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We study a two-band Hubbard model using the dynamical mean-field theory combined with
the exact diagonalization method. At the electron density n = 2, a transition from a band-
insulator to a correlated semimetal occurs when the on-site Coulomb interaction U is varied for
a fixed value of the charge-transfer energy ∆. At low temperature, the correlated semimetal
shows ferromagnetism or superconductivity. With increasing doping |n − 2|, the ferromagnetic
transition temperature rapidly decreases and finally becomes zero at a critical value of n. The
second-order phase transition occurs at high temperature, while a phase separation of ferromag-
netic and paramagnetic states takes place at low temperature. The superconducting transition
temperature gradually decreases and finally becomes zero near n = 1 (n = 3) where the system
is Mott insulator which shows antiferromagnetism at low temperature.
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§1. Introduction

The two-band Hubbard model has been extensively
studied as a simple model simulating transition-metal
compounds and high-Tc superconductors, which is char-
acterized by two parameters: the on-site Coulomb inter-
action U at the d-orbital and the charge-transfer energy
∆ between the d- and p-orbitals. Recently, several au-
thors have studied the model using the dynamical mean-
field theory (DMFT) which becomes exact in infinite spa-
tial dimensions.1–7) The Mott metal-insulator transition
was found to occur at n = 1 (or n = 3),1,3, 5–7) where n is
the total electron number per unit cell and given by the
sum of p- and d-electron numbers: n = np + nd. Anti-
ferromagnetism4) and superconductivity1,2, 5) were also
observed in this model. However, the ferromagnetism
was not discussed there.

Recent findings of the high-temperature ferromag-
netism in doped CaB6 and the high-temperature super-
conductivity in MgB2 have simulated a renewed inter-
est in strong electron correlation in the multi-band sys-
tems. Therefore, we study the ferromagnetism and the
superconductivity in the two-band Hubbard model us-
ing the DMFT combined with the exact diagonalization
(ED) method.2,5) We especially focus on the electronic
states near n = 2 where the system is semimetal or band-
insulator in the non-interacting case.

§2. Formulation

The two-band Hubbard model is given by

H =
∑
i,j,σ

(tijd
†
iσpjσ + h.c.) + ϵp

∑
j,σ

p†jσpjσ
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+ ϵd
∑
i,σ

d†iσdiσ + U
∑
i

d†i↑di↑d
†
i↓di↓, (2.1)

where d†iσ and p†jσ are creation operators for an electron
with spin σ in the d- orbital at site i and in the p- orbital
at site j, respectively. The charge-transfer energy ∆ is
defined by ∆ = ϵp − ϵd. In eq.(2.1), we assume that p-
and d-orbitals are on different sub-lattices of a bipartite
lattice.
In the limit of infinite dimensions, the self-energy

becomes purely site-diagonal and the DMFT becomes
exact. The local Green’s function for the d-electron,
Dσ(τ − τ ′) = −⟨Tdσ(τ)d†σ(τ ′)⟩, can be given by the im-
purity Green’s function of an effective single impurity
Anderson model,

HAnd =
∑
σ

εfσf
†
σfσ + Uf†

↑f↑f
†
↓f↓

+
∑
k,σ

εkσc
†
kσckσ +

∑
k,σ

Vkσ(f
†
σckσ + c†kσfσ),(2.2)

where εfσ is the impurity level and εkσ are ener-
gies of conduction electrons hybridized with the im-
purity by Vkσ. In the model eq. (2.2), the non-
interacting impurity Green’s function, G0σ(iωn) =(
iωn − εfσ −

∑
k

V 2
kσ

iωn−εkσ

)−1

, includes effects of the in-

teraction at all the sites except the impurity site and
is determined self-consistently so as to satisfy the self-
consistency equation.
For simplicity, the calculations in this paper are re-

stricted to the Bethe lattice with the connectivity z and
the hopping tij =

tpd√
z
, and we set tpd = 1. In the

limit z = ∞, the self-consistency equations for the lo-
cal Green’s functions are given by1)

G0σ(iωn)
−1 = iωn + µ− εd − t2pdPσ(iωn),

Pσ(iωn)
−1 = iωn + µ− εp − t2pdDσ(iωn),

(2.3)
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Fig.1. The phase boundary separating the metallic and insulating
regimes as a function of U and ∆ at n = 2 and T = 0. The inset

shows the chemical potential as functions of n for U = 7, 8, 9, 10
at ∆ = 6 and T = 0 calculated from the DMFT (ED method)
with Ns = 8.

where Pσ(iω) is the local Green’s function for the p-
electron and µ is the chemical potential.

To solve the impurity Anderson model eq.(2.2) we use
the exact diagonalization of a finite-size cluster with εkσ
and Vkσ for k = 2, 3, ..., Ns (ED method).2) First, we
assume 4Ns − 2 parameters: {εfσ, εkσ, Vkσ}old. Next,
we diagonalize the finite-size cluster with these param-
eters, and calculate the local (impurity) Green’s func-
tion Dσ(iωn). Finally, we calculate G0σ(iωn) through
the self-consistency equations (2.3), and determine the
new parameters {εfσ, εkσ, Vkσ}new so as to make the non-
interacting Green’s function with finite Ns, GNs

0σ (iωn), as
close to G0σ(iωn) as possible, namely, so as to minimize
χ2 defined by χ2 =

∑
ωn

|G0σ(iωn)
−1 − GNs

0σ (iωn)
−1|2,

where GNs
0σ (iωn) = (iωn − εfσ −

∑Ns

k=2
V 2
kσ

iωn−εkσ
)−1. This

process is iterated until the solutions converge.

§3. Metal-Insulator Transition at n = 2

First, we consider the paramagnetic state at zero tem-
perature for n = nd+np = 2. In the non-interacting case
U = 0, the system is a band-insulator for ∆ ̸= 0 while it
is a semimetal for ∆ = 0. Within the restricted Hartree-
Fock approximation (HFA), the energy gap is given by
∆− Und

2 . Then the system is metallic for U = 2∆, oth-
erwise it is insulating. We note that nd = np = 1 for
U = 2∆ due to the particle-hole symmetry.

In the inset in Fig. 1, we show the chemical potential
µ as functions of n for U = 7, 8, 9, 10 at ∆ = 6 and
T = 0 calculated from the ED method with the system
size Ns = 8. In this calculation, the solution is restricted
to the paramagntic state with εfσ = εf , εkσ = εk and
Vkσ = Vk for k = 2, 3, ..., Ns. When U increases from
U = 0, the discontinuity in the chemical potential at
n = 2 decreases and finally becomes zero at a critical
value, where a transition from the band-insulator to the
correlated semimetal occurs.1) The critical values for
the metal-insulator transition are plotted in Fig. 1. In
contrast to the restricted HFA, the metallic state is found
in the wide parameter region due to a correlation effect
considered in the DMFT.
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Fig.2. The magnetization for the d-electron Md, that for the p-

electron Mp and the total magnetization M = Md + Mp as
functions of the temperature T at n = 2, obtained from the ED
method (closed circles) for U = 8 and ∆ = 4 with Ns = 6 and
from the Hartree-Fock approximation (dashed lines) for U = 2

and ∆ = 1.
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Fig.3. The total magnetization M as a function of the electron
number n, obtained from the DMFT for U = 8 and ∆ = 4 at
T = 0.01 (closed circles), 0.025 (open circles), and from the HF
approximation for U = 2 and ∆ = 1 at T = 0.025 (dotted line),

0.1 (dashed line).

§4. Ferromagnetism

At low temperature, the correlated semimetal men-
tioned above becomes unstable compared to a ferromag-
netic state. In Fig. 2 we plotted the magnetization for
the d-electron Md, that for the p-electron Mp and the
total magnetization M = Md + Mp as functions of the
temperature T at n = 2 for U = 8 and ∆ = 4 calcu-
lated from the ED method with Ns = 6. As shown in
Fig. 2, Md and Mp have opposite sign to each other. In
the low temperature limit, both of Md and Mp become
constant, while the sum of them M becomes zero. The
feature of the ferromagnetism from the DMFT is similar
to that from the HFA as shown in Fig. 2. However, the
transition temperature Tc from the HFA is much higher
than that from the DMFT (see also Fig. 4).
Fig. 3 shows the total magnetization M as a function

of the electron number n. When n decreases, M contin-
uously becomes zero at a critical value of n for high tem-
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Fig.4. The transition temperature Tc for the ferromagnetism as
a function of the electron number n, obtained from the DMFT
(closed and open circles) for U = 2∆ = 8, 4, 2, and from the HF

approximation (solid and dotted lines) for U = 2∆ = 2.

peratures (see for T = 0.025), while it discontinuously
becomes zero for low temperatures (see for T = 0.01).
The similar properties are also observed within the HFA
as shown in Fig. 3. At low temperatures, however, the
HFA also predicts a metastable state where M decreases
with increasing n and continuously becomes zero at a
critical n (see for T = 0.025). By calculating the ther-
modynamic potential, we find that the phase separation
of the ferromagnetic state and the paramagnetic state oc-
curs at the low temperatures as shown in Fig. 4. The pos-
sible metastable state and the phase separation within
the ED method will be reported elsewhere.

Fig. 4 shows the transition temperature for the fer-
romagnetism Tc as a function of n for several values of
U(= 2∆). Tc monotonically decreases with decreasing
n. The closed circles show the second-order phase transi-
tion, while the open circles show the discontinuous tran-
sition as seen in Fig. 3. Within the HFA, the second-
order phase transition occurs at the high temperature
(solid line), while the phase separation occurs at the low
temperature (area between the dotted lines).

§5. Superconductivity

Finally, we discuss the superconductivity.1,2, 5) The
on-site paring susceptibility χp is given by1)

χp =
1

N

∫ β

0

dτ
∑
ij

⟨Tdi↑(τ)di↓(τ)d†j↓(0)d
†
j↑(0)⟩

= T
∑
ν,ν′

[α−1/2{I − Λ}−1 · Λ · α−1/2]ν,ν′ , (5.1)

where [Λ]ν,ν′ = t4pd|P (iν)|[χ̃loc]ν,ν′ |P (iν′)|, and [α]ν,ν′ =
t4pd|P (iν)|2δν,ν′ . Here, χ̃loc is the local paring susceptibil-
ity on a d-orbital given by

[χ̃loc]ν,ν′ = T 2

∫ β

0

dτ1

∫ β

0

dτ2

∫ β

0

dτ3

∫ β

0

dτ4e
iν(τ1−τ2)

×eiν
′(τ3−τ4)⟨Td↑(τ1)d↓(τ2)d†↓(τ3)d

†
↑(τ4)⟩.(5.2)

To calculate χ̃loc within the exact diagonalization
method, we use a spectral representation of r.h.s. in
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Fig.5. Transition temperatures for the ferromagnetism Tc, the
singlet superconductivity Tc and the antiferromagnetism TN , ob-

tained from the DMFT for U = 8 and ∆ = 4.

eq.(5.2) by inserting a complete set of eigenstates |i⟩.
When the largest eigenvalue of Λ approaches unity, the
paring susceptibility diverges. It signals the transition
into the superconducting state from the normal state.
In Fig. 5, the transition temperature for the singlet

superconductivity Ts is plotted as a function of n for
U = 8 and ∆ = 4, obtained from the ED method with
Ns = 4.5) We also plotted the transition temperature
for the ferromagnetism Tc calculated in §4 together with
that for the antiferromagnetism TN calculated from the
ED method with Ns = 6.

§6. Discussion

We have obtained a phase diagram including the
metal-insulator transition, the ferromagnetism, the an-
tiferromagnetism and the superconductivity using the
DMFT combined with the ED method, for the two-band
Hubbard model with typical values of the parameters U
and ∆. More systematic calculations for various values
of the parameters are now under the way.
Effects of the hopping integrals between the p-p and

the d-d orbitals, which are not considered in the present
study but are not negligible in actual compounds, make
important contribution to the transition temperatures.
Such effects and the detailed analysis of the mechanism
for the superconductivity will be reported in a future
publication.
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