1=ð4a2ðP;FÞÞiðT;�q¼0Þ: (27)

Since � is roughly proportional to the size of the quark
matrix M, the value of 1=a2 becomes larger as the volume
increases. Therefore, the phase factor in this quantity de-
creases exponentially as a function of the volume.
However, in this framework, the operator in Eq. (27) is
always real and positive for each configuration. This means
that the expectation value is always larger than its statisti-

cal error. Therefore, the sign problem is completely
avoided if we can assume the Gaussian distribution of �.
The effect from a non-Gaussian term (a4) is discussed in
Appendix B for the case that a4=a2 is small. In this case,
the effect from a4 is at most Oð�6

qÞ, hence the non-
Gaussian term may be neglected in the low density region
even if a4 is nonzero. The complex phase distribution of
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FIG. 7. Histograms of the complex phase � for �=T3 ¼ 2:0 at � ¼ 3:55 (left), 3.63 (middle), and 3.70 (right). Dashed lines are the fit
results by Gaussian functions.
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the quark determinant by chiral perturbation theory has
been discussed in [31]. The Gaussian distribution is sug-
gested in the 1-loop calculation.

The complex phase factor for the calculation of
hz0 exp½Fþ i��i in Eq. (11) is calculated repeating the
same procedure. We consider the complex phase of z0 �
jz0j exp½i�0�, where ��< �0 
 �. Replacing � with �þ
�0 in Eq. (27), the suppression factor exp½�hð�þ �0Þ2i=2�
is estimated.

We plot the result of the average of �2 as a function of P
in Fig. 8, i.e.

h�2iP0 � h�2�ðP� P0Þi=h�ðP� P0Þi: (28)

We adopt the approximated delta function �ðPÞ used when
we computed hjz0jiP and hFiP in Sec. III. Although we
need to average �2 as a function of P and F for the
calculation of Eq. (27), F dependence is not considered
in Fig. 8. It is found from this figure that h�2iP decreases
linearly as P increases in the range of P< 0:85 and the
phase fluctuation is small for P> 0:85. This means that the
phase factor decreases exponentially as P decreases for
P< 0:85. This behavior is similar to that of hFiP in Fig. 5.
Therefore, the weight factor exp½F� h�2iðP;FÞ=2� sup-

presses the contribution from configurations having small
P for large �=T3.

Moreover, this argument implies that configurations on
which the sign problem is serious do not contribute to the
actual calculations of expectation values. The reason is that
the fluctuations of the complex phase h�2iðP;FÞ are large on
such configurations and the configurations are suppressed
by the weight factor exp½�h�2iðP;FÞ=2�. Therefore, even if

the error due to the Gaussian approximation of the complex
phase distribution becomes visible when the phase fluctua-
tions are large, the error does not affect to the practical
calculations of expectation values so much.

Here, we should notice that the values of P and F are
strongly correlated. We estimate the width of the distribu-

tion of F for each P and �=T3 by calculating �F �ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffihðF� hFiPÞ2iP
p

. Dashed lines above and below the solid
line for hFiP in Fig. 5 are the values of hFiP � �F. Most of
the configurations characterized by P and F are distributed
in the narrow region between these two dashed lines.
Outside this bound an accurate calculation of h�2iðP;FÞ is
difficult, since the number of configurations is not enough
for the average. However, if we consider that F is approxi-
mately given as a function of P on each configuration,
h�2iðP;FðPÞÞ will be a function of only P.

V. RESULTS AND DISCUSSIONS

We calculate the slope of lnZC, i.e. ��
q=T, using

Eq. (11). This quantity is given by the average of the saddle
point z0 multiplying the additional weight factor exp½Fþ
i��. The volume V ¼ 163 is sufficiently large, and we
assume that the complex phase distribution of the re-
weighting factor is well approximated by a Gaussian func-
tion as discussed in Sec. IV. We then replace the weight
factor by exp½F� h�2iðP;FÞ=2� to eliminate the sign prob-

lem. We find a saddle point z0 numerically for each con-
figuration, assuming z0 exists near the real axis in the low
density region of the complex �q=T plane.

Before showing the result for ��
q=T, it is worth discus-

sing the effect of the weight factor using Eq. (15). The
weight factor can be approximately estimated by

hexp½F� i��iPwðP;�Þ � �ðPÞ exp½6Nsite�P

þ hFiP � h�2iP=2� (29)

because lnhexp½Fþ i��iP � hFiP � h�2iP=2 in the lead-
ing order and wðP;�Þ can be written as �ðPÞ�
exp½6�NsiteP� from Eq. (20), where �ðPÞ is the state
density in terms of P.
Since the behavior of hFiP � h�2iP=2 for P & 0:85 and

P * 0:85 is different, we consider these two regions sepa-
rately. The configurations below and above P	 0:85 are
generated in the low and high temperature phases, respec-
tively. In the region P * 0:85, the P dependence of hFiP �
h�2iP=2 is small. Therefore, the balance of the weight does
not change. On the other hand, for P & 0:85, hFiP �
h�2iP=2 increases linearly. This has the same effect as
when � changes to

�eff � �þ
�
dhFiP
dP

� 1

2

dh�2iP
dP

�
1

6Nsite

; (30)

and the derivatives of hFiP and �h�2iP increase as �
increases. This means that the peak position of the proba-
bility distribution of P, shown in Fig. 3 for �q ¼ 0, moves

to the right as � increases, according to the change of the
effective �. This behavior is consistent with our usual
expectation, i.e. a phase transition arises when the density
is increased as well as with increasing temperature.
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FIG. 8 (color online). Average of the square of the complex
phase as a function of P and �=T3.
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For the case that important configurations change, the
multiparameter (�) reweighting in Sec. III is effective,
since the important configurations are automatically se-
lected among all configurations generated at multi-�, and
also this method is useful for the interpolation between the
simulation points. We combine all data obtained at 16
points of � using the multi-� reweighting method.

In order to observe the change of the important configu-
rations, we calculate the expectation value of the plaquette
with the additional weight factor in Fig. 9,

hPiðT; �Þ � hP exp½Fþ i��iðT;�q¼0Þ
hexp½Fþ i��iðT;�q¼0Þ

: (31)

The circles in Fig. 9 are hPi at �=T3 ¼ 0 computed without
the multi-� reweighting method. The solid lines which
connect these circles are the interpolation using the
multi-� reweighting method. Of course, hPi for each simu-
lation point and that obtained by the multi-� reweighting
method are consistent with each other at the simulation
points. However, the line of the interpolation shows waves
at some places between the circles. Such a wave appears
where the configurations are missing in Fig. 3.

For the calculation at finite �=T3, we calculate the phase
factor ei� from h�2iP in Fig. 8. The F dependence of
h�2iðP;FÞ is neglected because the values of F is approxi-

mately given as a function ofP as seen in Fig. 5. The results
for hPi at �=T3 ¼ 2:0, 4.0, and 6.0 are plotted from below.
This quantity indicates the plaquette value of the most
important configuration when the weight factor is
modified.

From this figure, we find that hPi becomes larger for
�< �pc ¼ 3:65 and does not change very much for �>

3:65 when �=T3 is increased. This means that, even when

we measure an expectation value at small temperature
(small �), the configurations generated by simulations at
higher temperature (larger P) are used for the measurement
at finite �=T3. Moreover, for the measurement at suffi-
ciently large �=T3, the configurations generated in the low
temperature phase are completely suppressed by the addi-
tional weight factor even when the temperature is small.
This property explains why the phase transition happens
when the density is increased while keeping the tempera-
ture fixed.
However, the errors on these results become larger as

�=T3 increases. One of the reasons may be the missing
configurations between the peaks of the plaquette distribu-
tions. As seen in Fig. 3, the configurations are not distrib-
uted uniformly in the range of P which is necessary in this
analysis, and correct results cannot be obtained if the
important configurations are missing. At low temperature,
the important value of P changes very much as � increases,
therefore we calculate ��

q=T only when the expectation

value of P is at the peak positions of the plaquette distri-
butions in Fig. 3. Dashed lines in Fig. 9 are the peak
positions.
Another important point is that hjz0jiP and hFiP are

strongly correlated with each other. Figure 4 is the average
of jz0j as a function of the plaquette value of each configu-
ration. jz0j increases as P decreases. Because D1 is purely
imaginary, �F ¼ Re½Vð ��z0 � NfNtD1z0Þ� þOðz20Þ be-

comes large as Reðz0Þ increases, which is seen in Fig. 5,
and the contribution from the configurations which have
large z0 is suppressed by the additional weight factor.
Although the value of jz0j for each configuration increases
monotonically as a function of �=T3, nontrivial behavior in
��

q=T is expected due to the suppression factor.

We plot the result of ��
q=T in Fig. 10 as a function of

�=T3 for each temperature T=Tcð�Þ. Dashed lines are
cubic spline interpolations of these results. The dot-dashed
line is the value of the free quark-gluon gas in the contin-
uum theory,

�

T3 ¼ Nf

�
�q

T
þ 1

�2

�
�q

T

�
3
�
: (32)

In this calculation, we neglected the F dependence of
h�2iðP;FÞ because the values of P and F are strongly corre-

lated. The systematic error due to this approximation is
discussed in Appendix C. The error seems to be small.
From Fig. 10, we find that a qualitative feature of ��

q=T

changes around T=Tc 	 0:8, i.e. ��
q=T increases mono-

tonically as � increases above 0.8, whereas it shows an s-
shape below 0.8. This means that there is more than one
value of �=T3 for one value of ��

q=T below T=Tc 	 0:8.

This is a signature of a first order phase transition. The
critical point in the ðT;�qÞ plane is estimated in [12] by

calculating the effective potential in terms of the plaquette
value using the same configurations. The estimation is
ðT=Tc;�q=TÞ � ð0:76; 2:5Þ. Because the estimation from
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FIG. 9 (color online). Expectation value of the plaquette for
each �=T3. Dashed lines are the peak positions of the plaquette
distributions at �q ¼ 0.
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the effective potential is rather ambiguous, the difference
between the new and old results of the critical temperature
may be a systematic error. The critical value of ��

q=T is

about 2.4. This is almost consistent with the previous result
by the different method. The error from the truncation of
the Taylor expansion of the quark determinant is discussed
in [12]. The difference between the results at Oð�4

qÞ and
Oð�6

qÞ is found to be small at�q=T ¼ 2:5 for the data used

in this study. Therefore, the error due to the truncation
would not affect the qualitative conclusions. Although
further studies including justifications of the approxima-
tions used in this analysis are necessary for more quanti-
tative investigations, this result suggests the existence of
the first order phase transition line in the ðT;�qÞ plane.

VI. CONCLUSIONS

We studied the canonical partition function as a function
of �=T3 performing an inverse Laplace transformation. We
analyzed the data obtained with two flavors of p4-
improved staggered quarks in [6] and calculated the de-
rivative of the canonical partition function with respect to
�. The problems in this calculation were discussed. To
avoid the problems, we adopted the following approxima-
tions. First, we estimate the quark determinant from the
data of a Taylor expansion up to Oð�6

qÞ because the direct
calculation of the quark determinant is still difficult except
on a small lattice. Although terms of higher than �6

q are

omitted, this analysis is valid in the low density region.
Second, we use a saddle point approximation for the
inverse transformation, assuming the volume is sufficiently
large. Third, we assume that the probability distribution of
the complex phase of the operator in the calculation of
��

q=T
3 can be well approximated by a Gaussian function.

Using multiparameter reweighting method, we com-
bined the configurations generated by �q ¼ 0 simulations

at 16 simulation points (�) which cover a wide range of the
temperature. It is found that the increase of ��

q=T
3 be-

comes larger as the temperature decreases in the low
density region. However, the contribution from the con-
figurations generated at low temperature gradually de-
creases in the measurement of ��

q=T
3 as �=T3 increases

even at low temperature. And,��
q=T

3 approaches the value

of the free quark gas in the high density limit for all
temperatures investigated in this study. The most interest-
ing result is that ��

q=T
3 as a function of �=T3 shows an s-

shape at T & 0:8. This means that the effective potential
Veff in terms of the density has two minima. Therefore, this
result strongly suggests the existence of the first order
phase transition line in the low temperature and high
density region. Since the data we used in this study is
obtained by a simulation with much heavier quark masses
than the physical quark masses, simulations near the physi-
cal mass point are very important. It is also necessary to
increase the accuracy of the approximations we have used
in this study.
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APPENDIX A: MULTIPARAMETER (�)
REWEIGHTING METHOD

We discuss a method to combine configurations ob-
tained by simulations with many �, following the method
by Ferrenberg and Swendsen [22]. We define a
�-independent distribution function of the plaquette value,

�ðP0Þ ¼
Z

DU�ðP� P0ÞðdetMð0ÞÞNf : (A1)

The relation between �ðPÞ and wðP;�Þ in Eq. (16) is
�ðPÞ expð6�NsitePÞ ¼ wðP;�Þ. Then, the expectation
value of an operator O as a function of P is given by the
equation

hOi� ¼ 1

ZGC

Z
OðPÞ�ðPÞe6�NsitePdP

� 1

Nconf

X
�;fconfg

O;

ZGC ¼
Z

�ðPÞe6�NsitePdP; (A2)

where Nconf is the number of configurations, and
P

�;fconfg
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FIG. 10 (color online). Derivative of lnZC as a function of the
quark number density.
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denotes the sum ofO over all configurations generated in a
simulation at �.

The expectation value hOi� is also calculated from the

data obtained by more than one simulation point, �i (i ¼
1; 2; � � � ; N�). The Eq. (A2) is evaluated by

Z
OðPÞ�ðPÞe6�NsitePdP ¼ XN�

i¼1

Ni

ZGCð�iÞ
Z

OðPÞ�ðPÞ

� e6Nsiteð�iþ�ÞPPN�

j¼1 Nje
6Nsite�jPZ�1

GCð�jÞ
dP

� XN�

i¼1

X
�i;fconfg

�O
e6Nsite�PPN�

j¼1 Nje
6Nsite�jPZ�1

GCð�jÞ
;

(A3)

where Ni is the number of configurations at simulation
points �i. Hence,

hOi� � hOGð�;PÞiall
hGð�;PÞiall : (A4)

Here, the weight factor Gð�;PÞ is

Gð�;PÞ ¼ e6Nsite�PPN�

i¼1 Nie
6Nsite�iPZ�1

GCð�iÞ
; (A5)

and h� � �iall means the average over all configurations
generated at all �i.

The partition function ZGCð�iÞ is determined by a con-
sistency condition for each i,

Z GCð�iÞ ¼
XN�

j¼1

X
�j;fconfg

Gð�i; PÞ ¼ hGð�i; PÞiall: (A6)

This equation can be solved except for the normalization
factor. We should note that Gð�;PÞ is independent of the
simulation points �i at which the operators are measured,
and important configurations for each calculation are se-
lected by the weight factor automatically.

APPENDIX B: EFFECT FROM NON-GAUSSIAN
TERMS IN THE PHASE FACTOR

We estimate the phase factor when the distribution is
slightly different from Gaussian. We consider a distribu-
tion function with small a4ðP; FÞ=a2ðP; FÞ,

�wðP; F; �Þ �
ffiffiffiffiffi
a2
�

r �
1� 3a4

4a22

þO

��
a4
a2

�
2
���1

�w0ðP; FÞe�ða2�2þa4�
4Þ:

(B1)

In this case, the phase factor, exp½�1=ð4a2Þ�, changes toZ
�w0ðP; FÞ

ffiffiffiffiffi
a2
�

r �
1� 3a4

4a22
þ � � �

��1
ei�e�a2�

2�a4�
4
d�

� �w0ðP; FÞ exp
�
� 1

4a2
þ 3a4

4a32
� a4

16a42
þO

��
a4
a2

�
2
��
(B2)

and also the expectation value of �2 for fixed P and F
becomes

h�2iðP;FÞ ¼ 1

2a2
� 3a4

2a32
þO

��
a4
a2

�
2
�
: (B3)

From this equation, the term of 3a4=ð4a32Þ in Eq. (B2) is
absorbed into h�2i=2, hence the leading contribution from
a4 in the phase factor is exp½�a4=ð16a42Þ�. The value of a4
can be evaluated by the Binder cumulant,

B�
4 � h�4iðP;FÞ

h�2i2ðP;FÞ
¼ 3� 6a4ðP; FÞ

a22ðP; FÞ
þO

��
a4
a2

�
2
�
: (B4)

Because a�1
2 	 h�2i 	Oð�2

qÞ for the chemical potential at

the saddle point z0, the effect from a4 becomes larger as the
density increases. Therefore, for the case of a4=a2 & Oð1Þ
in the �q ¼ 0 limit, exp½�a4=ð16a42Þ� is Oð�6

qÞ at most,

i.e.

heFei�iðT;�q¼0Þ ¼ heF exp½�h�2iðP;FÞ=2þOð�6
qÞ�iðT;�q¼0Þ:

(B5)

This argument suggests that the approximation by the
Gaussian distribution is valid for the investigation of the
low density region even if a4 is nonzero, however, the
estimation of the range of � in which the non-Gaussian
contribution is small may be important as well as the
application range of the Taylor expansion in �q.

APPENDIX C: SUPPRESSION FACTOR FROM
COMPLEX PHASE FLUCTUATION

In the calculation of ��
q=T, we need to calculate the

suppression factor from the complex phase fluctuation,
exp½�h�2iðP; F; �=T3Þ�. This factor should be a function
of P, F, and �=T3, however, we neglected the F depen-
dence in the calculation of Fig. 10. In this section, we
discuss the error from this approximation. As shown in
Fig. 5, the values of P and F are strongly correlated. The
solid line is the mean value of F among the configurations
having the plaquette value P for each �=T3. The dashed
lines above and below the solid line show the fluctuations.
Most of the configurations characterized by P and F are
distributed in the narrow region between the two dashed
lines. Therefore, we have approximated h�2i as a function
of only P and �=T3 in Fig. 8.
To estimate the importance of the F dependence, we

calculate��
q=T using another approximation of h�2i which
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changes according to F of each configuration. From the
data of hFiP as a function of �=T3 for each P, which is
shown in Fig. 5, we find �=T3 which gives F for each
configuration and find the value of h�2i at this �=T3 using
the data of Fig. 8. We then obtain h�2i as a function of P
and F, but the �=T3 dependence is neglected. We calculate
��

q=T using this h�2iðP;FÞ and compare the previous result

to estimate the systematic error due to the approximation in
h�2i. The result is shown in Fig. 11. The dotted lines are the
spline interpolation in Fig. 10. The difference between the
results of ��

q=T in Figs. 10 and 11 seems to be small. This

suggests that the determination of h�2i with three parame-
ter ðP;F; �=T3Þ is not very important for the qualitative
argument.

Note added.—In the jackknife error estimation of this
calculation, we have neglected the dispersion of h�2iðP;FÞ
among the jackknife ensemble. Therefore, statistical errors
in Fig. 11 are smaller than those in Fig. 10. The small error
does not mean that the analysis in this appendix gives
better results with smaller statistical error. In fact, the
errors in Fig. 10 become the same size if we neglect the
dispersion of h�2i in the jackknife analysis.
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FIG. 11 (color online). Derivative of lnZC as a function of the
quark number density. The estimation of h�2iðP;FÞ is different

from that of Fig. 10.
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