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We study the magnetization plateau state of the three-leg spin- 1
2 tube in the strong rung coupling region, where

S3 symmetry breaking and the low-energy chirality degree of freedom play crucial roles. On the basis of the
effective chirality model and density matrix renormalization group, we clarify that, as the leg coupling increases,
the chirality liquid with gapless nonmagnetic excitations, the spin-imbalance phase, and the vector-spin-chirality
ordered phase emerge without closing the plateau spin gap. The relevance of these results to experiments is also
discussed.
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I. INTRODUCTION

Geometrical frustration on magnetism has long been one
of the attractive subjects in condensed-matter and statistical
physics, since the frustration provides rich physical phe-
nomena and various ordered/disordered states.1 It is well-
established that the spin chirality often plays a fundamental
role as we probe the frustration effects, especially in the trian-
gular lattice systems.2,3 Recently, multiple-spin orders without
any magnetic moment, including vector spin chiral order, have
been actively studied as a new topic in frustrated magnetism
(e.g., one- and two-dimensional J1-J2 spin models).4–7 The
vector spin chirality also attracts extensive attention in the
context of multiferroics,8 where the chirality order induces
electric polarization. In the most of frustrated systems like
the J1-J2 models, however, the chirality excitation is usually
embedded in conventional magnetic excitations, which make
direct observation of the chirality difficult. In order to gain
deeper understanding of the frustration physics, thus, it may
be a key issue to extract the chirality excitation energetically
separated from the magnetic fluctuations in a realistic situation.

Among a mount of frustrating systems, the three-leg spin
tube, consisting of coupled three spin- 1

2 antiferromagnetic
chains [see Fig. 1(a)], is one of the models deeply related to
spin chirality; We can define clockwise/anticlockwise rotation
along the rung in the spin tube. In fact, the topological
structure of the spin tube is known to induce several inter-
esting phenomena.9–20 Recently, spin-tube materials such as
[(CuCl2tachH)3Cl]Cl221,22 and CsCrF4

23,24 have been synthe-
sized and characteristic properties to the spin tube have been
revealed by several experimental approaches. In particular,
it is pointed out that the broad peak of specific heat is
associated with a gapful chirality excitation in the twisted tube
[(CuCl2tachH)3Cl]Cl2.22 However, it should be also noted that
the contribution from gapless magnetic excitation overlaps this
broad peak related to chirality.

In this paper, we demonstrate that the quantum phase
transitions associated with the chirality actually occur in the
magnetization plateau of the straight quantum spin tube, where

energy scale of the chirality is certainly separated from gapful
magnetic excitations. The Hamiltonian of the spin tube is given
by

H =
3∑

i=1

L∑
j=1

[J Si,j Si+1,j + J ′Si,j Si,j+1] − H
∑
i,j

Sz
i,j , (1)

where Si,j is the spin- 1
2 matrix, J (J ′) > 0 is the intra- (inter-)

triangle coupling, and i (j ) represents the label of the rung
(leg) direction (i: mod 3). This model looks very simple, but
the frustration due to the tube structure is expected to induce
various characteristic properties. In fact, it was shown that the
model (1) has a uniform vector spin chirality order in the weak
rung-coupling region (J � J ′) in a magnetic field H .12,13

A rather interesting parameter region is the strong-coupling
limit (J � J ′), where the system is basically described by
the weakly coupled triangles. In the strong rung limit, the
composite spin

T j = S1,j + S2,j + S3,j (2)

on each unit triangle is classified into T = 3
2 ⊕ 1

2 ⊕ 1
2 sectors

and then the T z = 1
2 states of T = 1

2 sectors lead to a robust
magnetization plateau at 1

3 of the full moment.11 A key
point is that the twofold degeneracy of T = 1

2 sectors in this
plateau state brings an active low-energy variable, which is
just the chirality degree of freedom. Utilizing the low-energy
effective model and density matrix renormalization group
(DMRG), we will show that the energetic separation of the
spin and chirality excitations leads to nontrivial quantum phase
transitions without destroying the magnetization plateau. The
main results are summarized in Fig. 1(b); we find chirality
liquid, spin imbalance, and the ferrochirality ordered phases.
We also explain that these orders are accompanied by S3

symmetry breaking in the unit triangle.
The remaining part of this paper is organized as follows.

In Sec. II, we study the 1
3 plateau state based on the effective

spin chirality model. We also discuss the role of S3 symmetry
in the quantum spin tube. Section III is devoted to the
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FIG. 1. (Color online) (a) Structure of the three-leg spin tube and
(b) ground-state phase diagram of the 1

3 plateau state of the spin
tube. The plateau is predicted to vanish at a strong leg-coupling point
J/J ′ ∼ 0.111,12 (see the text).

numerical results derived from the DMRG method. Combining
the DMRG results with the analytical predictions in Sec. II,
we reveal three new phases in the plateau region: chirality
liquid, spin imbalance, and the ferrochirality ordered phases.
Finally, we summarize our result and the relation between it
and previous studies in Sec. IV. Furthermore, we discuss the
relevance of our result to experiments.

II. EFFECTIVE CHIRALITY MODEL AND S3 SYMMETRY

Let us start with the low-energy effective theory for the
plateau state in the strong rung-coupling region. We can
represent the twofold degenerating bases for the T z = 1/2
states of T = 1

2 on each triangle as

|L〉 = (| ↓↑↑〉 + ω| ↑↓↑〉 + ω−1| ↑↑↓〉)/
√

3, (3a)

|R〉 = (| ↓↑↑〉 + ω−1| ↑↓↑〉 + ω| ↑↑↓〉)/
√

3, (3b)

where ω = e2πi/3 and L (R) denotes the left- (right-) handed
mode in the rung direction.9 These two states indeed stand for
the chirality degree of freedom. By projecting out the high-
energy states with T z = − 1

2 and T = 3
2 in every unit triangle,

the effective Hamiltonian of the plateau state is obtained as

Heff =
∑

j

[
Kxy

2
(τ+

j τ−
j+1 + τ−

j τ+
j+1) + Kzτ

z
j τ z

j+1

+ K ′
xy

2
(τ+

j−1τ
−
j+1 + τ−

j−1τ
+
j+1)

+ K3

4
(τ+

j−1τ
+
j τ+

j+1 + τ−
j−1τ

−
j τ−

j+1)

]
, (4)

where τ j is the pseudospin- 1
2 matrix defined by τ z

j =
(|L〉j j 〈L| − |R〉j j 〈R|)/2. The coupling constants are eval-
uated as Kxy = 2J ′/3 − 5J ′2/(27J ), Kz = −J ′2/J , K ′

xy =
8J ′2/(27J ), and K3 = −16J ′2/(27J ) within the second-order
perturbation in J ′. Here, it is worth noting that the relation

between τ j and Si,j is given by τ z
j = √

3P̂jχj P̂j and τ x
j =

−P̂jμj P̂j , where

χj =
3∑

i=1

(Si,j × Si+1,j )z/3, (5a)

μj = Sz
1,j − (

Sz
2,j + Sz

3,j

)/
2, (5b)

are, respectively, the z component of the vector spin chirality
and an imbalanced magnetization on each triangle and P̂j =
|L〉j j 〈L| + |R〉j j 〈R| is the projection operator to the T z

j = 1
2

states of T = 1
2 .

In order to resolve possible quantum phase transitions, it
is very instructive to discuss the discrete symmetry of the
spin tube. The spin tube has S3-group (∼=C3v point group)
symmetry in the rung direction in addition to the translational
symmetry along the leg direction. The operations in the S3

group are composed of the cyclic permutation Si,j → Si+1,j

with mod 3 and the reflection Si,j ↔ Si ′,j at a bond in every
unit triangle (i �= i ′). Possible S3 symmetry breakings are
classified by its subgroups: (a) the bond-parity breaking with
conserving the cyclic symmetry, (b) the cyclic Z3 symmetry
breaking with conserving a part of bond-party symmetry, or
(c) the full breaking of the S3 symmetry. The vector spin
chirality χj is a typical order parameter in the case (a),
which changes its sign by the reflection but is invariant under
the cyclic permutation. This cyclic symmetry is related to the
spin current circulating in the rung direction. On the other
hand, μj can be an order parameter of the case (b), since its
form changes via the cyclic permutation but is invariant under
the reflection S2,j ↔ S3,j . If μj becomes finite, it suggests
that the isosceles-triangle-type imbalance occurs for 〈Sz

i,j 〉 in
the plateau state.

We discuss the relation between the S3 symmetry and the
effective model (4). Write the cyclic permutation operation
of the S3 symmetry group as Tc, and the bond reflection as
Tr (=T −1

r ). In the level of the effective chirality τ , the S3

symmetric operation is given by

Tcτ
z
j T −1

c = τ z
j , Tcτ

+
j T −1

c = ωτ+
j , Tcτ

+
j T −1

c = ω2τ+
j ,

Trτ
z
j Tr = −τ z

j , Tr τ
+
j Tr = τ−

j , Tr τ
−
j Tr = τ+

j (6)

for any j . Under these operations of the S3 symmetry, the
effective Hamiltonian (4) is confirmed to be invariant. Here we
should remark that in the model of Eq. (4), the second-roder
perturbation process generates the U(1) symmetry-breaking
K3 term, although the U(1)-symmetric XY model, which is
obtained within the first-order perturbation, has been often
used for the spin tubes.10,14,19 This is consistent with the fact
that τ z

j ∼ χj is not exactly conserved in the original spin tube.
Thus, we need to careful consider the role of symmetry and
interactions in the effective model (4).

According to the bosonization approach,25 the low-energy
physics of the model (4) is described by a massless free boson
theory with several interactions. The effective Hamiltonian for
the free boson, i.e., the Tomonaga-Luttinger (TL) liquid, is
represented as

HTL =
∫

dx
v

2
[K̃(∂xθ )2 + K̃−1(∂xφ)2], (7)
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where (φ,θ ) is the canonical pair of scalar fields (x = ja and
a is lattice spacing), K̃ is the TL-liquid parameter, and v is the
low-energy excitation velocity of the model of Eq. (4). The
effective spin τ j and the bosonic fields (φ,θ ) are related as

τ z
j � a√

π

∂φ(x)

∂x
+ (−)j a1 cos

√
4πφ(x) + · · · ,

(8)
τ+
j � ei

√
πθ(x)[(−)j b0 + b1 cos

√
4πφ(x) + · · ·],

with nonuniversal constants a1, b0, and b1. The S3 symmetry
operations on the effective fields are summarized as

Trθ (x)Tr = −θ (x), Trφ(x)Tr = −φ(x) + √
π/2,

(9)
Tcθ (x)T −1

c = θ (x) + 2
√

π/3.

In addition, the operation of one-site translation along the leg
Tl transforms the boson fields as

Tlθ (x)T −1
l = θ (x + a) + √

π,
(10)

Tlφ(x)T −1
l = φ(x + a) + √

π/2.

These symmetries impose significant restriction to the possible
interaction terms in the effective field theory. Among various
vertex operators permitted by the S3 and translational symme-
tries, the most relevant terms are given by for cos(2

√
2πφ) and

cos(6
√

πθ ), for which the scaling dimensions are, respectively,
4K̃ and 9/K̃ . Since the value of K̃ approaches unity in the
J ′/J → 0 limit (the XY model), we can see that the interaction
terms in Eq. (4) are all irrelevant for sufficiently small J ′,
suggesting that the critical chirality liquid is realized in a
certain region of small J ′. On the other hand, the system
may have two kind of instabilities as J ′ increases. The first
case is the ferrochirality order of τ z

j ∼ χj . Since the negative
Kz in Eq. (4) raises the value of K̃ to +∞, the ferromagnetic
instability may occur, at which the velocity v also vanishes.
The other case is the staggered order of the imbalanced
magnetization μj ; if 9/K̃ < 2, the θ field is locked and then
the staggered component of τ x

j can have a finite expectation

value through the relation P̂jμj P̂j = −τ x
j ∼ (−)j cos(

√
πθ ).

Here, we note that, in the following numerical computations,
the ferrochirality order actually appears, but a uniform order
of μj is realized rather than the staggered type.

III. NUMERICAL RESULTS

We now apply DMRG to the spin-tube model (1) to
quantitatively examine the transitions and orderings with the
help of results in Sec. II. We fix J = 1 in the following
numerical calculations.

A. Chirality liquid phase

First, we focus on a sufficiently strong-rung coupling
region. In Fig. 2, we present the longitudinal spin correlation
function 〈Sz

i,j S
z
i,j ′ 〉 for L = 96 systems with J ′ = 0.01, . . .,

0.45. The rapid decay near the right edge in Fig. 2 comes from
the open boundary effect. Thus, it can be confirmed that the
correlation function follows a power-law decay for |j − j ′| �
50: 〈Sz

i,j S
z
i,j ′ 〉 − m2 ∼ (−)j−j ′ |j − j ′|−η, where m = 1

6 is the
uniform magnetization per spin and η is the critical exponent.
This decay fashion is in agreement with the prediction from the

100 101 102

10−2

|j−j’|

(−
)|j−

j’
| <

Sz i,j
Sz i,j

’>
 −

 m
2

η=0.5

η=0.1

FIG. 2. (Color online) Longitudinal spin correlation function
〈Sz

i,j S
z
i,j ′ 〉 of the spin tube for J ′ = 0.01, 0.1, 0.2, 0.3, 0.4, and 0.45

from bottom to top, where m = 1
6 . Two solid lines indicate guides for

η = 0.5 (XY chain) and 0.1.

effective TL-liquid theory (7). We can also see that η becomes
close to 0.5 in the J ′ = 0 limit, where Eq. (4) reduces to
the XY model. As J ′ increases, η approaches zero toward
the ferrochirality transition. Utilizing the effective field theory
(7) based on Eq. (4), we can evaluate the critical exponent
η in the strong rung-coupling region J � J ′. The value
to the second order of J ′ is given by η � 0.5 − 0.885J ′ +
0.640J ′2 + · · ·, where we have assumed the nonuniversal
parameter b0 = 0.5424 · · ·.26 We have confirmed that this
value of η is semiquantitatively consistent with the numerically
estimated value from the correlation function of Fig. 2 in
J � J ′. From these results, we conclude that the gapless
nonmagnetic chirality excitation is described by the effect-
ive model of Eq. (4). Here, note that the width of the plateau
is sufficiently large for J ′ < 0.5 and the transverse correlator
〈Sx

i,j S
x
i,j ′ 〉 exponentially decays, indicating that the magnetic

excitation has a large gap corresponding to the plateau width.

B. Ordered phases

As J ′ further increases, the negative Kz derives the system
toward a ferrochirality ordered state with 〈χj 〉 �= 0. Figure 3
illustrates the results of the order parameters χ = 〈χj 〉 and
μ = 〈μj 〉. Here, χ is observed at the center triangle of the tube
of size L = 1205 and μ is the bulk expectation value based on
the infinite system DMRG. We have checked that the boundary
effect is negligible within computations for L = 96,120, and
144. From the main panel, we can see two quantum phase
transitions near J ′ = 0.5. Note that the plateau width around
J ′ = 0.5 is about 0.5J , which is sufficiently larger than the
energy scale of the nonmagnetic chirality excitation. Figure 3
clearly shows the emergence of the ferro-chirality order in
J ′ > J ′

c2 = 0.496, which is consistent with the effective model
(4). We have confirmed that this ferrochirality order extends
to J ′ > 1 and, thus, it would be adiabatically connected to the
vector chirality order in the region of the weakly coupled three
chains.12 Here, note that both 〈Sx

i,j S
x
i,j ′ 〉 and 〈Sz

i,j S
z
i,j ′ 〉 show

exponential decays in J ′ > J ′
c2 and, thus, the magnetic and

chirality excitations have finite gaps in this chirality ordered
phase.
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FIG. 3. (Color online) Expectation value of the order parameters
χ (solid circle) and μ (open circle). (Inset) The order parameters
around the transition points. The vertical broken lines indicate the
transition points J ′

c1 and J ′
c2.

From the inset of Fig. 3, we also find that the spin-imbalance
phase emerges in a narrow region J ′

c1 < J ′ < J ′
c2 with J ′

c1 �
0.478. In this region, the symmetry of the unit triangle reduces
to the isosceles type, where the expectation value of one spin
of each rung triangle is larger than those of the remaining two
spins: 〈Sz

i,j 〉 > 〈Sz
i+1,j 〉 = 〈Sz

i+2,j 〉. In Fig. 4, we present the
〈Sz

i,j 〉 distribution for J ′ = 0.485, which exhibits a typical spin
profile of the spin-imbalance state. The open-boundary effect
rapidly decays and a uniform spin imbalance along the chain
direction is realized around the center of the tube. Figure 5
shows a semilog plot of 〈Sz

i,j S
z
i,j ′ 〉 − m2

i , where mi is the bulk
expectation value of Sz

i,j calculated at the center of the tube.
The exponential decay of the correlation functions in Fig. 5
indicates that the system is gapful. We note that the imbalanced
nature is present not only in the magnetization profile but
also in the spin correlation functions. As we see from the
inset of Fig. 5, the correlation length for the less polarized
spins becomes divergent as J ′ → J ′

c1 + 0, while that for the
most polarized spin remains finite value. This suggests that
the instability of the spin imbalance toward the chirality liquid
state (J ′ < J ′

c1) may be governed by the fluctuation of the less

FIG. 4. (Color online) Spin profile 〈Sz
i,j 〉 of the spin-imbalance

phase. The tube length is L = 96 and the intertriangle coupling is
J ′ = 0.485. Solid circles denote the expectation value of the most
polarized spin in each rung triangle and the open circles correspond
to those of remaining two spins on the triangle. The horizontal broken
lines is the averaged magnetization of each rung in the plateau state.

FIG. 5. (Color online) Correlation function |〈Sz
i,j S

z
i,j ′ 〉 − m2

i | in
the spin-imbalance phase. The solid circles is the correlator for the
chain consisting of the most polarized spins on the unit triangules,
and the open circles correspond to that for the remaining two
chains. (Inset) The J ′ dependence of the inverse correlation length
ξ−1 along the chains for the most and less polarized spins in the
triangle.

polarized spins of the triangle, although the critical behavior
of μ cannot be determined within the accuracy of the present
DMRG results. As J ′ increases, the correlation lengths of the
most polarized spin and the remaining two become comparable
with each other and finally arrive at the ferrochirality transition
point J ′

2c. Here, we note that, for 0.485 � J ′ < J ′
c2, the spin

correlation functions becomes highly oscillating and, thus,
precise estimation of the correlation length is difficult. We
stress that this imbalanced order cannot be described by the
effective model [Eq. (4)]. This suggests that the hybridization
of T z = 3/2 sector plays an essential role in the imbalanced
phase (see the following paragraphs). On the other hand, the
jump of the order parameters at J ′

c2 clearly shows that the
transition at J ′ = J ′

c2 is of first order, where the two different
symmetry breakings are switched.

Let us discuss the nature of the spin-imbalance phase in
more detail. As we discussed above, the imbalanced order
is uniform along the leg direction, while the field theory
based on the effective model (4) suggests the emergence of a
staggered imbalance order (〈μj 〉 = −〈μj+1〉). This mismatch
of the effective theory may be attributed to the fact that the
imbalanced order is located at very vicinity of the ferrochirality
transition point J ′

c2, where the velocity v almost vanishes
and, thus, the system becomes fragile. Furthermore, we find
that the rapid increase of μ in J ′ > J ′

c1 causes a rapid raise of
the energy of the unit triangle (DMRG data are not presented
here), implying that the effect of J ′ nonperturbatively reduces
the energy of the intratriangle bonds. Thus, it is suggested that
the role of the intratriangle coupling becomes essential and,
thus, the T = 3

2 sector certainly hybridizes into the plateau
state in the spin-imbalance phase.

The effective model (4) is based on the massive weight of
the T = 1

2 sector, while the mixing of the T = 3
2 sector is

possibly essential for the spin-imbalance phase. We should,
thus, investigate the expectation value of P̂

1/2
j = (T 2

j /3 −
5/4), which is the projection operator into the T = 1

2 sector. In

the J ′ = 0 limit, 〈P̂ 1/2
j 〉 = 1 and it gradually decreases up to

J ′
c1. Figure 6 shows 〈P̂ 1/2〉 around the transition points, which
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FIG. 6. (Color online) Expectation value of the projection opera-
tor 〈P̂ 1/2〉 on the unit triangle.

is obtained by the infinite DMRG. In the figure, we can see that
the behavior of 〈P̂ 1/2〉 drastically changes at Jc1 � 0.478 and
Jc2 = 0.496. In Jc1 < J ′ < Jc2, 〈P̂ 1/2〉 rapidly decreases with
increasing J ′. This supports that the driving mechanism of the
spin-imbalance phase relies on the mixing of the T = 3

2 sector.
Although a Berezinskii-Kosterlitz-Thouless–type transition
accompanying the Z3 symmetry breaking27 is naively expected
at Jc1, the nature of the phase transition might be essentially
modified by the T = 3

2 sector. However, we may claim within
the present analysis that 〈P̂ 1/2〉 is continuously changed around
Jc1, suggesting a continuous quantum phase transition. Further
analysis is necessary to completely determine the nature of
this transition, including the universality class. On the other
hand, there exists a clear jump of 〈P̂ 1/2〉 at Jc2 = 0.496. The
two branches near Jc2 represent two self-consistent solutions
corresponding to the chirality ordered and spin-imbalance
states in the DMRG iterations; the solution of the previous
parameter is used as an initial state for the next parameter,
so the metastable states can be reproduced. By comparing
energies of the two branches, the first-order transition point
can be determined as J ′

c2 � 0.496. This result is consistent
with the behaviors of the order parameters in Fig. 3.

IV. CONCLUSIONS AND DISCUSSIONS

In conclusion, we have explored the quantum phase
transitions of the 1

3 plateau state of the spin tube. In contrast to
the usual plateaus of one-dimensional spin systems (chains and
ladders), the chirality degree of freedom generated from the
tube structure plays crucial roles. The results are summarized
in Fig. 1(b), where the chirality liquid phase with gapless
nonmagnetic excitations, the spin-imbalance phase, and the
ferrochirality phase emerge. The qualitative features of these
phases may be explained by the effective chirality model (4)
and the S3 symmetry breakings. However, the precise analysis
of the projection operator P̂ 1/2 has revealed that the uniform
spin-imbalance order is driven by mixing of the T = 3

2 sector,

which is beyond the scope of the effective model (4). The
transition between the chirality liquid and the spin-imbalance
phase is of continuous type, and the fluctuation of less
polarized spins in the imbalance phase becomes divergent near
the transition. On the other hand, the transition between the
spin-imbalance and ferrochirality ordered phases is shown to
be of first-order type.

Here it should be noted that another spin-imbalance phase
with gapless magnetic excitations is expected in a high mag-
netic field.13 Its connection to the present spin-imbalance phase
may be an interesting problem for thorough understanding
of the mechanisms of spin imbalance. As mentioned in the
Introduction, a chirality-ordered spin liquid appears in the
weak rung-coupling region J � J ′ in magnetic fields.12 This
spin liquid is expected to change into the 1/3 plateau state
with the chirality order12 via a BKT transition11 at the order of
J/J ′ = 0.1. Combining our present results with this, we can
conclude that, as J ′ increases from the strong rung limit, the
chirality liquid, spin-imbalance order, ferrochirality order, and
ferrochirality-ordered spin liquid can be observed at m = 1

6 in
order.

An important aspect of the spin tube is that the phase
transitions occur without destroying the plateau. The energy
scale of the chirality is significantly lower than the width
of the large plateau. Therefore, for example, a specific
heat measurement will solely observe a linear temperature
dependence originating from the chirality modes in the wide
spin-gapped plateau region of J ′ < J ′

c1, in contrast to the
twisted tube.22 From an experimental viewpoint, moreover,
another plausible feature of the spin tube is that the gapped
chirality order is expanded in the wide range of J ′, which is
contrasted to the narrow chirality-ordered phases with gapped
magnetic excitations in the classical XY model on triangular
lattice2 and spin-S J1-J2 chains.28,29 If a coupling between
chirality and electric polarization is introduced, the chirality
order can induce a ferroelectric polarization in spite of the
absence of any magnetic ordering. Also, the similar chirality
degree of freedom is discussed in the coupled trimer model,
which may reduce to the spin tube in an anisotropic limit.30

We, thus, believe that the spin tube provides a fascinating
playground for chirality degrees in the realistic experimental
situation.
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