


A Kripke frame for intK5ao, in turn, is a Kripke frame F = (W, <, Ro, Ro)
with the property

(12) Rg'oRo € Ro  and R5'o Ro C Ro.

A point in a Kripke frame F = (W, 4, Ro, Ro) is any element of W; while a val-
uation in F is a map V that associates a subset V(p) (C W) with each propositional
letter p such that

(1.3) if z <y and z € V(p), then y € V(p), for every =,y € W.

A Kripke model (based on F) is a pair M = (F, V) of a Kripke frame F and a
valuation V in F.

Let M = (F, V) be a Kripke model based on a Kripke frame F = (W, <, Ro, Ro),
and let z € W. By induction on the construction of a formula A, the relation
(M, z) = A is defined as below:

(i) (M,z) Epiff z e V(p);

(i) (M,z) | BAC, iff (M, z) |= B and (M, z)  C; and similarly for (M, z) |=
BV,

(i) (M,z) E B D C, iff z 9y and (M, y) E B imply (M,y) = C for every
y € W; and similarly for (M, z) |= ~B;

(iv) (M,z) |= OB, iff z Roy implies (M, y) |= B for every y € W, and
(v) M,z) E OB, iff t Roy and (M, y) k= B for some y € W.

It is easily proved, owing to the properties (1.3) and (1.1), by induction on the
construction of A that: if z <y and (M,z) | A, then (M,y) | A, for every
z,y € W.

A formula A is called valid in a Kripke frame F, if (M, ) |= A for every Kripke
model M based on F and every point z in F.

Then, the intuitionistic modal logic intK5gois the bi-modal logic which is char-
acterized by the class of Kripke frames for intK5a0; that is, a formula is a thesis of
intK5g0, iff it is valid in every Kripke frame for intK5go. See Hasimoto [2] for a
finite axiomatization of intK5go.

2 Modal operators O and %

For the convenience of filtration, we introduce new modal operators 0% and O®
such that for every Kripke model M = (F, V) based on a Kripke frame F =
(W, 4, Rg, Ro), and every z € W,

(vi) (M,z) | OB, iff z R¥ y implies (M,y) = B for every y € W; and
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(vii) (M,2) |z O®B, iff z Ry and (M, y) |= B for some yew,

where R’ and RY are the transitive closures of Ry and Ro, respectively; to put it
concretely, z RF' y (z Ry, resp.), iff for some sequence z,,1,, ... , T, of elements
of W of length n > 2, zx Ro ziyy (24 Ro iy, resp.) for k = L,2,...,n -1, and
moreover, £ =z and z, = y.

Proposition 2.1 Let F = (W, <, R, Ro) be o Kripke frame for intK550. The
following properties hold for every z,y, z € W.

(1) Ifz Roy, then x R®y.
(2) If zRoy, then = RXy.
(3) IftRay and y RY z, then R 2.
(4) If tRoy and z RY 2, then y R 2.
(5) If t Roy and y RY z, then T RY 2.
(6) If zRoy and z R® z, then y Rq 2.

PROOF. (1)-(3) and (5) are evident. To show (4), we suppose = Rq y and  RY 2,
and derive y Ro 2. From the latter assumption, z; Ro Ty, (k=1,2,...,n 1),
Ty =z and z, = z, for some z,,7y,...,7, (n > 2). Owing to the property (1.2),
Tkt Roy and y Ro 744y are deduced by induction on k (k = 1,2,...,n — 1). So,
y Ro z in particular.

The proof of (6) is similar to that of (4), and so is omitted. m

Corollary 2.2 Let M = (F,V) be a Kripke model based on a Kripke frame F =
(W, <, Ro, Ro) for intK5n6. The following properties hold for every z,y € W and
every formula B.

(1) If (M, z) |= O®B, then (M, z) |= OB.

(2) If (M, z) |= OB, then (M, z) = O®B.

(3) If 2 Ray and (M,z) |= O®B, then (M, y) | O°B.
(4) IfzRoy and (M, 1) |= O%B, then (M, y) = OB.
(5) If 2 Roy and (M,y) k= O®B, then (M, z) = O®B.
(6) If 2 Roy and (M,y) |= OB, then (M, z) = O%B.

PROOF. Immediately follows from the proposition, item by item. =
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Digression If F = (W, <, Rg, Ro) is a Kripke frame for intK5a0, and moreover
if Ry = Ro, then R® = R% (= Rgo Rg). In fact, the “2”-part is evident, while for
the “C”-part, we suppose z RY y, and derive x R2 y. By the assumption, 7z Ro Tr4
(k=1,2,...,n~1), 7, = z and g, = y, for some z;,Z3,...,Ta (n > 2). Owing to
the property R5' o Rg € Rq, it follows z3 Ro Tx41 and x4y Ro xs by induction on
k (k=1,2,...,n—1). So, 23 Ra y in particular. This together with z R 75 implies
z Ry y.

Hence, in the (classical) modal logic K5, one can substitute the double neces-
sitation OO for the new operator 0%, and similarly for . In a separate paper,
we will show a modified subformula property for K5 which differs from Takano (3],
by combining this observation with the filtration technique developed in the next
section.

3 Filtration

To accomplish filtration for the intuitionistic modal logic intK5g,, we suppose

throughout this section, that a formula A, (of the original language, namely, without

0% nor O*) and a Kripke model M = (F,V) based on a Kripke frame F =

(W, <, Ra, Ro) for intK5q0, such that (M, z) & Ay for some z € W, are given.
First, put

T = Sub(Ag) U {O%B | OB € Sub(Ag)} U {O0®B | ©B € Sub(4)},

where Sub(A,) denotes the set of subformulas of Ag, and define the equivalence
relation ~ on W as follows: z ~ y if and only if

(M,z) E Aiff (M,y) E A, for every A€ L,

and denote by [z] the equivalence class generated by z. Clearly, T is a finite set
containing Ag, and is closed under subformulas.
Next, define the Kripke frame Fy = (Wg, s, Rog, Royx) as follows:

(3.1) Wy ={[z] |z e W}.
(3.2) [z] <@g [y], iff (M, z) = A implies (M, y) |= A for every A € Z.
(3.3) [z] Rag [y], iff all of the following three conditions hold:

1. (M, z) = OB implies (M, y) |= B for every OB € &,
2. (M, z) | O®B implies (M, y) = O%B for every OB € ¥, and
3. (M,z) | O®B implies (M, y) = OB for every OB € X.

(3.4) [z] Rog [y, iff all of the following three conditions hold:
1. (M,y) = B implies (M, z) = OB for every OB € £,
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2. (M, y) = OB implies (M, 1) |= O%B for every OB € ¥, and
3. (M,y) = OB implies (M, z) |= O%B for every OB € ¥.

Then, Wy is finite, since ¥ is finite; while 9y, Roy and Roy; are well-defined,
since OB e L iff0Be X and OB e L if OB e %,

Proposition 3.1 The quadruple Fs forms a Kripke frame.

Proor. The relation <y clearly forms a partial order on Wy, and it is left to check
the Fy-version <s o Rgg 0 g = Roy and <3’ o Rog o 43! = Roy of (1.1).

To show <go Rox o<y € Ray first, we suppose [z]( <y 0 Roy 0 <g)[y], and derive
[z] Ros [y]. By the assumption, [z] < [u], [u] Ros [v] and [v] <5 [y], for some u, v.
Hence

(a) (VA € D)[(M,2) £ A = (M, u) = 4]
and

(b) (VOB € L)[(M,u) | OB = (M,v) | BJ;

(c) (VOB € )[(M,u) EO®B = (M,v) = O%B];

(d) (VOB € Z)[(M,u) E O®B = (M,v) = OBJ;
and

(&) (VA€ D)[(M,v) A= (M,y) = 4]

We must show

(f) (VOB € T)[(M,z) £ OB = (M,y) |= B];

(8) (VOB € T)[(M,2) | O¥B = (M,y) = O°B];

(h) (VOB € Z)[(M,z) |= OB = (M,y) = ©B];

and these all are evident.

Conversely, suppose [z] Ray [y]. Since [z] <y [z], [z] Rox [y] and [y] <z [y], we
have [z](<x o Rax o <Ix)[y]; hence <ig o Rpg o <Ig D Rag.

The proof of <i5' o Rog o <I5' = Roy is similar, and so is omitted.

Proposition 3.2 The Kripke frame Fy is that for intK5q.
PROOF. We must show the Fg-version Rgy o Rus € Ros and R5L o Roy € Ros
of (1.2); that is, if [z] Ray [y] and [z] Ros: [2], then (2] Ruy [y] and [y] Rox: [2).
So, we suppose [z] Ros [y] and [z] Rox [z]. We have (f)-(h) above as well as
(i) (VOB € £)[M,2) |= B = (M, z) |= OBJ;
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(G) (VOB € ©)[(M,2) E OB = (M,z) = O®B];
(k) (VOB € L)[(M, z) E OB = (M, z) = O%B].
To derive [z] Rosx: [y], we must show
() (VOB € Z)[(M, z) = OB = (M,y) | BJ;
(m) (VOB € Z)[(M, 2) | O%B = (M,y) | 0% BJ;
(n) (VOB € £)[(M, 2) E OB = (M,y) = ¢B].
For OB € £, using (k), Corollary 2.2 (1) and (f), successively, we have
(M,2) OB = (M,z) OB = (M,z) 0B = (M,y) E B;
and also using Corollary 2.2 (1), (k) and (g), successively, we have
(M, 2) EO®B = (M,2) EOB = (M,z) 0B = (M,y) E O0°B.

Hence, (1) and (m) hold. For OB € I, on the other hand, using (j) and (h),
successively, we have

(M, 2) EO®B = (M,z) E O®B = (M,y) E OB.

Hence (n) holds, too; and so [z] Ros [y] has been derived.
Derivation of [y] Rox. [2] is similar, and so is omitted. =

Proposition 3.3 The following properties hold for every z,y € W and every for-
mulas A, B.

(1) If z <y, then [z] <5 [y).

(2) If z Ray, then [z] Ros [y].

(3) If z Roy, then [z] Rog [y).

(4) If [z] <z [y], A € £ and (M, z) |= A, then (M,y) | A.

(5) If [z] Rog [y), OB € £ and (M, z) |= OB, then (M,y) = B.
(6) If [z) Rog [y], OB € T and (M, y) = B, then (M, z) = OB.

ProoOF. (1) and (4)-(6) are evident. To show (2), we suppose r Ry, and derive
[z] Rog [y]- So, we must show (f)-(h) above. Among these, (f) is clear, while (g) and
(h) follow from Corollary 2.2 (3) and (4), respectively.

The proof of (3) is similar to that of (2), and so is omitted. =

Let Vi be the valuation in Fx such that for every propositional letter p,
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(35) Va(p) ={ {[x}ir; v (s

Then, [z] € Vi(p) iff z € V(p) for every z € W and every propositional letter
pE .
Proposition 3.4 The map Vs forms a valuation in Fs.
ProOOF. We must check the Vy-version
if [z] <5 [y] and [z] € Vi:(p), then [y] € Vi (p)
of (1.3). But whether p € ¥ or not, this can be assured. m

So, we have defined the Kripke model My, = (Fx, Vs) based on the Kripke frame
Fs for intK5q,. Although My forms a filtration of the given Kripke model M
through the finite set X, yet T is not a set of formulas of the original language, but
of the enlarged language.

Proposition 3.5 The following equivalence holds for every x € W and every A ¢
S\Eb(Ao) :
M,z) A off (Mg, |[7]) E A

PROOF. By the routine induction on the construction of A, utilizing Proposi-
tion 3.3. =

So, (Mg, [z]) £ Ao for some £ € W, in particular.
Since Fy contains only a finite number of points, and int K5gois finitely axiom-
atizable, we have obtained the following theorem.

Theorem The intuitionistic modal logic intK5uohas the finite model property, and
hence is decidable. w

4 Y. Hasimoto’s remark

Proposition 3.5 claims the equivalence only for formulas in Sub(Ap), and this suffices
for our purpose. But, as Y. Hasimoto pointed out, the equivalence holds always for
all formulas in £. The proof follows from Proposition 3.3 as well as the following
proposition.

Proposition 4.1 The following properties hold for every z,y € W and every for-
mula B.

(1) If z Ry, then [z] R [y]-
(2) If z RYy, then [z] Ry [y].
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(3) If 2] R%: [y), OB € £ and (M, 1) £ OB, then (M,y) E B.
(4) If (z] R%: [y, OB € ¥ and (M,y) k= B, then (M, 1) | O°B.

ProoF. Toshow (1), suppose z R y. Then, z Rozesi (k=1,2,...,n=1), 71 =2
and z, = y, for some Ty,Z3,...,%n (B 2 2). By Proposition 3.3 (2), [z¢] Ros [Zk+1]
(k =1,2,...,n — 1), and moreover, [z1] = [z] and [zn] = [y]. Hence [z] R [yl

To show (3), next, suppose [z] R [y], OB € T and (M, z) | O®B. By the
first assumption, [7¢) Ros [Zk41) (K = 1,2,...,n = 1), [z4] = [z] and [z,] = [y]; for
some Ti,Ts,...,Tn (n > 2). It follows M,z) EO®B (k= 1,2,...,n — 1) by
induction on k. So, (M, z,-1) | O®B in particular, and hence (M,z,-1) E OB
by Corollary 2.2 (1). So, (M,y) = B.

The proof of (2) and (4) is similar to that of (1) and (3), respectively, and so is
omitted. =
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