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We calculate the QCD equation of state for temperatures corresponding to the transition region with

physical mass values for two degenerate light quark flavors and a strange quark using an improved

staggered fermion action (p4-action) on lattices with temporal extent N� ¼ 8. We compare our results

with previous calculations performed at twice larger values of the light quark masses as well as with

results obtained from a resonance gas model calculation. We also discuss the deconfining and chiral

aspects of the QCD transition in terms of renormalized Polyakov loop, strangeness fluctuations, and

subtracted chiral condensate. We show that compared to the calculations performed at twice larger value

of the light quark mass the transition region shifts by about 5 MeV toward smaller temperatures.
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I. INTRODUCTION

First calculations of the equation of state (EoS) of hot
strongly interacting matter date back to the early 80s [1,2].
These early purely gluonic calculations have been im-
proved steadily by including contributions from dynamical
quark degrees of freedom (for recent reviews see [3–5]). In
the most recent calculations the equation of state has been
evaluated for 2þ 1 flavor QCD, i.e., in QCD with one
strange quark and two light ðu; dÞ quarks using various
improved staggered fermion actions [6–9]. The most ex-
tensive calculations of the EoS have been performed with
p4 and asqtad staggered fermion formulations on lattices
with temporal extent N� ¼ 4, 6 [7,8] and 8 [9]. These
actions improve both the flavor symmetry of the staggered
fermions as well as the quark dispersion relations. The
latter insures that thermodynamic observables are Oða2Þ
improved at high temperatures and thus have only a small
cutoff dependence in this regime. The stout-link action,
which has been used for the calculation of the EoS on
lattices with temporal extent N� ¼ 4, 6 [6], only improves
the flavor symmetry of the staggered fermions and there-
fore has the same large discretization errors at high tem-
peratures as the standard staggered fermion formulation.
Indeed, the calculations of the EoS with the stout-link
action on lattices with temporal extentN� ¼ 4 and 6 reflect
the expected strong cutoff dependence above the transition
temperature [6].

While at high temperatures the masses of the relevant
degrees of freedom, quarks, and gluons, are small com-
pared to the temperature scale, this is not the case at low
temperatures and in the transition region. Thus, one may

expect that at these temperatures thermodynamic observ-
ables are more sensitive to the quark masses, which control
the mass of the light pseudoscalars and eventually are
responsible for the occurrence of a true phase transition
in the chiral limit. Calculations with p4 and asqtad actions
have so far been performed using light quark masses (m̂l)
which are one tenth of the strange quark mass (m̂s) and
correspond to a pseudoscalar Goldstone mass1 of 220 and
260 MeV, respectively [9]. The calculations with the stout-
link action have been performed at the physical value of the
light quark mass.
The purpose of this paper is to investigate the quark

mass dependence of the EoS by calculating it with the p4
action for physical values of the (degenerate) light quark
masses. The calculational procedure used in this work
closely follows that used in our previous calculations at
m̂l ¼ 0:1m̂s [8]. The paper is organized as follows. In the
next section we discuss the parameters and some technical
details of the numerical calculations, including the choice
of the quark masses and the determination of the lattice
spacing that fixes the temperature scale, aT ¼ 1=N�. In
section III we show the QCD equation of state and compare
it with the resonance gas model. In Sec. IV we discuss

1In calculations with staggered fermions flavor symmetry is
broken at nonvanishing values of the lattice spacing a. As a
consequence only one of the pseudoscalar mesons has a light
mass that is proportional to

ffiffiffiffiffiffi
ml

p
and vanishes in the chiral limit

at fixed a > 0. Full chiral symmetry with the correct Goldstone
pion multiplet is recovered only for a ! 0. For an estimate of the
remaining flavor symmetry violations in spectrum calculations
with the p4 action, see [10].
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chiral and deconfining aspects of the QCD transition.
Finally, Sec. V contains our conclusions. In the Appendix
we give further numerical details of our calculations.

II. ZERO TEMPERATURE CALCULATIONS

We have performed calculations with the p4 action for
several values of the gauge coupling � ¼ 6=g2 in the
region of the finite temperature crossover for lattices with
temporal extent N� ¼ 8. The values of the quark masses
and gauge coupling are given in Table I. Simulations were
performed with the rational hybrid Monte Carlo algorithm
with Hasenbush preconditioning and different time steps in
the molecular dynamic (MD) evolution for gauge fields,
strange quarks, and light quarks. We used 5 time steps for
strange quark updates per each light quark update. The
gauge fields were updated 10 times more frequently than
the strange quarks. The length of the MD trajectory was 0.5
and the acceptance rate about 70%. The zero temperature
calculations were performed on 324 lattices.

We would like to perform calculations of thermody-
namic quantities keeping the physical values of the strange
quark mass as well as the light quark masses fixed. As a
starting point for our calculations we used the same fine-
tuned values of the bare strange quark mass as in [8] but
bare light quark masses which are two times smaller than
in Ref. [8], i.e., the ratio of strange to light quark mass was
chosen to be h ¼ ms=ml ¼ 20.

At each beta value we then have determined the static
quark potential. The static potential Vq �qðrÞ and the corre-

sponding scales r0 and r1 defined as

�
r2

dVq �qðrÞ
dr

�
r¼rn

¼
�
1:65; n ¼ 0
1:0; n ¼ 1

(1)

were calculated from smearedWilson loops as described in
Ref. [11]. Here we used 30 levels of APE smearing of the
spatial links to get good signals for the Wilson loop ex-
pectation values. The values of r0=a and r1=a are given in
Table I. The comparison with previous results given in
Table I of [8] reveals that the new values of the scale
parameters in lattice units differ from the old ones obtained
at h ¼ 10 by less than 1%, with deviations which are not
systematic. Thus, the smaller values of the light quark
masses do not change the lattice spacing in physical units
beyond the errors, which are about 0.5% (c.f. Table I). As
the consequence the values of the temperature in units of
r0 have errors of about 0.5%. To give the temperature in
physical units, e.g. MeV, we use the value r0 ¼
0:469ð7Þ fm. Thus the temperature scale in physical units
has an overall uncertainty of about 1.5%. However, since
the same uncertainty is present in the calculations per-
formed at twice larger quark mass it does not show up in
the comparison of thermodynamic quantities obtained at
two different quark masses.
To remove the additive divergent constant c0 in the

potential, following Ref. [8] we normalized it to the string
form of the static quark potential, VstringðrÞ ¼ ��=12rþ
�r, at distance r ¼ 1:5r0. This amounts to renormalize the
temporal gauge links with zð�Þ ¼ expðc0=2Þ. The resulting
multiplicative renormalization factors, zð�Þ, are also given
in Table I and will be used to define renormalized Polyakov
loops that are discussed in Sec. IV.
Having determined the scale we extracted pseudoscalar

meson masses using wall sources in the calculation of
meson propagators. It turned out that the�s�s mass in lattice
units is, with 1%–2% accuracy, the same as in [8]. Thus, a
readjustment of the line of constant physical �s�s mass
corresponding to our new and smaller light quark masses
was not necessary. In fact, in the present calculations we

TABLE I. The parameters of the zero temperature calculations, the values of r0 and r1, and the pseudoscalar meson masses. The last
column shows the normalization constant for the static potential.

� m̂s #traj. r0=a r1=a m�a mKa m�s �s
a zð�Þ

3.430 0.0370 2610 2.6698(101) 1.8378(184) 0.1415(2) 0.4423(3) 0.5992(4) 1.5124(90)

3.460 0.0313 3220 2.9377(90) 2.0000(202) 0.1274(4) 0.3994(4) 0.5427(2) 1.5219(71)

3.490 0.0290 3460 3.2188(70) 2.2115(101) 0.1213(15) 0.3775(5) 0.5117(10) 1.5277(26)

3.500 0.0253 3030 3.3251(114) 2.2550(159) 0.1110(5) 0.3491(4) 0.4743(3) 1.5292(50)

3.510 0.0260 3040 3.4021(141) 2.3116(105) 0.1121(10) 0.3510(9) 0.4770(6) 1.5289(55)

3.520 0.0240 2980 3.5167(68) 2.4050(106) 0.1056(5) 0.3322(6) 0.4525(3) 1.5303(20)

3.530 0.0240 2450 3.5927(101) 2.4723(81) 0.1045(14) 0.3300(17) 0.4500(11) 1.5291(48)

3.540 0.0240 3360 3.6802(138) 2.5090(94) 0.1040(4) 0.3251(13) 0.4432(11) 1.5272(41)

3.545 0.0215 3090 3.7513(67) 2.5840(75) 0.0947(7) 0.3061(3) 0.4178(2) 1.5298(23)

3.560 0.0205 3010 3.8790(67) 2.6732(81) 0.0935(12) 0.2941(13) 0.4024(11) 1.5275(18)

3.585 0.0192 1400 4.1501(118) 2.8503(106) 0.1049(6) 0.3258(17) 0.4434(11) 1.5275(66)

3.600 0.0192 4080 4.3033(181) 2.9351(73) 0.0888(20) 0.2731(6) 0.3722(7) 1.5277(41)

3.630 0.0170 2000 4.6853(349) 3.1858(167) 0.0773(24) 0.2442(5) 0.3343(9) 1.5293(82)

3.660 0.0170 2850 4.8497(232) 3.3368(138) 0.0757(7) 0.2364(12) 0.3246(8) 1.5175(50)
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find that our quark mass values define a line of constant
physics characterized by the following relations

r0 �m� ¼ 0:371ð3Þ; r0 �mK ¼ 1:158ð5Þ;
r0 �m�s �s

¼ 1:578ð7Þ: (2)

Using r0 ¼ 0:469 fm, as determined in Ref. [12], we get
m� ¼ 154 MeV,mK ¼ 486 MeV, and2m�s�s

¼ 663 MeV.

This means that both the light quark masses and the strange
quark mass are very close to their physical values.
Furthermore, in the entire parameter range covered by
our thermodynamic calculations deviations of the meson
masses from the above values are less than 3%.

III. CALCULATION OF THE THERMODYNAMIC
QUANTITIES

The calculation of the EoS starts with the evaluation of
the trace anomaly, i.e., the trace of the energy-momentum
tensor���ðTÞ. It is related to the temperature derivative of

the pressure through thermodynamic identities,

���ðTÞ
T4

¼ �� 3p

T4
¼ T

d

dT

�
p

T4

�
: (3)

The trace anomaly can be expressed in terms of the expec-
tation values of quark condensates and the gluon action
density

���ðTÞ
T4

¼ ���
G ðTÞ
T4

þ���
F ðTÞ
T4

(4)

�
��
G ðTÞ
T4

¼ R�½hsGi0 � hsGi��N4
�; (5)

�
��
F ðTÞ
T4

¼ �R�Rm½2m̂lðh �c c il;0 � h �c c il;�Þ

þ m̂sðh �c c is;0 � h �c c is;�Þ�N4
�; (6)

where the zero temperature expectation values are sub-
tracted to render the trace anomaly UV finite. The expec-
tation values of the light and strange quark condensates and
the action are defined as

h �c c iq;x � 1

4

1

N3
�Nx

hTrD�1ðm̂qÞix; q ¼ l; s; x ¼ 0; �;

(7)

hsGix � 1

N3
�Nx

hSGix; (8)

with Dðm̂qÞ being the staggered fermion matrix. Further-

more, R� and Rm are the nonperturbative beta function and

the mass anomalous dimension

R�ð�Þ ¼ �a
d�

da
(9)

Rmð�Þ ¼ 1

m̂lð�Þ
dm̂lð�Þ
d�

: (10)

Following Ref. [8] the � dependence of the Sommer scale
is fitted to a renormalization group inspired Ansatz [13]

r0
a

¼ 1þ erâ
2ð�Þ þ frâ

4ð�Þ
arR2ð�Þð1þ brâ

2ð�Þ þ crâ
4ð�Þ þ drâ

6ð�ÞÞ (11)

where

R2ð�Þ ¼ exp

�
� �

12b0

��
6b0
�

��b1=ð2b20Þ
(12)

is the two-loop beta function for 3-flavor QCD and âð�Þ ¼
R2ð�Þ=R2ð3:4Þ. From this the nonperturbative beta func-
tion R� can be calculated as

R�ð�Þ ¼ r0
a

�
dr0=a

d�

��1
: (13)

Likewise, Rm was obtained from a parametrization of the
bare quark mass,

m̂ lr0=a ¼ mRGIr0

�
12b0
�

�
4=9

Pð�Þ (14)

with a sixth order rational function Pð�Þ as in [8] to
account for deviations from the leading order scaling
relation.
We performed finite temperature calculations on 323 �

8 lattices for the 14 parameter sets shown in Table I. The
number of MD trajectories for each finite temperature run
is given in Table II. Using the expectation values of the
quark condensates and the gluonic action density as well as
the nonperturbative beta functions described above we
have calculated the trace anomaly. The numerical results
are shown in Fig. 1 and are compared to the previous
calculation at twice larger quark mass ml ¼ 0:1ms on
N� ¼ 6 lattices [8] andN� ¼ 8 lattices [9]. The differences
between N� ¼ 6 and N� ¼ 8 calculations are due to cutoff
effects and have been discussed in Ref. [9].
As one can see from the figure the main differences to

the N� ¼ 8 results at ml ¼ 0:1ms arise for temperatures
T & 200 MeV. This difference can be understood as re-

2A physical value for the �s�s mass can be obtained from the

relation m�s�s
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2m2

K �m2
�

q
¼ 686 MeV.
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sulting from a shift of the transition temperature when the
light quark mass is lowered to approximately its physical
value. Based on our previous study on coarser lattices we
expect that the reduction of the quark mass from 0:1ms to
0:05ms effectively leads to a shift of several observables by
a few MeV towards smaller values of the temperature [11].
As discussed further in Sec. IV this shift indeed amounts to
about 5 MeV. At lower temperatures it also is expected that
the trace anomaly increases with decreasing quark masses
as hadrons become lighter when the quark mass is de-
creased. While a tendency for such an increase may be
indicated by the data at the lowest two temperatures
reached in our calculation, this effect is certainly not
significant within the current statistical accuracy. The ob-
served consistency within errors between the trace anom-
aly calculated at ml ¼ 0:05ms and at ml ¼ 0:1ms might
possibly also hint towards a distortion of the hadron spec-
trum due to finite lattice spacing effects. In fact, it is known
that for improved staggered fermions the ground state
hadron masses approach their continuum limit from above
[14,15]. For temperatures T > 200 MeV there is no visible
dependence of ð�� 3pÞ=T4 on the quark mass. This is
presumably due to the fact that hadronic degrees of free-
dom are no longer relevant in this temperature domain; the
relevant degrees of freedom have thermal masses of the
order of the temperature and are insensitive to the light
quark masses already for ml ¼ 0:1ms.

At temperatures below the transition temperature it is
expected that thermodynamic quantities are well described

by a hadron resonance gas (HRG) model. In fact, the freeze
out of hadrons in heavy ion experiments takes place in the
transition region and the observed particle abundances are
well described by the HRG model [16,17]. Therefore in
Fig. 1 we also show the prediction of the HRG model,
which includes all the known resonances up to the mass
Mmax ¼ 2:5 GeV. The lattice data for �� 3p are below
the HRG prediction although the deviations from it are
smaller compared to the results obtained at ml ¼ 0:1ms.
We mention again the present statistical accuracy and the
possibility of discretization effects in the hadron spectrum.
In particular, due to taste breaking of staggered fermions
pseudoscalar mesons are not degenerate at finite lattice
spacing, therefore their contribution to thermodynamic
quantities maybe suppressed.
From the trace anomaly the pressure and thus other

thermodynamic quantities can be calculated by performing
the integration over the temperature

pðTÞ
T4

� pðT0Þ
T4
0

¼
Z T

T0

dT0 1

T05 ���ðT0Þ: (15)

Here T0 is an arbitrary temperature value that is usually
chosen in the low temperature regime where the pressure
and other thermodynamical quantities are suppressed ex-
ponentially by Boltzmann factors associated with the light-
est hadronic states, i.e., the pions. Energy � and entropy
(sT ¼ ðpþ �Þ) densities are then obtained by combining
results for p=T4 and ð�� 3pÞ=T4.
To perform the integration numerically a reliable inter-

polation of the lattice data on the trace anomaly is needed.
These interpolations are shown in Fig. 1 as curves. In the
region T � 175 MeV, the curves correspond to exponen-
tial fits. Therefore our parametrization ensures that the
pressure is zero at T ¼ T0 ¼ 0. However, the fits give
very small values of the trace anomaly already at tempera-
tures around 100 MeV, therefore we could also use T0 ¼
100 MeV as a lower integration limit. Above T ¼
175 MeV, we divide the data into several intervals and
perform quadratic interpolations. In each interval, these
quadratic fits have been adjusted to match the value and
slope at the boundary with the previous interval. These
interpolating curves are then used to calculate the pressure
and other thermodynamic quantities using Eqs. (3) and
(15). The numerical results for the pressure and energy
density are shown in Fig. 2. At temperatures between 170
and 200 MeV, energy density and pressure are slightly
larger than in earlier calculations performed at ml ¼
0:1ms [9]. For temperatures below T < 170 MeV the pres-
sure is almost the same.
Because the discretization errors increase as the tem-

perature decreases it is interesting to consider other choices
for the normalization point T0. At sufficiently low tem-
peratures the HRG model provides a fair estimate for the
pressure. In particular, at T ¼ 100 MeV the pressure is not
very sensitive on how many resonances above 1.5 GeVare

0

1

2

3

4

5

6

7

8

 140  160  180  200  220  240  260

T [MeV] 

(ε-3p)/T4

0.1ms: Nτ=6
8

0.05ms: Nτ=8
HRG

FIG. 1 (color online). The trace anomaly ð�� 3pÞ=T4 calcu-
lated for the physical quark mass and compared with previous
calculations at larger light quark masses ml ¼ 0:1ms as well as
with the HRG model which includes all the resonances up to
2.5 GeV. Also shown are the interpolations of the lattice data.
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included in the HRG model. Therefore we also calculated
the pressure taking the lower integration limit to be T0 ¼
100 MeV with pðT0Þ=T4

0 ¼ 0:265 calculated in the HRG

model. The difference in the pressure and energy density
calculated this way and using the standard procedure,
where pðT0Þ ¼ 0, can be used as an estimate of the system-
atic error. It is shown in Fig. 2 as the horizontal band in the
upper right corner. The thickness of the band indicates the
expected size of the systematic error. The systematic error
estimated this way is about 8% in the energy density at the
highest temperature of T ’ 260 MeV, and about 13% for
the pressure.

IV. DECONFINEMENTAND CHIRAL ASPECTS
OF THE QCD TRANSITION

In this section we are going to discuss the deconfinement
and chiral aspects of the QCD transition in terms of re-
normalized Polyakov loop, subtracted chiral condensate,
and strangeness susceptibility. The QCD transition in
terms of these quantities has been studied previously in
Refs. [8,9,18].

In the previous section we have seen that the energy
density shows a rapid rise in the temperature interval T ¼
ð170–200Þ MeV. This is usually interpreted to be due to
deconfinement, i.e., liberation of many new degrees of
freedom. For sufficiently large quark mass this transition
is known to be a first order transition (see, e.g., Ref. [19]).
In the limit of infinitely large quark mass the order pa-

rameter for the deconfinement phase transition is the
Polyakov loop. After renormalization it can be related to
the free energy of a static quark antiquark pair F1ðTÞ at
infinite separation [20–22]

LrenðTÞ ¼ expð�F1ðTÞ=ð2TÞÞ: (16)

A rapid change in this quantity is indicative for deconfine-
ment also in the presence of light quarks. The renormalized
Polyakov loop is calculated from the bare Polyakov loop
by multiplying it by the renormalization constant zð�Þ
given in Table I,

LrenðTÞ ¼ zð�ÞN�Lbareð�Þ ¼ zð�ÞN�

�
1

3
tr

YN��1

x0¼0

U0ðx0; ~xÞ
�
:

(17)

In the above formula U0ðx0;xÞ denotes the temporal link
variables. Note that after performing the ensemble average
Lbareð�Þ is independent of the space coordinate ~x.
In the opposite limit of zero quark mass one expects a

chiral transition and the corresponding order parameter is
the quark condensate defined in Sec. III. For a genuine
phase transition, i.e., in the chiral limit the quark conden-
sate vanishes at the critical temperature Tc. However, we
expect that even for the crossover at finite quark mass the
light quark condensate rapidly drops in the transition re-
gion, indicating an approximate restoration of the chiral
symmetry. At nonvanishing quark mass the quark conden-
sate needs additive and multiplicative renormalization.
Therefore, following Ref. [8] we introduce the so-called
subtracted chiral condensate

�l;sðTÞ ¼
h �c c il;� � ml

ms
h �c c is;�

h �c c il;0 � ml

ms
h �c c is;0

: (18)

Subtraction of the strange quark condensate multiplied by
the ratio of the light to strange quark mass removes the
quadratic divergence proportional to the quark mass.
In Fig. 3 we show the renormalized Polyakov loop and

the subtracted chiral condensate �l;s and compare with

previous calculations performed at light quark masses
equal to one tenth of the strange quark mass [9]. The
renormalized Polyakov loop rises in the temperature inter-
val T ¼ ð170–200Þ MeV where we also see the rapid in-
crease of the energy density. At the same time the
subtracted chiral condensate rapidly drops in the transition
region, indicating that the approximate restoration of the
chiral symmetry happens in the same temperature interval
as deconfinement. Compared to the calculation performed
at light quark masses equal to one tenth of the strange
quark mass we see a shift of the transition region by
roughly 5 MeV. We note that such a shift arises differently
in different observables. In the case of the subtracted chiral

  0
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  8
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16

 140  160  180  200  220  240  260
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εSB/T4
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3p/T4
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0.05ms

0.1
0.05

FIG. 2 (color online). Energy density and 3 times the pressure
at the physical value of the light quark mass and compared with
previous calculations performed at ml ¼ 0:1ms. The horizontal
band shows the expected uncertainty in the energy density due to
the choice of the lower integration limit (see text).
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condensate, for instance, a major ingredient to the ‘‘shift’’
is the fact, that at fixed temperature the condensate in the
transition region is strongly quark mass dependent and

drops proportional to
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ml=ms

p
[23].

The fluctuation of strangeness is also indicative of de-
confinement. It can be defined as the second derivative of
the free energy density with respect to the strange quark
chemical potential

�sðTÞ ¼ 1

T3V

@2 lnZðT;�sÞ
@�2

s

���������s¼0
: (19)

At low temperatures strangeness is carried by massive
hadrons and therefore strangeness fluctuations are sup-
pressed. At high temperatures strangeness is carried by
quarks and the effect of the strange quark mass is small.
Therefore strangeness fluctuations are not suppressed at
high temperatures. As discussed in Ref. [9] strangeness
fluctuations behave like the energy density in the transition
region, i.e., they rapidly rise in a narrow temperature
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Nτ=8

ml/ms

∆l,s
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FIG. 3 (color online). The renormalized Polyakov loop (top
panel) and the subtracted chiral condensate (bottom panel) as
function of the temperature calculated at ml ¼ 0:05ms and at
0:1ms.
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FIG. 4 (color online). Strangeness fluctuations as a function of
the temperature calculated at ml ¼ 0:05ms and at 0:1ms. In the
bottom figure the numerical data for ml ¼ 0:1ms have been
shifted by 5 MeV.
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interval. In Fig. 4 we show the strangeness fluctuations
calculated at ml ¼ 0:05ms and compare them with pre-
vious calculations performed at ml ¼ 0:1ms [9]. In the
bottom figure we also show the strangeness fluctuation
for ml ¼ 0:1ms with a 5 MeV shift of the temperature
scale. As one can see this shift accounts for most of the
quark mass dependence of the strangeness fluctuations.
This is consistent with the conclusion obtained from
the quark mass dependence of other thermodynamic
observables.

V. CONCLUSION

We have calculated the EoS, renormalized Polyakov
loop, subtracted chiral condensate, and strangeness fluctu-
ations in (2þ 1)-flavor QCD in the crossover region from
low to high temperatures using the improved p4 staggered
fermion formulation on lattices with temporal extent N� ¼
8 at physical values of the light and strange quark masses.
We found that thermodynamic quantities below the decon-
finement transition are larger compared to the previous
calculations performed at twice larger quark mass but fall
below the resonance gas model result. The differences in
the thermodynamic quantities calculated at ml ¼ 0:05ms

and ml ¼ 0:1ms can be well understood in terms of the
shift of the transition temperatures towards smaller values
when the quark mass is decreased. This conclusion is also
supported by the calculation of renormalized Polyakov
loop, subtracted chiral condensate, and strangeness fluctu-
ations. No additional enhancement of the pressure and the
energy density is seen at low temperatures. This and the
deviation from the resonance gas model may be a cutoff

effect due to taste violations. However, better statistical
accuracy and calculations at smaller lattice spacing are
needed to quantify this assertion. At temperatures above
200MeV no quark mass dependence is seen in the equation
of state.
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APPENDIX

In this appendix we present some numerical details of
our calculations. In Table II we give the expectation values
of the gauge action and quark condensates calculated on
324 (zero temperature) and 323 � 8 (finite temperature)
lattices. In Table III we present the numerical values of
the trace anomaly, pressure, energy density, bare Polyakov
loop, and strangeness fluctuations.

TABLE II. The expectation values of the gauge action, light, and strange quark condensates at zero and finite temperatures. Also
shown are the temperature values for each value of gauge coupling � obtained from r0 ¼ 0:469 fm. We also give the number of MD
trajectories for each run

� m̂s T [MeV] # traj. hsGi0 hsGi� h �c c il;0 h �c c il;� h �c c is;0 h �c c is;�
3.430 0.0370 139 7950 4.109 78(19) 4.109 22(15) 0.069 96(19) 0.067 88(12) 0.142 53(12) 0.1419(8)

3.460 0.0313 154 15 290 4.043 26(16) 4.042 42(17) 0.052 63(14) 0.049 32(9) 0.116 70(8) 0.1157(8)

3.490 0.0290 170 33 710 3.983 57(19) 3.982 15(11) 0.040 18(13) 0.034 53(11) 0.100 23(10) 0.0984(7)

3.500 0.0253 175 32 520 3.963 33(14) 3.961 61(12) 0.035 38(12) 0.027 83(18) 0.088 73(9) 0.0862(9)

3.510 0.0260 180 30 050 3.945 73(19) 3.943 22(7) 0.032 94(13) 0.023 39(20) 0.087 33(10) 0.0839(7)

3.520 0.0240 185 39 990 3.927 13(9) 3.924 31(10) 0.029 56(6) 0.017 18(17) 0.080 03(5) 0.0756(8)

3.530 0.0240 191 70 230 3.909 94(11) 3.906 51(6) 0.027 15(9) 0.012 50(16) 0.077 35(7) 0.0721(7)

3.540 0.0240 196 56 740 3.893 33(10) 3.889 47(6) 0.025 18(13) 0.009 29(8) 0.075 07(8) 0.0691(5)

3.545 0.0215 198 20 700 3.884 27(6) 3.880 48(9) 0.023 28(6) 0.006 81(12) 0.068 48(3) 0.0618(9)

3.560 0.0205 206 11 660 3.859 44(14) 3.855 79(7) 0.020 39(11) 0.004 59(6) 0.063 15(8) 0.0559(8)

3.585 0.0192 219 17 250 3.819 87(14) 3.816 50(10) 0.016 38(8) 0.002 97(2) 0.055 83(7) 0.0479(8)

3.600 0.0192 227 4260 3.797 20(7) 3.794 08(17) 0.014 78(7) 0.002 72(2) 0.053 59(4) 0.0460(9)

3.630 0.0170 243 10 810 3.753 07(9) 3.750 40(9) 0.011 41(8) 0.002 02(7) 0.045 24(6) 0.0378(4)

3.660 0.0170 259 45 050 3.710 67(8) 3.708 56(3) 0.009 16(11) 0.001 84(2) 0.042 02(5) 0.0355(2)
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