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We investigate electronic states of the one-dimensional two-orbital Hubbard model with band
splitting by using the exact diagonalization method. The Luttinger liquid parameter Kρ is
calculated to obtain superconducting (SC) phase diagram as a function of on-site interactions:
the intra- and inter-orbital Coulomb U and U ′, the Hund coupling J and the pair transfer J ′.
In this model, electron and hole Fermi pockets are originated when the Fermi level crosses both
upper and lower orbital bands. We find that the system shows two types of SC phases, the
SC I for U > U ′ and the SC II for U < U ′, in the wide parameter region including both weak
and strong correlation regimes. Pairing correlation functions indicate that the most dominant
pairing for the SC I (SC II) is the intersite (on-site) intra-orbital spin-singlet with (without)
sign reversal of the order parameters between the two Fermi pockets. The result of the SC
I is consistent with the sign-reversing s-wave pairing recently proposed for iron oxypnictide
superconductors.

KEYWORDS: iron oxypnictide superconductors, two-orbital Hubbard model, pairing symmetry, exact diagonaliza-
tion

1. Introduction

The recent discovery of the iron oxypnictide supercon-
ductors1–5) with transition temperatures up to Tc ∼ 55K
has stimulated much interest in the relationship between
the mechanism of the superconductivity and the orbital
degrees of freedom. The first principle calculations have
predicted the band structure with the hole Fermi pockets
around Γ point and the electron Fermi pockets aroundM
point.6–8) From the weak coupling approaches based on
multi-orbital models, the spin-singlet s-wave pairing is
predicted, where order parameter of this paring changes
its sign between the hole and the electron Fermi pockets
(the sign-reversing s-wave pairing).9–13) This unconven-
tional s-wave pairing is expected to emerge due to the
effect of the antiferromagnetic spin fluctuations. Since
the strong correlation between electrons is considered to
play an important role for the superconductivity of the
iron oxypnictides as well as that of high-Tc cuprates, non-
perturbative and reliable approaches would be required.

As a nonperturbative approach, the exact diagonaliza-
tion (ED) method has been extensively applied for the
Hubbard, the d-p and the t-J models.14) Although the
models are much simplified and mostly limited to one di-
mension, it has elucidated some important effects of the
strong correlation on the superconductivity. Using the
ED method, we have studied the one-dimensional (1D)
two-orbital Hubbard model in the presence of the band
splitting ∆. It is found that the superconducting (SC)
phase appears in the vicinity of the partially polarized
ferromagnetism when the exchange (Hund’s rule) cou-
pling J is larger than a critical value of order of ∆.16)

The result suggests that the spin triplet pairing is ex-
pected to emerge due to the effect of the ferromagnetic
spin fluctuation. In the case with ∆ = 0, the spin triplet
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superconductivity has also been discussed on the basis
of the bosonization17–19) and the numerica l20–22) ap-
proaches. The previous works, however, were restricted
to the case with single Fermi surface, and the effects of
the electron and hole Fermi pockets on the superconduc-
tivity have not been discussed there.
In the present paper, we investigate the 1D two-orbital

Hubbard model with the electron and hole Fermi pock-
ets, where the Fermi level crosses both upper and lower
bands in the presence of a finite band splitting ∆. Using
the ED method, the Luttinger liquid parameter Kρ is
calculated to obtain the SC phase diagram as a function
of the on-site Coulomb interactions in the wide param-
eter region including both weak and strong correlation
regimes. It would clarify effects of the strong correla-
tion on the superconductivity in the iron oxypnictides.
We also calculate various pairing correlation functions
and discuss the possible pairing symmetry. Although
our model is much simplified and limited to one dimen-
sion, we expect that the essence of the superconducting
mechanism of the iron oxypnictides can be discussed.

2. Model and Formulation

We consider the one-dimensional two-orbital Hubbard
model given by the following Hamiltonian:

H = t
∑
i,m,σ

(c†i,m,σci+1,m,σ + h.c.)

+
∆

2

∑
i,σ

(ni,u,σ − ni,l,σ) + U
∑
i,m

ni,m,↑ni,m,↓

+ U ′
∑
i,σ

ni,u,σni,l,−σ + (U ′ − J)
∑
i,σ

ni,u,σni,l,σ

− J
∑
i

(c†i,u,↑ci,u,↓c
†
i,l,↓ci,l,↑ + h.c.)
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Fig. 1. Schematic diagrams of (a) the model Hamiltonian, (b) the
band structure in the noninteracting case, and (c) a correspond-
ing two-dimensional Fermi surface related to our 1D model.

− J ′
∑
i

(c†i,u,↑c
†
i,u,↓ci,l,↑ci,l,↓ + h.c.), (1)

where c†i,m,σ stands for the creation operator of an elec-
tron with spin σ (=↑, ↓) and orbital m (= u, l) at site i

and ni,m,σ = c†i,m,σci,m,σ. Here, t represents the hopping
integral between the same orbitals and we set t = 1 in
this study. The interaction parameters U , U ′, J and J ′

stand for the intra- and inter-orbital direct Coulomb in-
teractions, the exchange (Hund’s rule) coupling and the
pair-transfer, respectively. ∆ denotes the energy differ-
ence between the two atomic orbitals. For simplicity, we
impose the relation J = J ′.

The model in eq. (1) is schematically shown in Fig.
1(a). In the noninteracting case (U = U ′ = J = 0),
the Hamiltonian eq.(1) yields dispersion relations repre-
senting the upper and the lower band energies: ϵu(k) =
2t cos(k) + ∆

2 , and ϵl(k) = 2t cos(k)− ∆
2 , where k is the

wave vector. This band structure is schematically shown
in Fig. 1(b). When the Fermi level, EkF , crosses both
the upper and lower bands, the system is metallic with
the electron and hole Fermi pockets corresponding to a
characteristic band structure of FeAs plane in the iron
oxypnictides as shown in Fig. 1(c).

We numerically diagonalize the model Hamiltonian up
to 6 sites (12 orbitals) and estimate the Luttinger liq-
uid parameter Kρ from the ground state energy of finite
size systems using the standard Lanczos algorithm.14)

To reduce the finite size effect, we impose the boundary
condition (the periodic or the antiperiodic one) on up-
per and lower orbitals independently and chose the both
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Fig. 2. Kρ as a function of U ′(= 4J) for n = 5/3 (10 electrons/6
sites) at ∆ = 0.8, 1.6, 1.9, 2.3 and 2.8. The singlet ground state
changes into the partially polarized ferromagnetic (S=1) state
at U ′ ≃ 2.5, 3.2 and 4.1 for ∆ = 1.9, 2.3 and 2.8, respectively.
Inset shows the energy difference E0(ϕ)−E0(0) as a function of
an external flux ϕ for n = 2/3 (6 electrons/9 sites) at ∆ = 1.2.

boundary conditions to minimize the value of |K0
ρ − 1|,

where K0
ρ represents Kρ of the finite size system in the

non-interacting case. Typical deviation of Kρ from unity
becomes about ∼ 0.1 for a 6 sites system. For simplicity,
we will redefine Kρ as a renormalize value calculated by
Kρ/K

0
ρ , hereafter.

On the basis of the Tomonaga-Luttinger liquid the-
ory,23–27) various types of correlation functions are de-
termined by a single parameter Kρ in the model which is
isotropic in spin space. For single-band model with two
Fermi points, ±kF , the SC correlation function decays

as ∼ r
−(1+ 1

Kρ
)
, while the CDW and SDW correlation

functions decay as ∼ cos(2kF r)r
−(1+Kρ). Thus, the SC

correlation is dominant for Kρ > 1, while the CDW or
SDW correlation is dominant for Kρ < 1. On the other
hand, for two-band model with four Fermi points, ±kF1

and ±kF2
, the low-energy excitations are given by a sin-

gle gapless charge mode with a gapped spin mode.26–28)

In this case, the SC and the CDW correlations decay as

∼ r
− 1

2Kρ and ∼ cos[2(kF2 − kF1)r]r
−2Kρ , respectively,

while the SDW correlation decays exponentially. Hence,
the SC correlation is dominant for Kρ > 0.5, while, the
CDW correlation is dominant for Kρ < 0.5.29) In either
case, the SC correlation increases with the exponent Kρ,
and then Kρ is regarded as a good indicator of the su-
perconductivity. As the non-interacting value of Kρ is
always unity, we assume that the condition of Kρ > 1
for our model is corresponding to the superconducting
state which is realized in oxypnictide superconductors.

3. Phase diagram

Figure 2 shows the value of Kρ as a function of U ′

for several values of ∆ at the electron density n = 5/3
(10 electrons/6 sites), where we set J = U ′/4 with
U = U ′ + 2J . When U ′ increases, Kρ decreases for a
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Fig. 4. Phase diagram of the ground state with the value of Kρ

on the U − U ′ parameter plane with J = U ′/4 for n = 5/3 (10
electrons/6 sites) at ∆ = 1.9.

small U ′, while it increases for a large U ′ in the case
with ∆ ≥ 1.9, and then becomes larger than unity for
U ′ > 2.3 with ∆ = 1.9. When J(= U ′/4) is larger than a
certain critical value, the ground state changes into the
partially polarized ferromagnetic state with total spin
S = 1 from the singlet state with S = 0. We find that
the superconductivity is most enhanced in the vicinity of
the partially polarized ferromagnetic state. To confirm
the superconductivity, we calculate the energy difference
of the ground state E0(ϕ)−E0(0) as a function of an ex-
ternal flux ϕ. As shown in the inset of Fig. 2, anomalous
flux quantization is clearly observed for ∆ = 1.9 while
not for ∆ = 0.8.

In Fig.3, we show the phase diagram of the ground
state on the U ′−J parameter plane under the condition
of U = U ′ + 2J for n = 5/3 (10 electrons/6 sites) at
∆ = 1.9. It contains the singlet state with S = 0 to-
gether with partially polarized ferromagnetic states with
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Fig. 5. Schematic diagrams of various types of superconducting
paring symmetries; Sl

on, Su
on, Sl

nn, Su
nn, Slu

on with spin singlet
parings and T l

nn, T
u
nn, T

lu
on with spin triplet parings.

S = 1 and S = 2. The singlet state with Kρ > 1, where
we call it the SC phase, appears near the partially po-
larized ferromagnetic region at J >∼ U ′. It extends from
the attractive region (U ′ < 0) to the realistic parameter
region with J ∼ U ′/4 > 0 which is expected to cor-
respond to the case with iron oxypnictides.8) We have
confirmed that similar phase diagrams are obtained also
for ∆ = 2.3 and 2.6.
Figure 4 shows the phase diagram of the ground state

on the U −U ′ plane under the condition of J = U ′/4 for
n = 5/3 (10 electrons/6 sites) at ∆ = 1.9. We observe
two types of SC phases with Kρ > 1, the SC I for U > U ′

and the SC II for U < U ′, in the wide parameter region
including both weak and strong correlation regimes. We
note that the SC I corresponds to the SC phase shown
in Fig.3 and belongs to the realistic parameter region
mentioned before.

4. Paring correlation

To examine the nature of these SC phases, we calcu-
late SC pairing correlation functions for various types of
pairing symmetries schematically shown in Fig. 5. Ex-
plicit forms of the SC pairing correlation functions C(r)
are given by

Sl
on(r) =

1

N

∑
i

⟨c†i,l,↑c
†
i,l,↓ci+r,l,↓ci+r,l,↑⟩,

Su
on(r) =

1

N

∑
i

⟨c†i,u,↑c
†
i,u,↓ci+r,u,↓ci+r,u,↑⟩,

Sl
nn(r) =

1

2N

∑
i

⟨(c†i,l,↑c
†
i+1,l,↓ − c†i,l,↓c

†
i+1,l,↑)

× (ci+r+1↓ci+r,l,↑ − ci+r+1,l,↑ci+r,l,↓)⟩,

Su
nn(r) =

1

2N

∑
i

⟨(c†i,u,↑c
†
i+1,u,↓ − c†i,u,↓c

†
i+1,u,↑)

× (ci+r+1,u,↓ci+r,u,↑ − ci+r+1,u,↑ci+r,u,↓)⟩,
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Slu
on(r) =

1

2Nu

∑
i

⟨(c†i,l,↑c
†
i,u,↓ − c†i,l,↓c

†
i,u,↑)

× (ci+r,u,↓ci+r,l,↑ − ci+r,u,↑ci+r,l,↓)⟩,

T l
nn(r) =

1

2Nu

∑
i

⟨(c†i,l,↑c
†
i+1,l,↓ + c†i,l,↓c

†
i+1,l,↑)

× (ci+r+1↓ci+r,l,↑ + ci+r+1,l,↑ci+r,l,↓)⟩,

T u
nn(r) =

1

2Nu

∑
i

⟨(c†i,u,↑c
†
i+1,u,↓ + c†i,u,↓c

†
i+1,u,↑)

× (ci+r+1,u,↓ci+r,u,↑ + ci+r+1,u,↑ci+r,u,↓)⟩,

T lu
on(r) =

1

2Nu

∑
i

⟨(c†i,l,↑c
†
i,u,↓ + c†i,l,↓c

†
i,u,↑)

× (ci+r,u,↓ci+r,l,↑ + ci+r,u,↑ci+r,l,↓)⟩,

where Sl
on(r), S

u
on(r), S

l
nn(r), S

u
nn(r) and Slu

on(r) denote
the singlet pairing correlation functions on the same site
in the lower orbital, on the same site in the upper orbital,
between the nearest neighbor sites in the lower orbital,
between the nearest neighbor sites in the upper orbital,
between lower and upper orbitals on the same site, re-
spectively. Further, T l

nn(r), T u
nn(r) and T lu

on(r) are the
triplet pairing correlation functions between the nearest
neighbor sites in the lower orbital, between the nearest
neighbor sites in the upper orbital and between lower
and upper orbitals on the same site, respectively.

In Fig.6, we show the absolute values of various types
of SC paring correlation functions |C(r)| for n = 5/3 (10
electrons/6 sites) at ∆ = 1.9, U ′ = 4J = 1.0 and U =
−0.4. Here the electronic state of the system belongs to
the SC II phase, although the phase diagram for U < 0
is not explicitly shown in Fig.4. We note that |T u

nn(r)| <
10−4 and Slu

on(r = 3) = T lu
on(r = 3) = 0, which are not

shown in Fig.6. We find that Su
on(r) and Su

nn(r) decay
very slowly as functions of r and |Su

on(r = 3)| is the
largest among the various |C(r = 3)|. Therefore, the
relevant pairing symmetry for the SC II phase seems to
be the spin singlet pairing in the upper orbital band and
mainly consists of ’on-site’ pairing. It is considered that
such pairing for attractive region with U < 0 is due to
the intra-orbital attraction U . On the other hand, for
repulsive region with U ′ > U > 0, the paring may be due
to the charge fluctuation which is enhanced by the large
inter-orbital repulsion U ′ as similar to the case of the
d-p model in the presence of the inter-orbital repulsion
Upd.

30)

Next we discuss the superconductivity in the SC I
phase including realistic parameter region as mentioned
before. Fig.7 indicates the absolute values of various
types of SC paring correlation functions |C(r)| for n =
5/3 (10 electrons/6 sites) at ∆ = 1.9, U ′ = 4J = 1.0 and
U = 2.4, where the system belongs to the SC I phase
as shown in Fig.4. Here, |T u

nn(r)|, |Slu
on(r = 3)|, and

|T lu
on(r = 3)| are not shown, because those correlation

functions are very small or zero as well as the case of
Fig.6. We find that |Su

on(r)| is considerably suppressed
as compared to |Su

nn(r)| in contrast to the case with the
SC II phase. Further, |Sl

nn(r)| increases with increasing
r except for r = 2. Therefore, the relevant pairing sym-
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Fig. 6. The the absolute values of various types of SC paring corre-
lation functions |C(r)| as functions of r for n=5/3 (10 electrons/6
sites) at ∆ = 1.9, U ′(= 4J) = 1.0 and U = −0.4, corresponding
to the SC II phase.

metry for the SC I phase seems to be an extended spin
singlet pairing and mainly consists of nearest-neighbor
site pairing.
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Fig. 7. The absolute values of various types of SC paring correla-
tion functions |C(r)| as functions of r for n=5/3 (10 electrons/6
sites) at ∆ = 1.9, U ′(= 4J) = 1.0 and U = 2.4, corresponding
to the SC I phase.

Recently, weak coupling approaches such as RPA and
perturbation expansions have claimed that the sign-
reversing s-wave (s±-wave) pairing is realized in the iron
oxypnictide superconductors.9–13) The order parameter
of that paring is considered to change its sign between
the hole and the electron Fermi pockets. To compare our
result with the weak coupling result, we examine the SC
paring correlation function between the lower and upper
orbitals, such as

Sl−u
nn (r) =

1

2N

∑
i

< ∆l
nn(i)

†
∆u

nn(i+ r) >
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with

∆m
nn(i)

†
= c†i,m,↑c

†
i+1,m,↓ − c†i,m,↓c

†
i+1,m,↑ (m = l, u).

We also define T l−u
nn (r) as well as Sl−u

nn (r) in the above
equation.

When the s±-wave paring is dominate, the values of
the inter-orbital SC pairing correlation function are ex-
pected to be negative, since the Fermi surface of the lower
(upper) orbital band in our model corresponds to the
hole (electron) Fermi pocket as shown in Fig.1(b). In
Fig.8, we show the inter-orbital pairing correlation func-
tions Sl−u

nn (r) and T l−u
nn (r)(see also inset) for the same

parameters in Fig.4 corresponding to the SC I phase. We
see that the values of T l−u

nn (r) are positive and very small,
while the values of Sl−u

nn (r) are negative except for r = 3
and not so small. The result suggests that the relevant
pairing symmetry of the SC I phase is the spin-singlet
s±-wave paring and agrees with the result from the weak
coupling approaches. Therefore, we expect that the s±-
wave paring proposed by the weak coupling approaches
is realized in the wide parameter region including both
weak and strong correlation regimes.
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Fig. 8. The pairing correlation functions Sl−u
nn (r), and T l−u

nn (r),
respectively. Here we show the absolute value of the correlation
functions at U = 2.4 and ∆ = 1.9, U ′(= 4J) = 1.0 for n=5/3
(10 electrons/6 sites). Inset shows a schematic diagram of paring

symmetries; Sl−u
nn (r), and T l−u

nn (r).

5. Summary and Discussion

We have investigated the superconductivity of the
one-dimensional two-orbital Hubbard model in the case
of electron and hole Fermi pockets corresponding to a
characteristic band structure of the iron oxypnictide su-
perconductors. To obtain reliable results including for
strong correlation regime, we have used the exact diag-
onalization method and calculated the critical exponent
Kρ based on the Luttinger liquid theory. It has been
found that the system shows two types of SC phases,
the SC I for U > U ′ and the SC II for U < U ′, in the
wide parameter region including both weak and strong
correlation regimes.

We have also calculated various types of SC pairing

correlation functions in realistic parameter region of the
iron oxypnictides. It indicates that the most dominant
pairing for the SC I phase is the intersite intra-orbital
spin-singlet with sign reversal of the order parameters
between the two Fermi pockets. The result is consistent
with the sign-reversing s-wave pairing recently proposed
by the weak coupling approaches for the iron oxypnictide
superconductors. It indicates that the s±-wave paring is
realized not only in the weak correlation regime but also
in the strong correlation regime.
It is noted that the s±-wave paring is considered to be

originated by the antiferromagnetic fluctuation.11) At
first glance, the SC I phase seems to relate to the partial
ferromagnetic phase(S=1) and to be incompatible with
the superconductivity due to the antiferromagnetic fluc-
tuation. However, the S=1 phase is not always adjacent
to the SC I phase, but it is also accompanied with the
non-superconducting phase(Kρ < 1). This result seems
to suggest that the ferromagnetic phase is irrelevant to
the superconductivity.
To examine the mechanism of the superconductivity

more directly, we calculate the spin correlation function
of the finite system, where the short range spin corre-
lation is considered to be connected with an attractive
interaction mediated spin fluctuation for the s±-wave
paring. We obtain the ferromagnetic and antiferromag-
netic components of the spin correlation as a function
of U ′(= 4J), where U is fixed as 1.5. The result (not
shown) indicates that the antiferromagnetic (ferromag-
netic) correlation increases (decreases) with decreasing
U ′. Since Kρ increases with decreasing U ′ as shown in
Fig.4, it suggests that the antiferromagnetic spin fluctu-
ation is relevant to the origin of the superconductivity.
As for the SC II phase, the most dominant pairing

is found to be the on-site intra-orbital spin-singlet pair-
ing which is consistent with the ordinary s-wave pairing
of BCS superconductors. However, the superconducting
mechanism of this phase is due to the charge fluctua-
tion enhanced by the inter-orbital Coulomb interaction
and is different from the ordinary BCS superconductiv-
ity due to the electron-phonon interaction. Although the
SC II phase seems to be realized only for the unrealis-
tic parameter region in our model, it might be realized
for a realistic parameter region in the d-p model which
is more close to the iron oxypnictides.13,30) We will ad-
dress such problem by applying the present method to
the d-p model in the future.
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