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Abstract

We investigate a heavy fermion behaviour and a deformation of an effective potential fo the ions due to electron-
phonon interaction for the the periodic Anderson-Holstein model by using the dynamical mean-field theory combined
with the exact diagonalization method. For the strong electron-phonon coupling, the system shows an anomalous
heavy fermion behaviour with a large lattice fluctuation and an extreme phonon softening, and then an effective
potential for the ions changes from a simple harmonic potential for the non-interacting case to a double-well
potential for the strong electron-phonon coupling.
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The A15 compounds such as V3Si have long been
attracted much interest as they show high Tc and high
Hc2 superconductivity as well as anomalously large re-
sistivity and Debye-Waller factor. Yu and Anderson[1]
originally proposed a local electron-phonon model
where the strong electron-phonon coupling causes an
effective double-well potential for the ion. As a strong
coupling fixed point, the two-level Kondo systems were
investigated to describe a heavy-fermion [2]. More
recently, the local electron-phonon model have been
extensively studied by using the NRG approach[3,4],
but periodic (lattice) models were not discussed there.

Recently, another interesting class of materi-
als has been observed in the filled skutterdites
such as PrOs4Sb12 [5] and the clathrates such as
Ce3Pa20Ge6[6], where the rare-earth ion shows a rat-
tling motion under a potential with several off-center
minima. With the new findings, theoretical studies
on a periodic Anderson model coupled with local
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phonons, i.e., the periodic Anderson-Holstein model
are highly desirable. The purpose of this paper is to
present the results of the dynamical mean-filed theory
(DMFT) for the periodic Anderson-Holstein model to
elucidate the effect of the strong electron-phonon cou-
pling on the heavy-fermion behaviour and the effective
potential for the ions.

Our Hamiltonian is given by

H =
�
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where c†iσ, f †iσ and b†i are creation operators for a con-
duction (c)-electron with spin σ at site i, for a f -
electron and for a phonon, respectively, and nfiσ =
f †iσfiσ. The quantities, V , U and g, are the mixing be-
tween the c- and f -electrons, the on-site Coulomb in-
teraction and the electron-phonon coupling strength.
The density of f -electrons couples with the Einstein
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phonons whose frequency is ω0.
To solve this model eq.(1), we use the DMFT in

combination with the exact diagonalization (ED)
method[7]. In the DMFT, the model eq.(1) is mapped
onto an effective single impurity Anderson-Holstein
model[8,9], because the self-energy Σ(iωn) becomes
purely site-diagonal in infinite dimensions. Then we
use the ED method for a finite-size cluster[9,10] to
solve the impurity Anderson-Holstein model. All cal-
culations are performed at T = 0, and we replace the
Matsubara frequencies by a fine grid of imaginary fre-
quencies ωn = (2n + 1)π/β̃ with a fictitious inverse
temperature β̃ which determines the energy resolu-
tion. The calculations are performed for 8-site and
β̃ = 4000 at half-filling, and we define the cutoff of
phonon number is 30 [11]. In the following numerical
results, we set ω0 = 0.05 and U = 0.

The quasiparticle weight, Z = (1 − dΣ(ω)
dω

|ω=0
)−1,

is plotted as a function of g for V = 0.2 and 0.15 in
Fig.1(a). Z decreases with increasing g and becomes
extremely small but finite for the strong coupling where
the mass enhancement factor m∗/m = Z−1 becomes
more than one hundred. Thus we can conclude that the
periodic Anderson-Holstein model eq.(1) shows heavy-
fermion behaviour due to the strong electron-phonon
coupling in the wide parameter range. This is a striking
contrast to the Holstein-Hubbard model [8,9].

The lattice fluctuation is defined by 〈Q2〉 = 〈Q̂2
i −

〈Q̂i〉
2〉 with the lattice displacement operator, Q̂i =

1√
2ω0

(bi + b†i ). Fig.1(b) shows the normalized lattice

fluctuation, 〈Q2〉/〈Q2〉0, where 〈Q2〉0 = 1
2ω0

is the lat-
tice fluctuation for g = 0, i.e., the zero-point oscilla-
tion. In the heavy fermion regime, we can see the ex-
treme enhancement of the lattice fluctuation accom-
panied by the enhancement of the local charge fluctu-
ation. We calculate the phonon spectral function and
find that the multi-phonon state appears and the low-
est excited energy, ω̃0, shifts to low energy with increas-
ing g. A remarkable soft phonon mode with ω̃0 ≈ 0 is
observed in the heavy fermion regime as shown in the
Fig.1(c).

The large lattice fluctuation and the extreme phonon
softening can be explained by thinking in terms of
an effective potential for the ions. Therefore we in-
troduce a variational wave function for the ions[4],
|Ψv(Q)|2 = A exp[−(Bq2 + Cq4 + Dq6 + Eq8)], with
q ≡ Q/Q0. The coefficients A, B, C, D and E are
the variational parameters which will be determined
to make 〈Q2n〉 = � Q2n|Ψv(Q)|2dQ (n = 0, 1, 2, 3, 4)
as close to 〈Q2n〉 from the DMFT as possible. Then
we define the effective potential for the ions, Veff(Q) =
log[|Ψv(0)|2/|Ψv(Q)|2] .

An effective potential for the ions has simple har-
monicity in the non-interacting case but deforms to
double-well in the heavy fermion regime as shown in

Fig.2. This behaviour has already been observed in
the previous theories [1,3,4] where the local electron-
phonon model was discussed in contrast to the present
theory where the periodic (lattice) model is discussed.
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Fig. 1. The quasipaticle weight Z, the lattice fluctuation
〈Q2〉

〈Q2〉0
and the lowest excited energy of the phonon spectral function

ω̃0 as functions of the electron-phonon coupling g for V = 0.2

(filled circles) and V = 0.15 (open circles). 〈Q2〉0 and ω0 are

the corresponding value for g = 0
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Fig. 2. The effective potential for the ions Veff(Q) for several

values of g at V = 0.15.
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