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Power-law eigenstates of a regular Vicsek fractal with hierarchical interactions
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The nature of transverse vibrational eigenmodes of a regular Vicsek fractal with hierarchical nearest-
neighbor interactions has been analyzed using a real-space renormalization-group approach. Different
types of spatial scaling behavior for the nondegenerate transverse vibrational modes are obtained de-
pending on a positive hierarchical parameter R: for R > R,, the nondegencrate modes are all extended
in nature, while for R <R,, they exhibit a type of power-law behavior, with the exponent of power de-

pending explicitly on R.

In recent years, studies concerning the nature of the ei-
genvalue spectrum and the cigenstates of fractal systems
have revealed a wealth of interesting and exotic features.
For instance, on random fractals, numerical results sug-
gested the existence of anomalous density of states? and
superlocalization“ of eigenmodes. In the case of deter-
ministic fractals, detailed analysis by Rammal has shown
that the eigenfrequency spectrum of a Sierpinski gasket is
the superposition of two distinct pure point spectra.’
There are consequently two types of localized modes.
The first type of mode is termed as molecular state, since
it has nonvanishing amplitudes only at a finite set of sites.
The second type of mode, referred as hierarchical state, is
localized around the empty region of the fractal lattice.
More recently, Jayanthi and Wu (JW) carried out an in-
vestigation of the transverse vibration modes of a regular
Vicsek fractal (VF).%7 Among other things, two unusual
and interesting features have been found: (i) the frequen-
cy spectrum of the regular VF is a pure point spectrum
consisting of nondegenerate as well as degenerate modes,
while all the nondegenerate modes (NDM’s) are extend-
ed, and (ii) the extended states of the NDM’s exist side by
side with the superlocalized states of the persistent degen-
erate modes, so that there is no frequency demarcation
which separates the extended states from the localized
ones. In the present study, we investigate the nature of
the transverse vibrational modes of particles arranged on
a regular VF with a hierarchical distribution of nearest-
neighbor interactions. It is found that for a positive
hierarchical parameter R (0 <R =<1) greater than a criti-
cal value R > R, =1, the NDM’s are extended, while for
R <R_, the NDM’s exhibit a type of power-law decay
behavior.

The model treated here is similar to that of JW.%7 The
first-stage VF consists of five particles with four of them
located at the corners and the last one at the center of a
square. The force constant describing the interaction be-
tween the nearest-neighboring particles is ¥ and the mass
of the particle m. With the use of the reduced unit of
y/m =1, the transverse equations of motion for the
first-stage VF with nearest-neighbor interactions and
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with its outer particles anchored by force constant y to a
rigid boundary are

d—otu; =3 v,,=0, (n

22—, — 4, =0 (a=a,b,c,d), (2)

where u, denotes the displacement of the central site and
vy, With a=a, b, ¢, and d, the displacements of the four
outer sites on the first-stage fractal.

The hierarchy of the interactions (force constants) for
the model under consideration is introduced in the
second- and higher-stage fractals. In the present model, a
second-stage VF is constructed by assembling five copies
of the first-stage fractal clusters with one at the center
and the other four at the corners of a square. However,
different from the model studied by JW,%? in the present
model, the force constants between the particles in the
central first-stage fractal cluster and the nearest-
neighboring particles in the outer first-stage clusters are
set to be Ry (with 0<R <1) instead of y, see the
schematic illustration given in Fig. 1{a). The higher-stage
fractals are built by a similar construction pattern. That
is, an (n + 1)th-stage fractal is made by assembling five
copies of the nth-stage fractal clusters with one located at
the center and the other four at the corners of a square,
whereas every two adjoining nth-stage clusters are con-
nected by force constant R "y, rather than y. Notice that
if one sets R =1, the present model reduces to that stud-
ied by JW,%7 while if we remain only a linear chain in one
direction and remove all branches in the other direction,
we are left with a one-dimensional hierarchical model,
which has attracted a lot of attention in recent years.®®

The present hierarchical VF model preserves both the
local symmetry and the self-similar nature. The heuristic
analysis by JW on the nature of the frequency spectrum
and eigenmodes remains tenable. So the present model
preserves persistent degenerate modes which are confined
to a finite region so that they do not “feel” the effect due
to the hierarchy of the interactions and thus remain su-
perlocalized.® On the other hand, as the NDM’s are all
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(a) ¥ ® (4—a,u, =Kk, 3 v,,=0, (6)
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i (4—B, 0, u,=0 (a=a,b,c,d), (7
- —{ { (= & - - — + [
+° .T,“ o B = ‘a where the renormalized parameters are given by
| :
. . 4Kn—l[4 B(n-—ll
’d .d an_an—l [4 B“)llz—[l(“) ]2 ’ (8)
b
FIG. 1. Reduction of a second-stage fractal (a} to a “first- 3K, x2_[4—B)1,]
stage fractal,” (b) consisting of five central sites (solid circles) fB,=a, ,+ 2 al T g o 7 9)
with renormalized interactions (dashed lines). In {(a), the single “Bu-r [4- B( il e
lines between the circles stand for the interactions with force 2l
constant y, while the double lines represent the interactions  x, = Lol e , 10)
with force constant Rv, i.c., every two adjoining first-stage frac- {4— 3( ! ]2 - [K( ! ]
tal clusters are connected by force constant Ry, instead of y, Ix 4—
for the second-stage fractal. Bi'=a,_, + n-1 a1l w1
n n—
4=B, -1 (4B P-[x1 T
2 1[ 4— i +]l)
Il - n -
extended throughout the entire fractal lattice when (4= BT P— [0 D an
R =1,7 one may expect the change of the nature of these
modes when the hierarchy of the force constants is intro- e P *1”
duced. In this work, we shall focus on the investigation Ky = DR [UFDR » (12)
of the NDM’s. =t ]
As was found by JW,® for a NDM of the nth-stage VF, o 2 14 R —?
the displacement at the central site of the entire fractal B'=w’+ 1—0? | (14+R —o?)p—
must be nonzero. Furthermore, the central sites of the o1
four outer (n — 1)th-stage clusters must have equal and ItR'™ —o (13)
finite (nonvanishing) displacements. To take advantage (1+R It =2 —RW+V "’
of this property, it is preferable to reduce the equations of _ Rit!
motion describing any stage of fractal to a set of equa- = I+ R I_gl_R2i*1 ’ (14)
tions connecting only the five central sites. To do so, the
decimation method proves to be useful. with i =1,2,3,... .

For the second-stage VF composed of 25 particles, let
u, denote the displacement of the central site of the cen-
tral cluster, whereas v,,, with a=a, b, ¢, and d, denote
the displacements of the central sites of the four outer
component clusters. By eliminating all other displace-
ment coordinates except u, and v,, (see the illustration
in Fig. 1), we are led to the following renormalized equa-
tions of motion connecting the desired five central sites

(4“02)“2“K2202a=0 s (3)
(4_32)0211.—“2“2:0 (azabeC’d) y (4)
with
e 2
gyt KR —a?)

(1+R —@??—-R*’
3 + 1+R —w?
2—w? (14R—w??—R*’
R

(1+R —0??—R?

For a general nth-stage fractal with n >3, let u, be the
displacement at the central site of the whole fractal and
Vn. With a=a, b, ¢, and d, the displacements at the cen-
tral sites of the four outer (# — 1)th-stage clusters. By de-

cimation, we can obtain a set of renormalized equations
of motion for the five central sites. They are

(5)

B;=m2+

K=

For NDM’s of the nth-stage fractal, wnh the use of the

property 1,70 and v,, =Vn, =Up =Vpq,® Egs. (6) and (T)

give rise to
4 4K3’ =0 15
a, a8, u,=0. (15)
Thus, the roots of the equation
R LG
Solo®)=d4—a, (&)= ——5=0 (16)
4—p, ()

yield the eigenfrequencies of the NDM’s of the nth-stage
fractal.

Now we are ready to examine the effect on the nature
of the NDM'’s due to the hierarchy of the force constants.
To this end, we have carried out an extensive numerical
calculation using quadruple precision. The outline of the
calculation is as follows: Given a fractal of certain stage
n, the eigenfrequencies of the fundamental NDM and the
highest excited NDM are first calculated by “’”"F
(16). The renormalized parameters a,, 8., and )’ are
next calculated through Egs. (5) and (8)- (l4) The ratio
Vpo/ Uy whlch has been used as a criterion for the extend-
ed states,’ is then given by «, (®?)/[4—B,(»?)]. Finally,
by using v,,/u, and setting u, =1, the vibrational ampli-
tudes at any site of the fractal can be computed with the
help of the renormalized parameters.

Figures 2 and 3 show the log-log plots of the vibration-
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FIG. 2. log-log plot of the transverse vibrational amplitude
a,(k) vs k for (a) the fundamental nondegenerate mode and (b)
the highest excited nondegenerate mode with R =0.3. Here
a,(k) denotes the vibrational amplitude at site k along one of
the four symmetric linear chains starting from the central site of
an nth-stage fractal, so that a,(0)=u, and a,(3" " ')=u,,. The
straight line in the figure is of slope (In3R —1In2)/In3 and serves
as a guide to eye showing the power-law decay behavior of the
maximum amplitudes along the linear chain. The data for the
figure are obtained on a 10th-stage fractal.

al amplitude a,(k) vs k for the cases with R =0.3 and
0.72, respectively. Here a,(k) denotes the amplitudes at
site k along one of the four symmetric linear chains start-
mg from the central site of the nth-stage fractal, so that

=g,(0) and v,,=a,(3""!). It can be seen from Figs.
2 and 3 that different types of spatial behavior appear de-
pending on the value of R. For R =0.3, the maximum
amplitudes decay by a power law with the increasing dis-
tance from the central site. While for R =0.72, the max-
imum amplitudes do not decay, suggesting that the
NDM'’s remain extended throughout the whole fractal, as
in the case with R =1.7 To be more specific, we have ex-
amined the positions of the maximum amplitudes along
the linear chain. Our extensive numerical results indicate
that the maximum vibrational amplitudes occur at site
k =3/, with I <n, for the fundamental mode. While for
the highest excited mode, the maximum vibrational am-

ink

FIG. 3. The same as in Fig. 2 except that R =0.72 and the
data for the figure are obtained on a 14th-stage fractal. The
horizontal straight line serves to show that the maximum ampli-
tudes do not decay.

plitudes appear at k = =337, *, with /* dependent on the
value of R but mdependcnt of {. In addition, the ratio of
a,(3)t0a, (3'+3'%) is independent of ! for the highest ex-
c1ted mode So for both the fundamental and the highest
modes, the scaling behavior of the vibrational amplitudes
can be determined by the values of amplitudes at the sites
with k=3". We have studied the ratios 4,(])
=a,(3'*")/a,(3") for various values of R. Figure 4
shows a plot of A4,(]) vs I for several typical values of R.
It can be seen that A,(!) approaches to different asymp-
totic values depending on R. A careful analysis of the
numerical results indicates that

3R/2 for R<%,

fm A, (D=1 ¢ R>2/3. an
So, the crossover for a transition from the extended state
to the power-law state is observed at R, =%. Although
we have only presented the data for the fundamental
mode and the highest excited mode, the scallng behavior
is believed to be the same for other NDM’s.” It is, there-
fore, concluded that when the positive hierarchical pa-
rameter R > R, =1, the nondegenerate transverse vibra-
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FIG. 4. Plot of the ratio of the vibrational amplitudes
A,(D=a,(3'*")/a,(3') vs I along one of the four symmetric
linear chains for (a) the fundamental nondegenerate mode and
(b) the highest excited nondegenerate mode.

tional modes of the VF with hierarchical interactions are
all extended, while for R <R_, all NDM’s exhibit a type
of power-law spatial scaling behavior, with the exponent
of power given by
_ In3R —In2
= m

It should be emphasized that the numerical results

for R<%. (18)
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show that the value of A4,(/) does not depend on the
stage number n for fairly large #, i.e., any two sets of the
ratios, A,,I(I) and A4, (D) with n,¥n,, agree with each

other rather well up to I =min(n; —2,n,—2) for both
the fundamental and the highest modes. As a result, al-
though we cannot carry out the numerical calculation for
extremely large #, especially for small R, due to the limit
of quadruple precision, the asymptotic behavior of 4,(1),
as was shown in Fig. 4, is believable enough to draw the
conclusion (17). In fact, the data for Fig. 4 are obtained
on the fractals with the largest value of n which can be
achieved within the limit of quadruple precision.

Finally, it is interesting to note that when R <1, the
exponent of power Y is smaller than — 1, which implies
that the NDM’s become power-law localized. For
1 <R <1, our numerical results suggest that there is a re-
gion for R, in which the NDM’s are power-law critical,
like the critical states of one-dimensional quasicrystals.'®
In this sense, there seem to be two transitions when the
value of R is decreased from unity to zero, although we
are unable to find the crossover behavior for the transi-
tion from the power-law critical state to the power-law
localized state on the basis of the numerical results in
quadruple precision.

To summarize, by a real-space renormalization-group
approach, we have examined the spatial behavior of the
nondegenerate eigenmodes for the transverse vibration of
particles arranged on a regular VF with a hierarchical
distribution of the nearest-neighbor interactions. It is
found that the NDM’s display different types of spatial
behavior depending on the positive hierarchical parame-
ter R. When R > R_, all the NDM’s are extended, while
for R <R_, the NDM’s exhibit a type of power-law spa-
tial scaling behavior, with the exponent of power depend-
ing explicitly on R.
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