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1. Preliminary

Let € be a compact Hausdorff space and let C(€2) be the space of complex valued
continuous functions on 2. With the supremum norm, C(§1) is a unital commutative C*-
algebra. Let S be a unital C*-subalgebra of C'(f2). A bounded linear operator P on C(§2)
is called a projection onto S if Ph = h for every h € S and the range of P equals to
S. A bounded linear operator Q on C(f2) is called a weak projection for S if Qh = h for
every h € S. If P is a projection onto S, then P is a weak projection for S. Converse
of this assertion is not true. A counterexample is S = {f € C([0,1]); f(1/3) = f(z) for
1/3 < 2 < 2/3}. For a unital C*-subalgebra § of C(f2), there may not exist a weak
projection for S. Our problem in this paper is to find which conditions on S there exists
a weak projection for S.

A motivation of this study comes from Korovkin type approximation theorems. A subset
E of C(Q) is called a“Korovkin set if for every sequence of bounded linear operators {1} },
on C(Q) such that ||T,,|| <1 for every n and T,h — h for each h € E, it holds T,.f — f
for every f € C(). Korovkin [4] (see also [6]) proved that {1, z,2?} is a Korovkin set of
C([0,1]). There are many researches on Korovkin type approximation theorems, see (1, 3,
5].

By the definitions, if S is a unital C*-subalgebra of C(Q2) and S is a Korovkin set, then
there are no weak projections @ for S such that @ # I and ||Q] = 1.

Let S be a unital C*-subalgebra of C(§2). For z € (1, put

E(z) = {y € Q; f(y) = f(z) for every f € S}.

Then E(z) is a closed subset of {2, and it holds E(z) = E(y) or E(z) N E(y) = 6. We call
the family {E(z)}zeq the Shilov decomposition for S. We have the following proposition.

Proposition. Let S be a unital C*-subalgebra of C(Q) and let { E(z)}.eq be the Shilov
decomposition for S. Assume that there exist a non-empty open subset U of 1 and a

continuous map ¢ from U to §) such that
i) ¢(z)€ E(z) forz e,
i) e(z)#zx forzel.
Then there exists a weak projection Q for S such that Q # I and ||Q]| = 1.

Proof. Let ¢ be a continuous map satisfying i) and ii). We shall prove the existence of a
weak projection @ for S with @ # I and ||Q|| = 1. Take a point 2o in U and a continuous
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function ¢ on € such that 0 < ¥ <1 on Q,
(1) Yp=0 on Q\U and 9(zg)=1.
We define an operator @ on C(1) as

(2) (Qg)(2) = P(z)g(p(z)) + (1 — ¥(z))g(z) for g € C(Q),z € N.

Then it is not difficult to see that @ is a bounded linear operator on C () with ||Q|| = 1.
Let h € S. Then by i), h(w(z)) = h(z) for z € U. Hence by (2), (Qh)(z) = h(z) forz € U.
For z € @\ U, by (1) we have ¥(z) = 0, so that (Qh)(z) = h(z). Thus we get Qh = h for
hes.

Since zo € U, by ii) we have ¢(z¢) # o, so that there exists go € C(€) such that

9o(@(z0)) # go(zo). Hence by (1) and (2), (Qgo)(zo) # go(zo). Therefore Q is a weak
projection for S with @ # I and ||Q]| = 1.

We conjecture that the converse of Proposition is affirmative.

Conjecture. Let S be a unital C*-subalgebra of C(2) and let {E(z)},eq be the Shilov
decomposition for S. If there exists a weak projection @ for S such that Q # I and

[QIl = 1, then there exist a non-empty open subset U of Q and a continuous map ¢ from
U to Q such that

1) ¢(z)€ E(z) forzeU,
i) e(z)#zforzel.

In the next section, we study this conjecture under some additional conditions. ‘

2. Weak projections

In this section, we shall prove the following theorem.

Theorem 1. Let S be a unital C*-subalgebra of C() and let {E(z)},eq be the Shilov
decomposition for S. Suppose that E(x) is a countable set for every x € Q. If there exists

a weak projection Q) for S such that Q # I and ||Q|| = 1, then there exist a non-empty
open subset U of @ and a continuous map ¢ from U to Q such that

) ¢(z) € E(z) forz e,
i) @(z)#x forzel.

Let 2 and I" be compact Hausdorff spaces, and let g, be a positive Borel measure on Q
for every € I'. Further we assume that
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(@) sup{p(Q);z €'} < oo,
pr has an atom for every z € I', that is,
(b)  forevery z € ', u({C}) > 0 for some { € Q,

and
(¢)  Jq fdus is continuous in x € T for every f € C(Q2).

Lemma 1. Let V be an open subset of 1. Suppose that 0 < ry < pp (V) < pp, (V) < 1y
for a point z1 € I'. Then there exists an open neighborhood U of xy such that ry < p(V) <
(V) <1y for everyz € U.

Proof. By the regularity of the measure p,,, there exist a compact subset K of V and
an open subset V; such that K C V¢V C V; and r; < pg (K) < pig, (Vi) < 12 Then
there exist continuous functions f; € C(2),7 = 1,2, with 0 < f; < 1 such that

fi=1lon K and fi=0on Q\V,
fa=1onV and f,=0on Q\V,.
By our assumption (c), [q fi dpz — [q fidpz, as  — z,. We note that

r < i (K) < [ fidiny < [ fadusy < pny (W) <o

Since
, s
[ e < ualV) S (V) < [ fadi,

we have our assertion.
For a closed subset F of €, put

(1) Ap(z) = sup {p.({C})iC € E}, zeT.

By condition (a), sup in (1) is attained, and
(2) Ap(z) < pa(E), zel

For an open subset U of I, put

(3) a(E,U) = sup {\g(z);z € U} and B(E,U)=inf{Ag(z);z € U}.
Then
(4) B(E,U) < Ap(z) < o(E,U), z€eU.

Lemma 2. Let E be a closed subset of 0 and let U be an open subset of ' such that
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(1) p(F) <da(E,U)]3  for everyz € U,
(i) 0<2a(E,U)/3 < B(E,U).

Then there exists a continuous map ¢ from U to E such that p,({¢(z)}) > 0 for every
z el

Proof. By (1), for each z € U there exists ((z) such that

(5) ((z) € £ and Ap(z) = u({C(2)}).
Then by (i) and (4),

(6) 0 <2a(E,U)/3 < Ap(z) = p({{(2)}), z€U.

Here we note that for each z € U, { € E satisfying 2a(E,U)/3 < p.({¢}) is unique. For,
suppose that z € U, (,{' € E, ( # ¢, 2a(E,U)/3 < p({¢}), and 2a(E,U)/3 < u({{'}).
Then

4a(E,U)/3 < pa({C}) + 1({C'}) < pa(E).
This contradicts (i). Hence ((z) satisfying (5) is unique for each = € U.

Now we shall prove that ((z) is continuous in z € U. Then the map ¢(z) = ((z),z € U,
satisfies our assertion. To prove this, suppose that {(z) is not continuous at zo € U. Then
there exist two nets {z;}; and {y;}; in U which converge to z,

(7) ((xt) — €1, C(yt) — Cg, and G 74 Ca-

By (5), ¢; and ¢, are contained in E.
Take € > 0 arbitrary. Then there exists a function h € C(§) such that 0 < h <1 on 9,

(8) h(e) =1,
and
9 [ hdbay < iy ({er}) +e.

Now we have

| hdpay = timint [ hdu., by (0
liminf iz, ({C(2:) })A(C(24))
liminf e, ({¢(2:)}) by (7) and(8)

2a(E,U)/3 by (6).

1AV

v

Hence by (9),
20(E,U)/3 < pgy({c1}) + ¢  for every e > 0.
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Thus we get
0. < 2a(E,U)/3 < puyl{e1}).
In the same way, we have

0 <2a(E,U)/3 < pzol{c2}).

By the first paragraph of the proof, we have ¢; = ¢y: This contradicts (7).

Lemma 3. For a closed subset E of Q, Ag(2) is upper semicontinuous in z € I'.

Proof. Let {z;}; be a net in I such that a; — 2 € I" as i — oco. It is sufficient to prove
that
limsup Ag(z;) < Ap(zo).

$—+00

To prove this, suppose that

(10) lim Ap(z;) = a.

i—00

We shall prove that a < Ag(zo). By (1), there exists (; € E such that

(11) pe ({G}) = Ae(zi).

We may assume moreover that (; — (o € E. Take a function k in C(2) such that
(12) 0<h<1 and Ah{{) =1.

Then

h(¢) s ({G:)) S/ﬂhdpx, —>/ﬂhdum as i = oo.

Since h((;) — h((o) = 1, by (10) and (11) we have a < [ h dy,,. Since this holds for every
h € C(Q) satisfying (12), we have a < p,({{o}) < Ag(zo).

For a subset E of I, we denote by int E the interior of E. To prove Theorem 1, we use
the following theorem.

Theorem 2. Let Q and I' be compact Hausdorff spaces. Suppose that p.,x € T', is a
positive Borel measure on § such that sup {u,(Q);z € T'} < 0o, p, has an atom for every
x € I, and [q fdp, is continuous in x € ' for every f € C(2). Then there exists a
continuous map @ from some non-empty open subset U of I to Q such that p.({p(z)}) >0
for everyz € U.

Proof. By our assumption and (1), Ag(z) > 0 for every z € I'. Then by the Baire category
theorem (see [2, pp.196-197]),there exists ¢ > 0 such that {z € I';3¢/4 < Ag(z) < c} has
an interior point. Also by Lemma 3, {z € I';3¢/4 < Aq(z)} is a closed subset of I' and
{z € T'; da(z) < ¢} is an open subset of I'. Therefore {z € I';3¢c/4 < Aq(z) < ¢} has
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also an interior point and so contains a non-empty open subset U; of I'. We may assume
moreover that

(13) U, C {z € Q;3¢c/4 < Ag(z) < ¢}
For an open subset V of Q, put
(14) Wy = {z € U1;3c/4 < Ap(z)}.

Let U(¢) be the family of open neighborhoods of { € 2. We shall prove the existence of a
point {y in § such that

(15) int Wy #£ 0 for every V € U((),

where int Wy denotes the interior of Wy. To prove this, suppose not. Then for each ¢ in ,
there exists V, € U({) such that int Wy, = 0. Since Q is compact, there exist (y,...,(, €
such that @ = V,, U...UV,. Then by (1),

Aa(z) = max {Ay_(z);1 <j<n} forzel],

so that by (13) and (14) we have

U= U Wy,
J=1

Go

By Lemma 3, chj is a closed subset of U;. Hence for some j, int WV() # 0. This is a
desired contradiction.

For V1, Va2 € U((o) such that Vi C V,, we have Ag(z) < App(z), so that by (14) Wy, C Wy,
and int Wy, C int Wy,. Hence by (15), there exists a point zo € U; such that

(16) To € iInt Wy C Wy C U, for every V € U(Co)-
Then by (13),
(17) e ({C0}) € Ap(2o) < Aalzo) < ¢

for V € U(o). Since pizo({o}) = inf {:u:to(v); V € U(Co)}, by (17) there exists Vo € U(Co)
such that p., (Vo) < c¢. Then by Lemma 1, there exists an open subset U, such that
Zo € Uz C F such that

(18) sup u.(Vp) < c.
zels;

By (16), zo € int Wy,, so that there exists an open subset U of I" such that

U C Ug n int. WVO-
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Then by (2), (3), (4), (14), and (18),

3e/4 < B(Vo,U) < a(Vo,U) < a(Vo, Us) < sup pa(Vo) < c.
zel;
Hence we have

0 < 2a(Vo,U)/3 < 3a(Vo,U)/4 < 3¢/4 < B(Va,U)

and
1:(Vo) < ¢ < 4a(V5,U)/3  for every z € U.

Now we can apply Lemma 2. Then there is a continuous map ¢ from U to § such that
tz({e(z)}) > 0 for every z € U.

As an application of Theorem 2, we prove Theorem 1.

Proof of Theorem 1. Assume the existence of a weak projection @ for S such that Q # I
and [|Q]| = 1. For each z € §, by the Riesz representation theorem there exists a bounded
Borel measure v, on £ such that

(19) (Qg)(z) = /ngdu,; for every g € C(12).

Since @1 =1 and ||Q|| = 1, v, is a probability measure. Since Q is a weak projection for
S, Qh = h for every h € S. Since S is a C*-subalgebra, by (19) we have

(20) supp v C E(z),

where supp v, is a closed support set of v,. Hence by our assumption, v, is a discrete
measure for every z. Since @ # I, there exists g € C(Q) such that [ gdv., # g(zo)
for some zo € 2. Then there exists (o in © such that zo # (o and v, ({¢o}) > 0. Take
Vi, Vo € U((o) such that Vi C V; and 2 ¢ V3. Since 0 < v, ({Co}) < vy (V4), by Lemma
1 there exists an open subset W of ) such that zo € W, Vo, N W = @, and v (Vi) > 0 for
every x € W. We note that

(21) (z,z) ¢ W x V, for every z € (.

Take a function go € C'(€2) such that 0 < go < 1,

(22) go=1onV; and go=0 on Q\ Vs
Put
(23) dpz = godvy, e W.

Then y, and I' = W satisfy assumptions of Theorem 2. Hence there is a continuous map
@ from some non-empty open subset U of W to Q such that p,({¢(z)}) > 0 for every
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x € U. By (22) and (23), p(z) € V3 and v, ({p(2)}) > 0 for every z € U. Then by (20),
plz) € E(z) forevery z € U. Since U C W, (z,¢(2)) e Ux Vo CW x V, for every z € U.
Hence by (21), we obtain ¢(z) # = for 2 € U. This completes the proof.
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