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Local correlation effects on thes±- and s++-wave superconductivities mediated by
magnetic and orbital fluctuations in the 5-orbital Hubbard model for iron pnictides
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We investigate the electronic state and the superconductivity in the 5-orbital Hubbard model for iron pnictides by
using the dynamical mean-field theory in conjunction with the Eliashberg equation. The renormalization factor exhibits
significant orbital dependence resulting in the large change in the band dispersion as observed in recent ARPES ex-
periments. The critical interactions towards the magnetic, orbital and superconducting instabilities are suppressed as
compared with those from the random phase approximation (RPA) due to local correlation effects. Remarkably, the
s++-pairing phase due to the orbital fluctuation is largely expanded relative to the RPA result, while thes±-pairing
phase due to the magnetic fluctuation is reduced.
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The discovery of the iron-based superconductors1) has trig-
gered an intense research effort to investigate their electronic
state and superconducting mechanism. Most of the phase di-
agrams exhibit the tetragonal-orthorhombic structural tran-
sition and the stripe-type antiferromagnetic (AFM) transi-
tion.1,2) The AFM fluctuation is enhanced towards the AFM
transition,3) while the ferro-orbital (FO) fluctuation responsi-
ble for the softening of the elastic constantC66

4,5) is enhanced
towards the structural transition. Correspondingly, two dis-
tinct s-wave pairings: thes±-wave with sign change of the
order parameter between the hole and the electron Fermi
surfaces (FSs) mediated by the AFM fluctuation6,7) and the
s++-wave without the sign change mediated by the FO fluc-
tuation8–10) and by the antiferro-orbital (AFO) fluctuation11)

which is also responsible for the softening ofC66 through the
two-orbiton process12) were proposed. Despite the numerous
efforts, the pairing state together with the mechanism of the
superconductivity is still controversial.

As the details of the electronic band structure are crucial
for the pairing state and mechanism, the theoretical studies
have employed the realistic multi-orbital models7–12) where
the tight-binding parameters are determined so as to repro-
duce the first-principles band structures which had been found
to agree with the angle-resolved photoemission spectroscopy
(ARPES) by reducing the band width by a factor of2 ∼ 3.13)

However, recent high-resolution ARPES measurements for
Ba0.6K0.4Fe2As214) revealed significant band (or orbital) de-
pendence of the mass enhancement from 1.3 to 9.0. More re-
cently, some evidences for an orbital-selective Mott transition
(OSMT) in KxFe2−ySe2,15) where the renormalization factor
Z for dxy orbital becomes zero whileZ for the other orbitals
are finite, and for the heavy fermion behavior in KFe2As2,16)

where the system is near the OSMT, were observed. In these
cases, we need to investigate the superconductivity on the ba-
sis of the strongly correlated electronic states in the presence
of the large orbital dependence ofZ.

In this letter, we investigate the 5-orbital Hubbard model7)

for iron pnictides by using the dynamical mean-field theory
(DMFT)17) which is exact in infinite dimensions (d = ∞)

where the self-energy becomes local and enables us to suffi-
ciently take into account the local correlation effects includ-
ing the strong correlation regime whereZ largely depends on
the orbital18) and the OSMT is realized.19) To examine the su-
perconductivity, we solve the Eliashberg equation in which
the effective pairing interaction and the renormalized single-
particle Green’s function are calculated on the basis of the
DMFT. In particular, we focus our attention on the local cor-
relation effects on the possible pairing states, the magnetic
fluctuation mediateds±-wave and the orbital fluctuation me-
diateds++-wave, beyond the random phase approximation
(RPA) which was extensively developed for iron pnictides in
the previous works.7–11)

The 5-orbital Hubbard model consists of the Fe3d-orbitals
and is given by the Hamiltonian,7) Ĥ = Ĥ0 + Ĥint, where
the kinetic partĤ0 is determined so as to reproduce the first-
principles band structure for LaFeAsO and the Coulomb in-
teraction partĤint includes the multi-orbital interaction on
a Fe site: the intra- and inter-orbital direct termsU andU ′,
Hund’s rule couplingJ and the pair transferJ ′. In this paper,
we set thex-y axes parallel to the nearest Fe-Fe bonds.

To solve the model, we use the DMFT17) in which the
lattice model is mapped onto an impurity Anderson model
embedded in an effective medium which is determined so
as to satisfy the self-consistency condition:̂G(iεm) =
(1/N)

∑
k Ĝ(k, iεm) with the wave vectork and the Mat-

subara frequencyεm = (2m + 1)πT , whereĜ(iεm) and
Ĝ(k, iεm) are the 5×5 matrix representations of the local
(impurity) Green’s function and the lattice Green’s function,
respectively, which are explicitly given by

Ĝ(iεm) =
[
Ĝ−1(iεm)− Σ̂(iεm)

]−1

, (1)

Ĝ(k, iεm) =
[
(iεm + µ)− Ĥ0(k)− Σ̂(iεm)

]−1

, (2)

whereΣ̂(iεm) is the5× 5 matrix representation of the impu-
rity (local) self-energy and̂G(iεm) is that of the bare impurity
Green’s function describing the effective medium. Within the
DMFT, the spin (charge-orbital) susceptibility is given in the
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25× 25 matrix representation as

χ̂s(c)(q) =
[
1− (+)χ̂0(q)Γ̂s(c)(iωn)

]−1

χ̂0(q) (3)

with χ̂0(q) = −(T/N)
∑

k Ĝ(k + q)Ĝ(k), where k =
(k, iεm), q = (q, iωn) and ωn = 2nπT . In eq. (3),
Γ̂s(c)(iωn) is the local irreducible spin (charge-orbital) ver-
tex in which only the external frequency (ωn) dependence is
considered as a simplified approximation20) and is explicitly
given by

Γ̂s(c)(iωn) = −(+)
[
χ̂−1
s(c)(iωn)− χ̂−1

0 (iωn)
]

(4)

with χ̂0(iωn) = −T
∑

εm
Ĝ(iεm + iωn)Ĝ(iεm), where

χ̂s(c)(iωn) is the local spin (charge-orbital) susceptibility.

When the largest eigenvalueαs (αc) of (−)χ̂0(q)Γ̂s(c)(iωn)
in eq. (3) for a wave vectorq with iωn = 0 reaches unity, the
instability towards the magnetic (charge-orbital) order with
the correspondingq takes place.

To examine the superconductivity mediated by the mag-
netic and charge-orbital fluctuations which are extremely en-
hanced towards the corresponding orders mentioned above,
we write the effective pairing interaction for the spin-singlet
state using the spin (charge-orbital) susceptibility and vertex
given in eqs. (3) and (4) obtained within the DMFT in the
25× 25 matrix representation as

V̂ (q) =
3

2
Γ̂s(iωn)χ̂s(q)Γ̂s(iωn)−

1

2
Γ̂c(iωn)χ̂c(q)Γ̂c(iωn)

+
1

2

(
Γ̂(0)
s + Γ̂(0)

c

)
(5)

with the bare spin (charge-orbital) vertex:[Γ
(0)
s(c)]ℓℓℓℓ = U(U),

[Γ
(0)
s(c)]ℓℓ′ℓℓ′ = U ′(−U ′+2J), [Γ(0)

s(c)]ℓℓℓ′ℓ′ = J(2U ′−J) and

[Γ
(0)
s(c)]ℓℓ′ℓ′ℓ = J ′(J ′), whereℓ′ ̸= ℓ and the other matrix ele-

ments are 0. Substituting the effective pairing interaction eq.
(5) and the lattice Green’s function eq. (2) into the linearized
Eliashberg equation:

λ∆ll′(k) = − T

N

∑
k′

∑
l1l2l3l4

Vll1,l2l′(k − k′)

×Gl3l1(−k′)∆l3l4(k
′)Gl4l2(k

′), (6)

we obtain the gap function∆ll′(k) with the eigenvalueλ
which becomes unity at the superconducting transition tem-
peratureT = Tc. In eq. (6),∆ll′(k) includes the1/d correc-
tions yielding thek dependence of the gap function respon-
sible for the anisotropic superconductivity which is not ob-
tained within the zeroth order of1/d.17) If we replaceΓ̂s(c)

with Γ̂
(0)
s and neglectΣ̂, eq. (5) yields the RPA result of

V̂ (q).7–11)Therefore, eq. (6) with eqs. (2) and (5) is a straight-
forward extension of the RPA to include the vertex and the
self-energy corrections within the DMFT without any double
counting.

In the actual calculations with the DMFT, we solve
the effective 5-orbital impurity Anderson model, where the
Coulomb interaction at the impurity site is given by the same
form asĤint with a sitei and the kinetic energy responsi-
ble for Ĝ in eq. (1) is determined so as to satisfy the self-
consistency condition as possible, by using the exact diago-
nalization (ED) method for a finite-size cluster to obtain the

local quantities such aŝΣ and χ̂s(c). Since the multi-orbital
system requires rather CPU-time and memory consuming
calculations, we employ the clusters with the site number
Ns = 4 within a restricted Hilbert space.21) We have also
performed preliminary calculations withNs = 222) and have
confirmed that the results withNs = 4 are qualitatively con-
sistent with those withNs = 2 and quantitatively improved
especially for the intermediate interaction regime as previ-
ously observed in the DMFT+ED approaches for the multi-
band and multi-orbital models.23–26)In fact, the DMFT results
from the ED withNs = 4 are quantitatively in good agree-
ment with the precise results from the numerical renormaliza-
tion group27) for the 2-orbital Hubbard model and those from
the continuous-time quantum Monte Carlo28) for the 3-orbital
Hubbard model.26) As for the 5-orbital Hubbard model, the
ED results withNs = 3 are found to agree with those with
Ns = 2.26) Therefore, we expect that the ED calculations
with Ns = 4 yield quantitatively reliable results also for
the present 5-orbital Hubbard model. All calculations are per-
formed atT = 0.02eV for the electron numbern = 6.0 cor-
responding to the non-doped case. We use32 × 32 k-point
meshes and 1024 Matsubara frequencies in the numerical cal-
culations with the fast Fourier transformation. Here and here-
after, we measure the energy in units of eV.

In the previous RPA study,8) it was found that thes±-
pairing is mediated by the magnetic fluctuation near the AFM
order forU > U ′, while thes++-pairing is mediated by the
orbital fluctuation near the FO order forU < U ′, where the
superconductivity is investigated in the wide parameter space
by treatingU , U ′, J andJ ′ as independent parameters apart
from the condition satisfied in the isolated atom:U = U ′+2J
andJ = J ′. Correspondingly, we consider the two specific
cases withU > U ′ andU < U ′ to elucidate the correlation
effects beyond the RPA on the magnetic and orbital orders
and the those fluctuations mediated superconductivity.

First, we consider the case withU > U ′, where the
magnetic fluctuation dominates over the orbital fluctuation.
In Fig. 1, several physical quantities are plotted as func-
tions of U with U = U ′ + 2J , J/U = 0.1 and
J = J ′. Fig. 1 (a) shows the renormalization factor de-

fined by: Zℓ =
[
1− dΣℓ(ε)

d(ε)

∣∣
ε→0

]−1

with orbital ℓ =

dx2−y2 , d3z2−r2 , dzx, dyz anddxy. WhenU increases, all of
Zℓ monotonically decrease with increasing the variance ofZℓ.
We find thatZℓ for ℓ = dxy is the smallest for allU and finally
becomes zero atUc ∼ 5 while Zℓ for ℓ ̸= dxy are finite re-
vealing the OSMT,21) as recently discussed in KxFe2−ySe215)

and KFe2As216) where the ARPES experiments are well ac-
counted for by the slave-spin mean-field15,29) and the slave-
boson mean-field (Gutzwiller)16) approximations yielding the
OSMT with Zdxy → 0. We note that, even in the interme-
diate correlation regime away from the OSMT, the large or-
bital dependence ofZℓ results in the significant change in the
band dispersion21) which is consistent with the recent high-
resolution ARPES measurements for Ba0.6K0.4Fe2As2.14)

Figs. 1 (b) and (c) show theU dependence of the largest
eigenvaluesαs andαc for several wave vectorsq, whereαs(c)

shows a maximum atq = qmax. WhenU increases, both
αs and αc increase withαs > αc and αs becomes unity
at UAFM

c ∼ 2.40 where the magnetic susceptibility with
q ∼ (π, 0) corresponding to the stripe-type AFM diverges.
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Fig. 1. (Color online) (a) The renormalization factorZℓ with ℓ =
dx2−y2 , d3z2−r2 , dzx, dyz anddxy , (b) and (c) the largest eigenvaluesαs

andαc for severalq andλ which reach unity towards the magnetic, charge-
orbital and superconducting instabilities, respectively, as functions ofU with
U = U ′ + 2J , J/U = 0.1 andJ = J ′ for n = 6.0 andT = 0.02. The
RPA results ofαs for qmax andλ are also plotted by thin lines in (b).

The largest eigenvalueλ of the Eliashberg equation (6) is also
plotted in Fig. 1 (b) and is found to increase with increasing
αs and finally reaches unity atUSC

c ∼ 2.34 where the super-
conducting instability occurs. For comparison, we also plot
the RPA results ofαs for qmax andλ in Fig. 1 (b) and find
that the critical interactionsUAFM

c andUSC
c from the DMFT

are about twice larger than those from the RPA7) due to the
correlation effects beyond the RPA and are consistent with the
values of the effective Coulomb interactions derived from the
downfolding scheme based on first-principles calculations.30)

In Figs. 2 (a)-(f), we show thedxy intra-orbital compo-
nents of the spin (charge-orbital) susceptibilityχs (χc) and
the pairing interactionV , together with the band-diagonal
components of the gap functions∆ with the lowest Matsub-
ara frequencyiεm = iπT for U = 2.28, U ′ = 1.824 and
J = J ′ = 0.228. In this case, the enhanced spin suscepti-
bility for q ∼ (π, 0), i. e., the stripe-type AFM fluctuation
yields the large positive value of the effective pairing interac-
tion V for q ∼ (π, 0) resulting in the gap function with sign
change between the electron and hole FSs, i. e., thes±-wave
state. Figs. 2 (g)-(l), we also show the corresponding RPA re-
sults forU = 1.15, U ′ = 0.92 andJ = J ′ = 0.115. As the
q dependence ofχs andV from the DMFT becomes weak
as compared to the RPA results due to the local correlation
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Fig. 2. (Color online) DMFT results for thedxy intra-orbital components
of the spin susceptibilityχs (a), the charge-orbital susceptibilityχc (b) and
the pairing interactionV (c), and those for the band-diagonal components
of the gap function∆ with the lowest Matsubara frequencyiεm = iπT for
band 2 (d) and band 3 (e) (band 4 (f)) with the hole (electron) FSs (solid lines)
for U = 2.28, U ′ = 1.824 andJ = J ′ = 0.228, whereαs = 0.964 for
qmax. (g)-(l) The corresponding RPA results forU = 1.15, U ′ = 0.92 and
J = J ′ = 0.115, whereαs = 0.964 for qmax.

effects, thes±-pairing phase is reduced relative to the RPA
result as shown in Fig. 1 (b).

Next, we consider the case withU < U ′, where the
orbital fluctuation dominates over the magnetic fluctuation.
Figs. 3 (a)-(c) show the renormalization factorZℓ and the
largest eigenvaluesαs, αc and λ as functions ofU ′ with
U = 0.25U ′ + 2J , J/U = 0.1 andJ = J ′. WhenU ′ in-
creases,Zℓ for all ℓ monotonically decrease with keeping the
smallest value forℓ = dxy, similar to the case of Fig. 1 (a).
WhenU ′ increases, bothαs andαc increase withαs < αc

and αc becomes unity atUFO
c ∼ 2.28 where the orbital

susceptibility withq ∼ (0, 0) corresponding to the FO di-
verges. We note thatqmax = (0, π/4) just belowUFO

c with
αc = 0.98 andqmax = (0, 0) just aboveUFO

c withαc = 1.03,
while it is difficult to determineqmax precisely atUFO

c with
αc = 1 within the present numerical resolution asχc diverges
almost simultaneously forq ∼ (0, 0) and then we call the FO
in a broad sense. With increasingαc, λ increases and finally
reaches unity atUSC

c ∼ 1.54 where the superconducting in-
stability occurs. For comparison, we also plot the RPA results
of αc for qmax andλ in Fig. 3 (c), and find thatUFO

c andUSC
c

from the DMFT are larger than those from the RPA due to the
correlation effects beyond the RPA. Remarkably, the DMFT
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Fig. 3. (Color online) (a) The renormalization factorZℓ with ℓ =
dx2−y2 , d3z2−r2 , dzx, dyz anddxy , (b) and (c) the largest eigenvaluesαs

andαc for severalq andλ which reach unity towards the magnetic, charge-
orbital and superconducting instabilities, respectively, as functions ofU ′ with
U = 0.25U ′ + 2J , J/U = 0.1 andJ = J ′ for n = 6.0 andT = 0.02.
The RPA results ofαc for qmax andλ are also plotted by thin lines in (c).

result of thes++-pairing phase withUSC
c < U < UFO

c is
largely expanded as compared to the RPA result, in contrast
to the case with thes±-pairing phase which is reduced (see
Fig. 1 (b)).

In Figs. 4 (a)-(f), we show the same physical quantities as
in Figs. 2 (a)-(f) forU = 0.4, U ′ = 1.28 andJ = J ′ = 0.04.
In this case, the enhanced orbital susceptibility in the wholeq
space yields the negative value of the effective pairing inter-
actionV for all q resulting in the gap function without sign
change, i. e., thes++-wave state. In Figs. 4 (g)-(l), we also
show the corresponding RPA results forU = 0.25, U ′ = 0.8
andJ = J ′ = 0.025. As theq dependence ofχc from the
DMFT becomes weak as compared to the RPA result due to
the local correlation effects, the local (q-averaged) component
of the pairing attraction|V | becomes considerably larger than
the RPA result for the same value ofαc for qmax resulting in
the remarkable enhancement of thes++-pairing phase which
is expanded far away from the FO critical interactionUFO

c

(αc = 0.82 for USC
c ) in contrast to the RPA result (αc = 0.95

for USC
c ) as shown in Fig. 3 (c).

In summary, we have investigated the electronic state and
the superconductivity in the 5-orbital Hubbard model for iron
pnictides by using the DMFT+ED method in conjunction with
the linearized Eliashberg equation. All of the critical interac-
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Fig. 4. (Color online) DMFT results for thedxy intra-orbital components
of the spin susceptibilityχs (a), the charge-orbital susceptibilityχc (b) and
the pairing interactionV (c), and those for the band-diagonal components of
the gap function∆ with iεm = iπT for band 2 (d) and band 3 (e) (band 4
(f)) with the hole (electron) FSs (solid lines) forU = 0.4, U ′ = 1.28 and
J = J ′ = 0.04, whereαc = 0.76 for qmax. (g)-(l) The corresponding RPA
results forU = 0.25, U ′ = 0.8 andJ = J ′ = 0.025, whereαc = 0.76
for qmax.

tions towards the magnetic, orbital and superconducting in-
stabilities have been found to be suppressed as compared to
the RPA results. Remarkably, thes++-pairing phase due to
the orbital fluctuation is largely expanded as compared to the
RPA result, while thes±-pairing phase due to the magnetic
fluctuation is reduced. This is caused by the local correla-
tion effects which enhance the local, i. e., theq-independent
magnetic (orbital) fluctuation resulting in the local component
of the repulsive (attractive) pairing interaction responsible for
the suppression (enhancement) of thes± (s++)-pairing. Al-
though the case withU < U ′ is not realistic and the FO
fluctuation enhanced there (dxy intra-orbital component) is
not corresponding to the softening ofC66, the same effects
due to the local correlation are expected to occur in thes++-
pairing in the realistic cases with the electron-phonon inter-
action9–11) and/or the mode-coupling effects of the Coulomb
interaction31) and will be discussed in subsequent papers.
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