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Low-frequency spin dynamics and NMR spin-lattice relaxation in antiferromagnetic rings
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We develop a general theory of the spin dynamics of Heisenberg antiferromagnetic rings (HAFRs) that
explains the mechanism of NMR spin-lattice relaxation at low temperatures. In HAFRs, the imaginary parts of
the q-summed dynamic spin susceptibilities parallel and perpendicular to an applied static field, χ ′′

sum‖(ω) and
χ ′′

sum⊥(ω), are composed of the sum of many slightly broadened δ-functional modes at many frequencies. The
NMR relaxation is caused by the quasielastic mode in χ ′′

sum‖(ω) at around zero frequency. This quasielastic mode
is characterized by two physical quantities, intensity P0‖ and frequency width �0‖. Although P0‖ has to date been
assumed to be identical to the uniform static susceptibility, we point out that the two quantities are not identical.
Without making this unreliable assumption for P0‖, we demonstrate experimentally how P0‖ and �0‖ behave, by
analyzing the NMR relaxation rates of two different nuclei, 1H and 13C, in a real HAFR. This analysis is more
rigorous and thus can be used to estimate �0‖ and P0‖ more precisely than previously possible. We find that the
temperature dependence of P0‖ exhibits activation-type behavior reflecting the first excitation gap. We also find
that �0‖ decreases monotonically on cooling but saturates to a nonzero value at zero temperature. This strongly
suggests that �0‖ is dominated not only by the electron-phonon interactions but also by internanomagnet dipole
interactions, which have been neglected to date.
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I. INTRODUCTION

The dynamics of mesoscopic systems, which contain a
limited number of atoms, has a completely different nature
from that of bulk systems and is an important challenging
issue in modern physics. A fascinating example of mesoscopic
systems is single-molecular nanomagnets composed of a
limited number of magnetic ions, which have become famous
in the last decade for their peculiar magnetic features.1 One
of the most peculiar features is that they generally exhibit
slow electron-spin dynamics at low temperatures.1,2 This
low-frequency spin dynamics remains an important issue and
has been studied using several experimental techniques. For
example, the dynamics causes a curious enhancement of
the nuclear magnetic resonance (NMR) relaxation.2 Since
understanding the mechanism of the NMR relaxation will
open the way to understanding the peculiar spin dynamics
of nanomagnets, the relaxation has been intensively studied
and has been subject to considerable debate. However, such
an understanding is still lacking, even though researchers have
proposed several phenomenological models that could explain
the relaxation in single-molecular nanomagnets.2

In this work, we aim to reach a comprehensive under-
standing of the NMR relaxation and low-frequency spin
dynamics of Heisenberg antiferromagnetic rings (HAFRs),
an important class of single-molecular nanomagnets. We
develop a more general theory of HAFRs at low temperatures
than in previous works.2–4 In HAFRs, the imaginary parts
of the q(wavenumber)-summed dynamic spin susceptibilities
parallel and perpendicular to an applied static field, χ ′′

sum‖(ω)
and χ ′′

sum⊥(ω), are composed of the sum of many slightly
broadened δ-functional modes at many frequencies. The NMR
relaxation is caused by the quasielastic mode in χ ′′

sum‖(ω)
at around zero frequency. One of our important findings

is that the intensity of the quasielastic mode is not iden-
tical to the uniform spin susceptibility, in contrast to what
was believed in previous works. The authors of previous
works have estimated and discussed the characteristic time
scale of the spin dynamics, that is, the frequency widths
of the quasielastic mode. However, these estimations were
not completely accurate because they were based on the
assumption of the intensity and susceptibility being identical.
We have performed a full analysis of the NMR data without
this assumption, by measuring the NMR relaxations of two
different nuclei. Our rigorous analysis details the behavior of
the intensity and frequency width of the quasielastic mode
more precisely than in previous works and thus provides a
conclusive insight into the low-frequency spin dynamics of
HAFRs at low temperatures.

II. GENERAL FORMALISM

The NMR spin-lattice relaxation rate T −1
1 , reflecting low-

frequency spin dynamics, is related to the imaginary part of the
dynamic spin susceptibility through the fluctuation-dissipation
theorem. For finite temperatures kBT � h̄ωn, where ωn is the
NMR frequency, typically about 1 mK, the theorem gives

T −1
1 = 2γ 2

n kBT

(γeh̄)2

×
∑

q

[
|Aod(q)|2 χ ′′

‖ (q,ωn)

ωn

+ |A⊥(q)|2 χ ′′
⊥(q,ωn)

ωn

]
,

(1)

where χ ′′
‖,⊥ are the imaginary parts of the dynamic spin

susceptibilities parallel and perpendicular to the applied static
uniform magnetic field, respectively.5 Note that χ‖, ⊥ indicates
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the susceptibilities under the applied magnetic field, different
from those under zero magnetic field.6 The coefficients
Aod,⊥(q) are the q (wavenumber)-dependent hyperfine form
factors: A⊥(q) reflects the hyperfine tensor elements perpen-
dicular to the applied field and Aod(q) reflects the off-diagonal
elements of the hyperfine tensor between the parallel and
perpendicular directions.

For simplicity, we consider a case where the q depen-
dence of the hyperfine coupling can be neglected. In this
case, introducing the q-summed susceptibility χsum, which
describes the response to a spatially δ-functional magnetic
field [�B(r) = δ(r)], we can reduce Eq. (1) as follows by
using the relation χsum(ω) = ∑

q χ (q,ω):

T −1
1 = 2γ 2

n kBT

(γeh̄)2

[
|Aod|2

χ ′′
sum‖(ωn)

ωn

+ |A⊥|2 χ ′′
sum⊥(ωn)

ωn

]
.

(2)

We consider now T −1
1 for HAFRs with an even number

N of spins, described by the following spin Hamiltonian with
periodic boundary conditions:

H =
N∑

a=1

J sa · sa+1 − gμBBSz, (3)

where sa are spin operators of the ath magnetic ion in HAFRs,
and Sz = ∑

a saz is the total spin component along an applied
magnetic field B.

While bulk systems have dense states with continuous en-
ergy levels and thus continuous energy dissipation χ ′′

sum(ω), the
most striking feature of ideal single-molecular nanomagnetic
spin systems with no external interactions is that χ ′′

sum(ω) is
composed of the sum of δ functions [see Fig. 1(a)] because the
energy dissipation is caused by transitions between eigenstates
with discrete energy levels. Thus, χ ′′

sum(ω) can become nonzero
only when ω = (Ei − Ej )/h̄ is satisfied, where Ei and Ej

are the energies of the ith and j th eigenstates (|i〉 and |j 〉),
respectively.

We note that, in Heisenberg spin systems (or, more
generally, in systems where the total spin component along
an applied magnetic field, Sz, is a good quantum number),
the matrix elements 〈i|sa±|j 〉 (i �= j ) can be nonzero between
two eigenstates with �Sz = ±1 and thus χ ′′

sum⊥ arises from the
transitions with �Sz = ±1. By contrast, the matrix elements
〈i|saz|j 〉 can be nonzero between two eigenstates with �Sz = 0
and thus χ ′′

sum‖ results from the transitions with �Sz = 0. It is
important to note that some of these paired eigenstates with
�Sz = 0 have the same energies (Ei = Ej ) because of the
high-symmetric structures of HAFRs. Transitions between
these degenerate eigenstates cause the quasielastic mode at
zero frequency in χ ′′

sum‖ (off-diagonal quasielastic mode),
because (Ei − Ej )/h̄ = 0. As for the diagonal terms, whereas
sa± always has zero diagonal matrix elements, saz can have
nonzero diagonal matrix elements; 〈i|saz|i〉 can be nonzero.
This also causes the quasielastic mode in χ ′′

sum‖ (diagonal
quasielastic mode).4,7

We can see from Fig. 1(a) that spin-lattice relaxation, which
is proportional to χ ′′

sum(ωn)/ωn, does not occur in the ideal
HAFR spin system. Thus, the actual spin-lattice relaxation
observed in real HAFR systems is caused by broadening of
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FIG. 1. (Color) Imaginary parts of the dynamic spin susceptibil-
ities over ω at low temperatures for an HAFR under an applied static
field. Blue and red indicate directions perpendicular and parallel to
the applied field, respectively. (a) The case of an ideal HAFR with no
external interactions; (b) the case of a real HAFR with finite lifetimes
of its eigenstates. The values P‖ and P⊥ are the strengths of each
mode, defined by the integrated areas in this graph. The values �‖
and �⊥ in (b) are the widths of each mode, defined by the half width
at half maximum.

the energy levels, as shown in Fig. 1(b). The finite lifetimes
of the eigenstates due to external interactions give rise to
uncertainty in their energies and result in broadening of the
δ functions in χ ′′

sum(ω). This broadening is generally described
by the Lorentzian function,4,8 that is,

χ ′′
sum‖(ω)

ω
= �0‖

�0‖2 + ω2

2P0‖
π

+
∑
α=1

�α‖
�α‖2 + (ω − ωα‖)2

Pα‖
π

,

χ ′′
sum⊥(ω)

ω
=

∑
α=1

�α⊥
�α⊥2 + (ω − ωα⊥)2

Pα⊥
π

, (4)

where P and � are the strength and width of each mode,
respectively.

Except around level-crossing fields where one of the ωα⊥
values drops to zero, the low-energy dynamics in the NMR
frequency at low temperatures includes contributions only
from the quasielastic mode in χ ′′

sum‖. This is because ωα‖ and
ωα⊥, or differences in the energy levels, are dominated by J

and are typically of the order of a kelvin and thus are much
larger than the NMR frequency, which corresponds to about
1 mK. Then, Eq. (2) can be written as

T −1
1 = 4γ 2

n kBT

π (γeh̄)2
|Aod|2 �0‖

�0‖2 + ω2
n

P0‖. (5)

This form is the starting point for discussing the mechanism
of T −1

1 . The remaining problem is to establish how �0‖ and
P0‖ behave.
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III. RELATION BETWEEN P0‖ AND χ ′(0,0)

Equation (5) resembles the phenomenological model for
HAFRs postulated by the Borsa group, where T −1

1 is proposed
to be proportional to χ ′(0,0)kBT �0‖/(�0‖2 + ω2

n).2–4 If it is
assumed that P0‖ is identical to the static uniform susceptibility
χ ′(0,0), our general form reduces to their phenomenological
model. Here we show, however, that this assumption is not
entirely true.

One way to consider the relation between P0‖ and χ ′(0,0)
is to use the general Kramers-Kronig relation. The only thing
that can be definitively determined from the Kramers-Kronig
relation [

∫ ∞
0 χ ′′

sum⊥,‖(ω)/ω dω ∝ χ ′
sum⊥,‖(0)] is that the sum-

mation of all the mode strengths (
∑

α Pα⊥,‖) is proportional
to χ ′

sum⊥,‖(0), which is equal to the q-summed susceptibility∑
q χ ′

⊥,‖(q,0). Thus, the only trivial relation is
∑

α Pα‖ ∝∑
q χ ′

‖(q,0). Hence, the relation between P0‖ and χ ′(0,0)
cannot be simply derived from the general Kramers-Kronig
relation, because the dynamic susceptibility of HAFRs has
many modes at many frequencies and also has a q dependence.

Thus we need to consider the microscopic details in
determining the relation between P0‖ and χ ′(0,0). One clue
is the fact that, in a certain basis of the eigenstates, all the
eigenstates of HAFRs under a magnetic field, |i〉, can be writ-
ten as uniformly magnetized states (〈i|saz|i〉 = 1/N〈i|Sz|i〉).
Under this basis of the eigenstates, the diagonal quasielastic
mode is completely described by ferromagnetic fluctuations
and thus the intensity of the diagonal quasielastic mode is
identical to χ ′(0,0), as discussed in Ref. 4. However, we
must remember that degeneracy exists in the excited states
of HAFRs because of their high symmetry. Thus P0‖ is
attributed not only to the diagonal mode but also to the
off-diagonal mode due to transitions between the degenerate
eigenstates (Ei = Ej ,i �= j ). These transitions are related to
nonzero-q fluctuations. Therefore, nonzero-q fluctuations also
contribute to P0‖, and as a result P0‖ is not identical to
χ ′(0,0). The contributions from this off-diagonal quasielastic
mode were not accounted for in the previous discussion in
Ref. 4. (In other words, we can choose another basis of
the eigenstates of HAFRs, where some of the excited states
can be expressed as nonuniformly magnetized states, which
are composed of the linear combinations of the uniformly
magnetized eigenstates with the same energy in the original
basis. Under this revised basis, the diagonal quasielastic mode
directly contains nonzero-q fluctuations.)

IV. SCOPE OF PRESENT WORK

Although P0‖ has to date been assumed to be identical to
χ ′(0,0), this assumption is not completely true, as explained
in the previous section. Analyses in previous NMR studies2–4

on HAFRs were based on this assumption. It is necessary to
perform a full analysis of the NMR data of HAFRs without
making this assumption.

We therefore explored experimentally how �0‖ and P0‖
behave, without making this assumption. To obtain these two
unknown quantities, we need information on T −1

1 at two
different frequencies, because a two-variable problem requires
two simultaneous equations. One may think, at first glance, that
this can be realized by measuring T −1

1 at two different magnetic

Fe
O
C
N

FIG. 2. (Color online) Structure of the wheel ring in Fe12,
excluding H atoms. The ClO4 anions, separating the rings, are not
displayed here.

fields, which give two different resonant frequencies. However,
the spin dynamics, or χ ′′

sum(ω), is itself influenced by an applied
field. Indeed, we will show that P0‖ at low temperatures is
dominated by the first excitation gap, which clearly has field
dependence. Hence, we need to obtain information on T −1

1
at two different frequencies under the same applied field.
We acquired this information by measuring NMR relaxations
for two different nuclei. This rigorous analysis of the NMR
data gives a more precise estimation of �0‖ and P0‖ than has
previously been obtained.

V. EXPERIMENT

As a subject material we choose
[Fe(OCH3)2(C5H9NO2)]12(ClO4)12 (abbreviated as Fe12),
which has an antiferromagnetic exchange interaction between
s = 5/2 spins arranged in a wheel ring, as shown in Fig. 2.9

The exchange interaction between neighboring s = 5/2 spins
is an isotropic Heisenberg interaction with J ∼ 23 K, leading
to an S = 0 ground state.9,10 We measured T −1

1 of 1H and
13C, giving information on two different frequencies. The
measurements were performed under an applied field of
2.99 T for powder samples using the echo method. Since the
natural abundance of 13C is only 1.1%, it is difficult to measure
T −1

1 of 13C at high temperatures and thus we performed the
measurements only below 50 K. The typical pulse widths
were sufficiently smaller than the inverse of the spectral
widths, and thus the pulses could cover the whole NMR
spectra. The spin-lattice relaxation curves were obtained
from the integrated spin-echo intensity after a time delay
following saturation of the comb pulses. Because there are
numerous nonequivalent 1H and 13C sites in the crystal and
powder distribution, the relaxation curves were nonsingle
exponential. We define T1 as the initial slope of the relaxation
curves. This value measures the weighted average of the
relaxation rates of all the nuclei. In this case, the hyperfine
coupling in Eq. (5) should also be treated as the weighted
average value. Since there are numerous sites for both 1H and
13C, the q dependencies of the hyperfine couplings of 1H and
13C are averaged and consequently almost vanish. Thus, it is a
good approximation that the q dependencies of the averaged
hyperfine couplings can be neglected.
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FIG. 3. (Color online) Left: Temperature dependence of 13C and
1H nuclear spin-lattice relaxation rates for Fe12. Right: Temperature
dependence of their ratio.

VI. RESULTS AND DISCUSSION

The left panel of Fig. 3 shows the temperature dependence
of T −1

1 of 1H and 13C. In order to evaluate �0‖ by eliminating
P0‖ from these data, we plot the ratio, R, in the right panel of
Fig. 3:

R = T −1
1 (1H)

T −1
1 (13C)

=
(

γH|Aod H|
γC|Aod C|

)2
�0‖2 + ω2

C

�0‖2 + ω2
H

, (6)

where ωH (=127.2 MHz) and ωC (=32.09 MHz) are the
NMR frequencies of 1H and 13C under the present applied
field 2.99 T, respectively. The value of �0‖ is expected to
increase with rising temperature, because excited phonons
make the eigenstates unstable.3,4,11 At sufficiently high tem-
peratures, �0‖ is expected to be much greater than ωC and
ωH. Then, R asymptotically approaches a constant value
(γH|Aod H|/γC|Aod C|)2. Our experimental results indeed show
that R takes a constant value of 10.5 ± 0.5 above about 30 K,
i.e., (γH|Aod H|/γC|Aod C|)2 = 10.5 ± 0.5.

We observed a decrease in R below 20 K, which shows
that �0‖ decreases to the NMR frequency scale on cooling.
We calculated the temperature dependence of �0‖ using the
observed R value and relation (6), as shown in Fig. 4, which
exhibits a monotonic decrease in �0‖. This monotonic decrease
is consistent with the idea that �0‖ is dominated by excited
phonons via the spin-phonon interaction.3,4,11 Importantly,
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FIG. 4. Temperature dependence of �0‖ derived from 13C and 1H
nuclear spin-lattice relaxation rates.
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FIG. 5. Temperature dependence of P0‖ derived from 13C and 1H
nuclear spin-lattice relaxation rates. The inset shows the Arrhenius
plot.

however, our analysis also suggests that �0‖ saturates to
a nonzero value below 5 K. This saturation indicates that
�0‖ is dominated not only by excited phonons but also
by an interaction that works even at zero temperature. The
saturated value of �0‖ at low temperatures is about 50 MHz,
corresponding to about 2.5 mK. This value is of the same
order as the inter-ring dipole interactions estimated from
the inter-ring distance of about 8 Å. Therefore, we consider
that they contribute to �0‖ and cause the saturation in the
low-temperature limit. Such interactions have been neglected
so far only because they are much smaller than the main
intra-ring exchange interaction. However, our analysis clearly
reveals that such small interactions play an important role for
the spin dynamics of HAFRs at low temperatures.

Lastly, we discuss the temperature dependence of P0‖.
Several studies have reported that in HAFRs, the temperature
dependence of T −1

1 at low temperatures shows activation
behavior, reflecting the first excitation gap.10,12,13 Since T −1

1
in nanomagnets is dominated by the two parameters P0‖ and
�0‖, it is an open issue which parameter causes the activation
behavior. The temperature dependence of P0‖ for the present
system, shown in Fig. 5, is obtained from T −1

1 of 1H and 13C,
by substituting previously solved values of �0‖ into Eq. (5).
As seen in the inset, P0‖ shows an activation behavior with
a gap of 3.4 K. This is considered to be the gap between the
ground state with (S,Sz) = (0,0) and the first excited state with
(S,Sz) = (1, − 1). The present result gives a reason for the
activation-type behavior in T −1

1 ; namely, it is the intensity P0‖
that gives rise to the activation-type temperature dependence,
and not the frequency width �0‖.

VII. CONCLUSION

In conclusion, we have considered a general theory which
explains the low-energy spin dynamics, or the NMR spin-
lattice relaxation, of HAFRs. The NMR relaxation is domi-
nated by the quasielastic mode in χ ′′

sum‖, which is characterized
by two physical parameters, intensity P0‖ and frequency
width �0‖. The problem of understanding the NMR relaxation
reduces to clarifying the behavior of these two parameters.
Although P0‖ has to date been believed to be identical to the
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uniform static susceptibility χ ′(0,0), we have shown that P0‖
and χ ′(0,0) are different quantities. Excluding this assumption
P0‖ = χ ′(0,0), on which previous analyses were based, we
have investigated experimentally the behavior of P0‖ and �0‖
for an actual HAFR, by measuring the NMR spin-lattice
relaxation rates of two different nuclei. By this rigorous
analysis, we clarified the behavior of these two quantities
more precisely than previously achieved. The value P0‖ is
found to show activation behavior, reflecting the first excitation
gap. We found that �0‖ decreases monotonically on cooling,

which is consistent with the previously proposed idea that
�0‖ is dominated by thermally excited phonons. Importantly,
we also found that it saturates to a small but nonzero value
in the low-temperature limit, indicating that small inter-ring
dipole interactions, which have so far been neglected, play an
important role in the spin dynamics. As our discussion does
not make any nontrivial assumptions, our considerations and
experimental clarification provide a conclusive insight into the
NMR relaxation mechanism and low-frequency spin dynamics
of HAFRs at low temperatures.
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(Springer, Berlin, 2006), and references therein.

3S. H. Baek, M. Luban, A. Lascialfari, E. Micotti, Y. Furukawa,
F. Borsa, J. van Slageren, and A. Cornia, Phys. Rev. B 70, 134434
(2004).

4P. Santini, S. Carretta, E. Liviotti, G. Amoretti, P. Carretta,
M. Filibian, A. Lascialfari, and E. Micotti, Phys. Rev. Lett. 94,
077203 (2005).

5T. Moriya, J. Phys. Soc. Jpn. 18, 516 (1963).
6Let us consider a spin system under an applied static uniform
field. When an additional dynamical staggered field [�B‖(q,ω)

or �B⊥(q,ω)] parallel or perpendicular to this static uniform field
is applied, an additional magnetization [�M‖(q,ω) or �M⊥(q,ω)]
is induced in the system. The dynamic susceptibilities are defined
as χ‖,⊥(q,ω) = �M‖,⊥(q,ω)/�B‖,⊥(q,ω).

7A. Würger, J. Phys. Condens. Matter 10, 10075 (1998).
8I. Rousochatzakis, Phys. Rev. B 76, 214431 (2007).
9A. H. Abu-Nawwas, J. Cano, P. Christian, T. Mallah, G. Rajaraman,
S. J. Teat, R. E. P. Winpenny, and Y. Yukawa, Chem. Commun.
(2004) 314.

10S. Maegawa, T. Sagane, T. Itou, A. Oyamada, S. Igarashi, and
Y. Yukawa, J. Magn. Magn. Mater. 310, 1441 (2007).

11I. Rousochatzakis, A. Lauchli, F. Borsa, and M. Luban, Phys. Rev.
B 79, 064421 (2009).

12A. Lascialfari, Z. H. Jang, F. Borsa, D. Gatteschi, A. Cornia,
D. Rovai, A. Caneschi, and P. Carretta, Phys. Rev. B 61, 6839
(2000).

13S. Maegawa and Y. Sasaki, J. Phys. Soc. Jpn. 75, 034710 (2006).

014404-5

http://dx.doi.org/10.1103/PhysRevB.70.134434
http://dx.doi.org/10.1103/PhysRevB.70.134434
http://dx.doi.org/10.1103/PhysRevLett.94.077203
http://dx.doi.org/10.1103/PhysRevLett.94.077203
http://dx.doi.org/10.1143/JPSJ.18.516
http://dx.doi.org/10.1088/0953-8984/10/44/014
http://dx.doi.org/10.1103/PhysRevB.76.214431
http://dx.doi.org/10.1039/b312947k
http://dx.doi.org/10.1039/b312947k
http://dx.doi.org/10.1016/j.jmmm.2006.10.459
http://dx.doi.org/10.1103/PhysRevB.79.064421
http://dx.doi.org/10.1103/PhysRevB.79.064421
http://dx.doi.org/10.1103/PhysRevB.61.6839
http://dx.doi.org/10.1103/PhysRevB.61.6839
http://dx.doi.org/10.1143/JPSJ.75.034710

