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Abstract

We investigate the electronic state of the 11 band d-p model on the two-dimensional triangular lattice simulating a
CoO2 plane in the layered cobalt oxides such as NaxCoO2 and NaxCoO2 · yH2O. The tight-binding parameters are
determined so as to fit the LDA band structure. Using the slave boson approach together with the 1/N expansion
method, we obtain the renormalized quasiparticle bands, where the a1g band with a large hole Fermi surface is largely
renormalized due to the strong correlation effect, while the e′

g bands with 6 hole pockets are almost unchanged. We
also discuss the metal-insulator transition (MIT) with varying the d-p charge transfer energy ∆, and find that the
MIT takes place at a critical value ∆c = 4.01 eV.
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To investigate the electronic states of the CoO2

plane in the layered cobalt oxides such as NaxCoO2

and recently discovered superconductor NaxCoO2 ·
yH2O [1], we employ the two-dimensional triangular
lattice d-p model with 11 orbitals: t2g orbitals (dxy,
dyz, dzx) and eg orbitals (dx2−y2 , d3z2−r2) of a Co
atom and 6 p-orbitals of two O atoms on the upper
and lower sides of a CoO2 plane. The noninteracting
part of the Hamiltonian is given by

H = εp

∑

iµσ

p+
iµσpiµσ +

∑

imm′σ

εmm′

d d+
imσdim′σ

+
∑

ijµµ′σ

tpp
ijµµ′p

+
iµσpjµ′σ +

∑

ijmσ

tdd
ijmd+

imσdjm′σ

+
∑

ijµmσ

(tpd
ijµmp+

iµσdjmσ + h.c.), (1)

where p+
iµσ and d+

imσ are the creation operators for
the p and the d electrons with site i, orbital µ (m)
and spin σ, respectively. In eq.(1), the atomic en-
ergy for the d electron is explicitly given by: εmm′

d =

εdδmm′ + ∆t

3
(1 − δmm′) for m ∈ t2g, and εmm′

d =
(εd + 10Dq)δmm′ for m ∈ eg, where ∆t and 10Dq
are the trigonal and the tetrahedral crystal electric
fields, respectively. The d-p charge transfer energy is
defined as ∆ ≡ εp−εd. The atomic energies together

with the transfer integrals tpp
ijµµ′ , tdd

ijm and tpd
ijµm,

which are written by the Slater-Koster parameters,
are determined so as to fit the tight-binding energy
bands to the LDA bands for Na0.5CoO2 [2].

The ground state of the cobalt ion in NaxCoO2

is known to be a low spin state: Co4+(S = 1

2
, t52ge

0
g)

for x = 0 and Co3+(S = 0, t62ge
0
g) for x = 1. Then,

we assume the occupied states tn2g with n ≤ 4 are
excluded; which is reproduced by taking into ac-
count of the infinite Coulomb repulsion U between
t2g holes. The model can be described by the Hamil-
tonian eq.(1) with replacing d+

imσ → f+
imσbi for m ∈

t2g, under the local constraints:
∑

mσ f+
imσfimσ +

b+
i bi = 1 for all i, where b+

i is the creation operator
for the slave boson representing the hole empty state
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Fig. 1. The energies for the tight-binding bands (dashed
lines) and those for the renormalized quasiparticle bands
(solid lines) at x = 0.5 of NaxCoO2.

t62g and f+
imσ is that for the pseudo fermion repre-

senting the single hole state t52g. As the eg orbitals
are almost empty due to a large value of 10Dq ∼
1.14eV, the Coulomb interaction for eg electrons to-
gether with that for p electrons is neglected.

Within the leading order w.r.t. 1/N , where N is
the spin-orbital degeneracy of t2g and N =

∑

mσ =
6 in the present case, the Dyson equations for
the single particle Green’s functions are obtained
and solved analytically at T = 0 as previously
done for the periodic Anderson model [3] and the
d-p model [4]. Then, the energies for the renor-
malized quasiparticle bands Eksσ are obtained by
diagonalizing the renormalized Hamiltonian, H̃ =
∑11

s=1

∑

kσ Eksc
+
ksσcksσ , which is given by eq.(1)

with replacing tdd
ijm → Ztdd

ijm, tpd
ijµm →

√
Ztpd

ijµm

and εd → Ed. The renormalization factor Z and
the renormalized atomic energy Ed are obtained by
solving the following self-consistent equations:

1− Z =
∑

ksmσ

|vksm|2f(Eks), (2)

εd − Ed =
1

2

∑

ksµmσ

(

tpd
kµm√

Z
uksµv∗ksm + c.c.

)

f(Eks)

+
∑

ksmσ

tdd
km|vksm|2f(Eks), (3)

where uksµ and vksm are coefficients for the uni-

tary transformation diagonalizing H̃: cksσ =
∑

µ uksµpkµσ +
∑

m vksmdkmσ.
Figure 1 shows the energies for the renormal-

ized quasiparticle bands together with those for
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Fig. 2. The renormalization factor Z (a) and the chemical
potential µ (b) as functions of x for several values of the d-p

charge transfer energy ∆.

the noninteracting tight binding bands at x = 0.5
of NaxCoO2, where t2g bands with s = 7, 8, 9 are
shown in the figure, while p bands with s = 1 − 6
and the eg bands with s = 10, 11 are not shown.
Due to the strong correlation effect, the a1g band
with a large hole Fermi surface around the Γ point
is largely renormalized near the Fermi level, while
the e′g bands with 6 hole pockets near the K point
are almost unchanged.

In Fig. 2, the renormalization factor Z and the
chemical potential µ are plotted as functions of x,
where the number of holes in the t2g bands is given
by nhole = 1− x. When ∆ is varied, the MIT takes
place at a critical value ∆c = 4.01 eV: for ∆ > ∆c

the system is insulator at x = 0, while for ∆ < ∆c

the system is metallic even at x = 0. The critical
value is larger than the LDA value ∆LDA = 1.8 eV
[2] and is comparable to the experimental value from
PES ∆PES = 4 eV [5].
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