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1. Introduction 

The electrocardiogram (ECG) and 
the electroencephalogram (EEG) are 
measured with multichannel electrodes, 
and they are studied by multivariate 

J 
parameters. Unfortunately, recognizing 
the actual state of the internal body is 
difficult. The internal information is not 
always clearly expressed with a specific 
signal or a parameter, but it is usually 
expressed with several signals or pa
rameters. Sometimes, different biologi
cal activities are observed as similar be
havior from measurable signals or eval
uation parameters. 

Using orthogonal expansion, we may 
be able to recognize the state of the 
internal body based on sophisticated 
information. Orthogonal expansion is 
often used in economics, seismology, 
and meteorology to extract information 
from multichannel signals. In the field 
of biological signal analysis, it has been 
used in the diagnosis from arrhythmia 
of ECGs [1], the classification of sleep 
levels from EEGs [2], the discrimina
tion of movements from surface myo
electric (SME) signals, and the predic-
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tion of contractile change points in mus
cle contraction [3]. 

Our aim is to evaluate muscular fa
tigue from multichannel SME signals, 
applying multivariate analysis to some 
kinds of evaluation parameter time
series. Measuring lactic acid concentra
tion is a direct method [4], but it is an 
invasive method. On the other hand, 
SME signals can easily be measured to 
reflect muscular fatigue, and it is a non
invasive method [5]. Merletti et al. pro
posed a muscular fatigue index from the 
cross-correlation between two different 
kinds of parameters obtained from 
SME signals [6]. In this paper, we tried 
to evaluate muscular fatigue using the 
time-series of eigenvalues obtained by 
the Karhunen-Loeve expansion (KLE) 
[7] of various kinds of parameters based 
on multichannel SME signals. 

2. Method 

2.1 Parameters Evaluating Surface 
Myoelectric Signals 

Parameters for evaluating SME sig
nals are the amplitude, the frequency, 

and the propagation velocity of a motor 
unit action potential. The propagation 
velocity is usually called a conduction 
velocity (CV). 

As an amplitude index, we used 
the average rectified value (ARV) of a 
bipolar SME signal Set) as follows: 

1m. I ARV = _m.IS(t + r)1 dr T, (1) 

where t is time, T is the interval for anal
ysis (block), and T is the local time in 
each block. 

As a frequency index, we used the 
mean power frequency (MPF) of Set). 
The MPF is defined as follows: 

M P F = I~ fP(fJ dfll~ P(fJ dJ, 
() () 

(2) 

where f is frequency, and P(f) is the 
power spectrum of Set) in each block .. 

Estimating the cross-correlation be
tween two channels of bipolar SME sig
nals, the CV is obtained as follows [8]: 

(3) 

where TCCmax is a time delay which 
shows a maximum value for the cross-
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correlation coefficient. Note that the 
distance between the electrodes is D, 
and that the direction of electrode 
alignment is parallel to the muscle 
fibers. 

The time-series of multi-dimensional 
parameters were estimated by the slid
ing block procedure. That is, the block 
segmented from the SME signal was 
shifted along the time axis in constant
interval steps. Therefore, these parame
ters reflect muscle activity as a function 
of the block number. 

2.2 Analysis by Karhunen-Laeve 
Expansion 

In general, information on muscle ac
tivity is redundantly distributed among 
several kinds of parameters. The KLE 
is suitable to represent such informa
tion having several independent com
ponents estimated from these parame
ters. We segmented the time-series of 
multi-dimensional parameters to evalu
ate the results of the KLE with the pro
gression in muscle activity. We will call 
each segment a frame after this. As a 
result, the evaluation indices were ob
tained as a function of the frame. The 
evaluation indices were the proportions 
and accumulated proportions of the 
eigenvectors, and the factor loadings. 

Since several kinds of parameters 
have different units, it is necessary to 
normalize them so that the mean was 
set at 0 and the variance was set at 1 
during each experimental trial. It was 
assumed that, in each frame segmented 
for an experimental trial, the time
series of normalized parameters were 
locally stationary. Let us define matrix 
S including several kinds of normalized 
parameters in a frame as follows: 

XI"'] . , 
XII/II 

(4) 

where Xij is the i-th normalized parame
ter at the j-th local block in each frame. 
The variance-covariance matrix R was 
then calculated from S to obtain eigen
values and eigenvectors. Eigenvalue 
decomposition was performed for R 
by the Jacobi method so that the eigen
values were sorted in descending order 
AI> Az > ... >AII" 
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The factor loading r k;i between the 
k-th eigenvector Zk and the i-th parame
ter is expressed as: 

rk;i = -{I:;: Zk)~ for k = 1,2, ... ,n, (5) 

where crr is the variance in the i-th pa
rameter in a frame, and Zki is the i-th 
component of Zk' Moreover, the pro
portionPk and the accumulated propor
tion P Ak are given by: 

for k = 1,2, .. . ,n, 

and 

for k = 1,2, . .. ,n, 

in each frame. 

2.3 Behavior of Parameters Related 
to Muscle Activity 

(6) 

(7) 

The ARV generally increases with 
a progression in muscle force. Hence, 
decreasing the number of motor units 
(MUs) or de-recruitment causes ARV 
decrease. AR V decrease is also ob
served during sustained contraction be
cause of fatigue. At the beginning of 
fatigue, however, the ARV sometimes 
increases to compensate for the degen
eration in muscle force. The de-recruit
ment of MUs occurs first of all in the 
fast twitch muscle fibers, and this in 
turn decreases the CV. In the case of 
muscular fatigue, the CV decreases ex
ponentially from the beginning of sus
tained contraction [6]. Since the power 
spectrum of the SME signal moves 
toward the lower frequencies because 
of fatigue, the MPF gradually declines 
during sustained contraction. Accord
ingly, it is impossible to discriminate 
between intentionally reduced muscle 
force and muscular fatigue by screening 
the time-series of evaluation parame
ters. 

3. Experiment 

3.1 Protocol 

Five healthy males participated in 
our experiments. There were two types 
of experimental protocols. First, each 
subject was asked to decrease muscle 

force from 70% maximum voluntary 
contraction (%MVC) to 20%MVC at a 
decreasing rate of -1 % MVC/s. We call 
this negative ramp contraction (NRC). 
Visual feedback was used for tracking 
the muscle force, displayed on an oscil
loscope. Second, the subjects tried to 
sustain muscle force at 70%MVC at 
maximum effort as fatiguing contrac
tion (FC). There might be functional 
differences between intentionally re
duced muscle force and muscular fa
tigue. 

We acquired SME signals of 50 sand 
100 s for NRC and FC, respectively. For 
each subject, a measurement consisted 
of three successive trials of NRC and 
then three consecutive trials of FC 

3.2 Measurement 

For the tibialis anterior muscle, we 
measured SME signals and force out
puts simultaneously. We could there
fore easily estimate muscle fatigue by 
referring to the measured force output. 
Each subject was seated in a chair 
equipped with a force transducer (OG 
Giken, GT-30), and two seatbelts were 
used to fix posture. An active four-bar 
electrode was pasted onto the skin over 
the tibialis anterior muscle. Each bar 
was perpendicular to the muscle fibers, 
and the distance between each bar was 
1 cm. The force transducer was attached 
to the instep of the foot. The position
ing of the electrodes is important in es
timating the CV from SME signals [9]. { 
For the experiment, we arranged elec
trodes away from the innervation zone. 

The two channels of differential 
SME signals were bandpass-filtered 
from 1.6 Hz through 1 kHz and the 
force output were sampled at 5 kHz. 

3.3 Conditions of Signal Processing 

There is a tradeoff between the sta
tistical accuracy and time resolution in 
terms of the block and frame lengths 
and the shift interval. Considering the 
rate of decrease of the NRC and the 
time scale of the FC, muscle activity 
should change within about 1 s. 

Using the fast fourier transform 
(FFT) , the overlapping block length 
was 204.8 ms (m = 1024 points), and the 
shift interval was 100 ms (500 points). 
The hamming window was applied to 
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estimate Pif), and then MPF was calcu
lated from 10 Hz through 200 Hz of 
Pif). Note that the ARV was also esti
mated in each block. Regarding the es
timation of CV, we converted the sam
pling frequency from 5 kHz to 20 kHz 
using spline interpolation. 

The overlapping frame length for the 
KLE was 2.4 s (24 samples for each 
evaluation parameter), and the shift 
interval of each frame was 500 ms 
(5 samples). 

4. Results 

Figure 1 shows the time-courses of 

'

muscle force and evaluation parameters 
for both NRC (left side) and FC (right 
side). Two channels of ARVs and MPFs 
were superimposed on the same graphs. 
All parameters decreased as muscle 
force fell for the NRC. The MPF de
creased rather exponentially from the 
early stages of the FC. The ARV, on the 
other hand, temporally increased the 
amplitude around the contractile failure 
point and then reduced. There were no 
remarkable differences between the 
evaluation parameters of the NRC and 
those of the FC, except the AR V. 

We investigated four combinations 
of evaluation parameters: (i) ARV 
(ch.1), MPF (ch.1), and CV; (ii) ARV 
(ch.2), MPF (ch.2), and CV; (iii) ARV 
(ch.1 and ch.2), MPF (ch.1 and ch.2), 
and CV; and (iv) ARV (ch.1 and ch.2) 

'and MPF (ch.1 and ch.2). These results 
showed that most information on mus
cle activity seemed to be concentrated 
up to Z2. It was observed that Al and A2 
approached each other during fatiguing 
phases especially on (iv). Fig. 2 shows 
the results of proportion time-series for 
(iv). After this, we focused on the re
sults of the NRC and the FC for (iv). 

Figure 3 shows the time-courses of 
accumulated proportions. The accumu
lated proportions P A2 and P A3 were 
more than 0.8 and almost 1, respective
ly. 

Figure 4 shows the summation of the 
absolute value for each factor loading. 
The factor loadings r 4;ARV and r 4;MPF 

were neglected because A4 were very 
small. The upper part of each graph 
shows the results of the factor loadings 
between Zk and ARV, Ilrk;ARVI, and the 
lower part shows that of Ilrk;MPFI. for 
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Fig. 1 Time-courses are (a) force output; (b) ARV for channels 1 and 2; (c) MPF for channels 
1 and 2; and (d) CV. The left side shows negative ramp contraction, the right side shows 
fatigue contraction. 
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Fig.2 Time-series of proportions obtained from ARVs channels 1 and 2, and MPFs channels 
1 and 2. The left side shows negative ramp contraction, the right side shows fatigue 
contraction. 
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Fig.3 Time-series of accumulated proportions obtained from ARVs channels 1 and 2, 
and MPFs channels 1 and 2. The left side shows negative ramp contraction, the right side 
shows fatigue contraction. 
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Fig.4 Time-courses are factor loadings concerned with (a) z,; (b) Z2; and (c) Z3. The left side 
shows negative ramp contraction, the right side shows fatigue contraction. 
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k =1, 2, 3. Note that Ih'ARVI means the 
summation of h'ARvl ch'annels 1 and 2. 
During a fatigue~expected-interval (af
ter 60 s at the right side of Fig. 4), 
II'l;ARVI and II'2;MPFI were high, and 
II'3;ARVI and II'3;MPFI were low. On the 
other hand, II'l;MPFI and II'2;ARVI were 
high during a non-fatigue-expected
interval (for example, before 30 s at the 
left side of Fig. 4), and then II'3'ARVI 
was very high when the muscle force 
was extremely small. 

5. Discussion 

The contractile change point was 
able to be estimated by measuring mus
cle force [10]. However, muscle force 
was not related to the functional change 
of muscle activities, because muscle 
force did not always reflect this. There 
was an advantage in our method in 
terms of being able to apply multivari
ate analysis to various kinds of evalua
tion parameter time-series. 

Evaluation parameters should be 
selected carefully. Extra fatigue-related 
parameters, such as the CV in our ex
periment, sometimes disordered the 
explicit behavior of evaluation param
eters. Perhaps, insufficient accuracy of 
the CV estimate disturbed the arrange
ment of fatigue-related information. 
Consequently, we omitted the CV pa
rameter considering the high computa
tional cost and high attention for locat
ing surface electrodes. 

According to Fig. 4, the dire~tions of 
Zl and Z2 were opposite during the 
fatigue-expected-interval and during 
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the non-fatigue-expected-interval. Note 
that we experimentally determined the 
suitable combination of ARV (ch.1 and 
ch.2) and MPF (ch.1 and ch.2). Four of 
five subjects demonstrated the above 
features. As a result, the proportions 
and the factor loadings were effective in 
allowing muscle activities to be discrim
inated as a function of time. However, 
the physiological interpretation of these 
indices should be studied further. 

6. Conclusion 

Using the Karhunen-Loeve expan
sion, surface myoelectric signals ac
quired from the tibialis anterior muscle 
under two different kinds of muscle ac
tivities, negative ramp contraction and 
fatiguing contraction, were studied as a 
function of time. The results showed 
that during a fatigue-expected-interval 
the first eigenvalue (Al) and the second 
eigenvalue approached each other, and 
there were high correlations between 
the first eigenvector (Zl) and the aver
age rectified value (ARV), and between 
the second eigenvector (Z2) and the 
mean power frequency (MPF). On the 
other hand, during a non fatigue
expected-interval only Al was domi
nant, and there were high correlations 
between Zl and MPF, and between Z2 

and ARV. Therefore, they were able to 
be used to estimate muscle activity 
based on the behavior of proportions 
and factor loadings, although it was im
possible for original evaluation parame
ters. 
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