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We examine effective interactions of the 1D d-pmodel mapped to a typical one-dimensional(1D)
model such as the Hubbard model or the t-J model by the numerical diagonalization method
combined with the Luttinger liquid theory. Analysis of the effective coupling constants of the
mapped model gives the relationship between these models without ambiguity. We find that the
renormalized interaction is relatively weak, though the repulsion of the d-p model at Cu-sites is
very strong. We also find that the d-p model corresponds to not the t-J model but the Hubbard
model for wide range of the parameters. It suggests that the Hubbard model is more favorable
than the t-J model as a effective model of the d-p model in the low energy limit.
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§1. Introduction

The one-dimensional(1D) d-p model, simulating a Cu-
O linear chain with the strong Coulomb repulsion Ud at
Cu-sites and the charge-transfer energy ∆ between Cu-
sites and O-sites, may be a good target for investigating
quasi one-dimensional cuprates and a possible mecha-
nism of the high-Tc superconductivity.1–3) To achieve a
solid understanding of this kind of problem, numerical
diagonalization studies of finite size systems combined
with the Luttinger liquid theory are highly desirable.4–7)

We consider the following model Hamiltonian for the Cu-
O chain in the hole picture:

H = tpd
∑

<ij>,σ

(p†iσdjσ + h.c.) + ϵd
∑
j,σ

d†jσdjσ

+ ϵp
∑
i,σ

p†iσpiσ + Ud

∑
j

n̂dj↑n̂dj↓, (1.1)

where d†jσ and p†iσ stand for creation operators of a hole
with spin σ in the Cu(d) orbital at site j and of a hole
with spin σ in the O(p) orbital at site i, respectively, and
n̂djσ = d†jσdjσ. Here, tpd stands for the transfer energy
between the nearest-neighbor d and p sites and will be
set at unity (tpd=1) hereafter in this study. The atomic
energy levels of d and p orbitals are given by ϵd and ϵp,
respectively. The charge-transfer energy ∆ is defined as
∆ = ϵp − ϵd.

In this work, we obtain effective interactions of the
1D d-p model mapped to a typical 1D model based on
the Luttinger liquid theory.8–10) In the Luttinger liq-
uid theory, an effective Hamiltonian of 1D models in the
Tomonaga-Luttinger regime is generally given by

H = Hσ +Hρ =
vσ
2π

∫ L

0

dx
[
Kσ(∂xθσ)

2 +K−1
σ (∂xϕσ)

2
]

+
vc
2π

∫ L

0

dx
[
Kρ(∂xθρ)

2 +K−1
ρ (∂xϕρ)

2
]

(1.2)

where vs, vc, Kσ and Kρ are the velocities and coupling

parameters of spin and charge parts, respectively. In
the model which is isotropic in spin space, the coupling
constant Kσ is renormalized to unity in the low energy
limit. When we scale the energy of systems by vc, two
parameters vs/vc and Kρ are required for identification
of the system. These two parameters are given by nu-
merical diagonalization of finite size systems using the
Lanczos method. Comparing with these parameters, we
determine the effective interactions of the model.

§2. Numerical diagonalization

We numerically diagonalize the Hamiltonian (1.1) up
to 16 sites (8 unit cells) using the standard Lanczos al-
gorithm. To carry out a systematic calculation, we use
the periodic boundary condition for Nh = 4m + 2 and
the antiperiodic boundary condition for Nh = 4m, where
Nh is the total hole number and m is an integer. The
filling n is defined by n = Nh/Nu, where Nu is the total
number of unit cells (each unit cell contains a d and a
p orbital). We also diagonalize the Hamiltonians of the
the 1D Hubbard model,

H = −t
∑
i,σ

(c†iσci+1σ + h.c.) + U
∑
i

n̂i↑n̂i↓, (2.1)

and 1D t-J model,

H = −t
∑
i,σ

(c̃†iσ c̃i+1σ +h.c.)+J
∑
i

(Si ·Si+1−
1

4
n̂in̂i+1),

(2.2)
where c̃†iσ = c†iσ(1− n̂i−σ) and n̂iσ = c†iσciσ.
The uniform charge susceptibility χc is obtained from

the numerical differential of the ground state energy of
the systems by the usual method4–6) The critical expo-
nent Kρ is related to the charge susceptibility χc and the
Drude weight D

Kρ =
1

2
(πχcD)1/2, (2.3)

with D = π
Nu

∂2E0(ϕ)
∂ϕ2 , where E0(ϕ) is the total energy of

the ground state as a function of a magnetic flux Nuϕ.
10)
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We can also determine the Kρ using the charge velocity
vc,

Kρ =
D

2vc
, (2.4)

with vc = Nu

2π (E1 − E0) ,where E1 − E0 is the lowest
charge excitation energy.4,10) Using these two indepen-
dent equations for Kρ, we can check the consistency of
the Luttinger liquid relations. In the previous work,6)

we have confirmed that the numerical results of Kρ ob-
tained through eqs.(2.3) and (2.4) are consistent with
each other. However, the finite size effect of eq.(2.3) is
usually smaller than that of eq.(2.4) in our experience.
Therefore, we mainly use eq.(2.3).

§3. Effective exchange interaction

At first, we consider the 1D d-p model at half-filling.
Because charge-gap opens, degrees of freedom of spin-
part only remains in the low energy limit and spin veloc-
ity vs becomes the only relevant parameter. In this case,
the value of vs directly leads the effective interaction.
We compare the spin velocity vs−dp of the d-p model to
the spin velocity vs−H of the Heisenberg model. The ef-
fective exchange interaction J̃ is defined by vs−dp/vs−H ,
where vs−H is given by π/2.11) We use the system of 4,
6 and 8 unit cells and calculate J̃ by the extrapolation.

In Fig.1, we show J̃ with the result of the 2nd order
perturbation12) and the result of the d-p ladder model
estimated by Jeckelmann et al.13) Values of J̃ for both
models are very similar to each other for ∆ >∼ 4. It also
indicates that our analysis is consistent with the pertur-
bation for large ∆ and the perturbation is not applicable
to the case of ∆ <∼ 4. The difference of J̃ between the
d-p chain and the d-p Ladder may come of the difference
of geometry of both models. Inset shows the size depen-
dence of J̃ the d-p model and suggests that the finite size
effect is small.
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Fig.1. Effective interaction J̃ as a function of ∆ for 1D d-p model
and the d-p ladder model estimated by Jeckelmann et al. at
Ud = 8. The broken line represents the results of the 2nd order

perturbation. The solid lines are guides for the eye. Inset shows
the size dependence of J̃ for 1D d-p model.
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Fig.2. The parameters vs/vc and Kρ of the Hubbard model and
the t-J model for various U and J on the vs/vc-Kρ plane. Hole
densities n are 1/8 (a) and 1/2 (b). The solid lines represent the

result of the infinite system of the Hubbard model by the Bethe
anzatz method. The broken lines are guides for the eye. Open
circles represent the result of the t-J model at J/t=0.1,0.2,0.3,0.4
(a) and at J/t=0.1,0.2,0.3,....,1.5 (b) ,respectively. Solid circles

represent the result of the Hubbard model.

§4. Parameters vs/vc and Kρ

Next, we consider the doping case. A pair of parame-
ters vσ/vρ and Kρ stands a state of the Luttinger liq-
uid described in the effective Hamiltonian (1.2). We
show the coupling parameters as a point on the vs/vc-Kρ

plane. If points of any two systems have been close to
each other on the plane, we recognize that two models
are equivalent to each other in the low energy limit. In
Figs.2, we show the parameters vs/vc andKρ of the Hub-
bard model and the t-J model on the vs/vc-Kρ plane..
We use 16-sites systems with 14electrons (2holes) (a) and
8electrons(8holes) (b) for the both models. We have con-
firmed that the values vs and vc of the t-J model are con-
sistent with the result of Ogata et al.4) We also show the
exact result of the infinite system of the Hubbard model
by the Bethe anzatz method.14) Figures show that the
exact result agrees with the result of the finite size sys-
tems and the finite size effect may be small.
As well known, the Hubbard model in the limit of the

on-site repulsion U → ∞ corresponds to the t-J model in
the limit of the J → 0.15) The effective exchange interac-
tion of the Hubbard model is written by J̃ ≃ 4t2/U . In
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the light doping case, it is consistent with our result. For
example, the state of the the Hubbard model at U = 40
is close to the state of the t-J model for J = 0.1 at
n = 1/8. At n = 1/2, however, the deviation of J̃ from
the above relation seems to be larger. It means that the
mapping to the t-J model from the Hubbard model is
not so valid for the over doping case.

In Figs.3, we show the parameters vs/vc and Kρ of the
1D d-p model, the Hubbard model and the t-J model.
We use 7-unit cells system with 8-holes (a) and 10-holes
(b) for the 1D d-p mode and 14-sites system with 12-
electrons (2holes) (a) and 8-electrons(6-holes) (b) for the
Hubbard model and the t-J model. It is noted that the
hole density of the Hubbard model and the t-J model
is corresponding to the part of the hole density over the
half-filling of the d-p model (n = 1). In the 8-holes case
for the 1D d-pmodel, we cannot calculateKρ by eq.(2.3),
since the number of holes over the half-filling is too small
and the numerical differential which gives χc is not de-
fined. So, we use eq.(2.4), though it leads larger finite
size effect than eq.(2.3).16) For the others, we calculate
Kρ by eq.(2.3).

We change the value of ∆ at fixed Ud and change the
value of Ud at fixed ∆ for the 1D d-p model. Our re-
sult indicates that the parameter point of the d-p model
is close to that of the Hubbard model for large ∆ at
fixed Ud. When ∆ is fixed to 2, the d-p model is well
mapped to the Hubbard model with relatively weak U .
For example, the point of Ud = 8 and ∆ = 2 is corre-
sponding with the point of U ≃ 4 for n = 8/7 and the
point of U ≃ 3 for n = 10/7. This result suggests that
the effective repulsion of Ud is fairly renormalized and
weak. Figures also show that the d-p model corresponds
to not the t-J model but the Hubbard model for wide
range of the parameters. It may suggest that the Hub-
bard model is more favorable than the t-J model as an
effective Hamiltonian of the d-p model in the low energy
limit.

§5. Summary

We have considered the effective interactions of the
1D d-p model mapped to the Hubbard model and/or
the t-J model by the numerical diagonalization method
combined with the Luttinger liquid theory. The analysis
gives the relationship between these 1D models without
ambiguity. We find that the repulsive interaction of the
d-p model is renormalized and relatively weak. Further-
more, the electronic state of the 1D d-p model seems to
correspond to not the t-J model but the Hubbard model
for wide range of the parameters. It suggests that the
physics of the 1D d-p model is well described by the Hub-
bard model in the low energy limit.
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