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The three-chain Hubbard model for Ta2NiSe5, known as a candidate material for an excitonic insulator, is investigated
over the wide range of the energy gapD between the twofold degenerate conduction bands and the nondegenerate
valence band including both semiconducting (D > 0) and semimetallic (D < 0) cases. In the semimetallic case, the
difference in the band degeneracy inevitably causes the imbalance of each Fermi wavenumber, resulting in a remarkable
excitonic state characterized by the condensation of excitons with finite center-of-mass momentumq, the so-called
Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) excitonic state. With decreasingD corresponding to increasing pressure, the
obtained excitonic phase diagram shows a crossover from BEC (D >∼ 0) to BCS (D <∼ 0) regime, and then shows a
distinct phase transition at a certain critical valueDc(< 0) from the uniform (q = 0) to the FFLO (q , 0) excitonic state,
as expected to be observed in Ta2NiSe5 under high pressure.

Recently, Ta2NiSe5 has attracted much attention as a strong
candidate for the excitonic insulator (EI) which is charac-
terized by the condensation of excitons and has been ar-
gued since about half a century ago.1–3) Its resistivity indi-
cates that it is a narrow-gap semiconductor with a quasi-one-
dimensional (1D) structure, where Ni and Ta atoms are ar-
ranged in 1D chains.4,5) A structural transition from the or-
thorhombic to monoclinic phase occurs atTc=328 K,5) below
which the magnetic susceptibility shows a gradual drop, and
flattening of the valence band top has been observed in the
ARPES experiments.6,7) Several theoretical studies8–10) have
revealed that the transition can be interpreted as excitonic con-
densation from a normal semiconductor to the excitonic insu-
lator from a mean-field analysis for the three-chain Hubbard
model with electron-phonon coupling8,9) and from a varia-
tional cluster approximation for the extended Falicov-Kimball
model.10)

Usually, excitonic condensations have been discussed in
a narrow-gap semiconductor or a semimetal with slight
band overlapping with nondegenerate conduction and valence
bands for simplicity,1–3) where each Fermi wavevector in the
semimetallic case coincides to each other as shown in Fig.
1(a). However, the band structure calculation8) revealed that
twofold degenerate conduction bands exist in Ta2NiSe5, orig-
inating from two Ta 5d orbitals, while the nondegenerate
valence band originates from hybridized Ni 3d and Se 4p
orbitals as shown in Fig. 1(c). The difference in the band
degeneracy inevitably causes the imbalance of each Fermi
wavenumber in the semimetallic case, as shown in Fig. 1(b),
where one can expect that the condensation of excitons with
finite center-of-mass momentumq takes place, analogous
to that of Cooper pairs in Fulde-Ferrell-Larkin-Ovchinnikov
(FFLO) superconductivity under an external magnetic field,
where the Zeeman splitting causes the imbalance of the
Fermi wavenumber for each spin. In fact, several authors
have recently discussed the possibility of the FFLO excitonic
state in the electron-hole bilayer systems with density imbal-
ance.11–13) The purpose of this letter is to clarify what kind
of excitonic phase (EP) exists in the semimetallic case of the
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three-chain Hubbard model for Ta2NiSe5, which has not been
discussed in the previous theoretical studies8,9) but might be
realized in experiments under high pressure.14)

The three-chain Hubbard model for Ta2NiSe5
8) consists

of the twofold degenerate conduction (c) bands from Ta 5d
orbitals and the nondegenerate valence (f ) band from hy-
bridized Ni 3d and Se 4p orbitals as schematically shown
in Figs. 1(b) and 1(c). Its Hamiltonian is explicitly given by
H = H0 + H′ with

H0 =
∑
kσ

∑
α=1,2

ϵckc†kασckασ +
∑
kσ

ϵ
f
k f †kσ fkσ, (1)

H′ = V
∑
iα

∑
σσ′

(
c†i−1ασci−1ασ + c†iασciασ

)
f †iσ′ fiσ′ , (2)

whereckασ(ciασ) and fkσ( fiσ) are the annihilation operators
for c and f electrons with wavenumberk (site i), spinσ =↑, ↓
and chain degrees of freedom for thec electronα = 1,2. The

Fig. 1. (Color online) Semimetallic band structures with a negative energy
gapD for total electron numbern = 2 in the cases that both conduction (c)
and valence (f ) bands are nondegenerate wherekc

F = k f
F (a), and thec band

is twofold degenerate while thef band is nondegenerate wherekc
F , k f

F (b),
as expected to be realized in Ta2NiSe5 under high pressure. (c) Schematic
representation of the three-chain Hubbard model for Ta2NiSe5.8)
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noninteractingc( f ) band dispersion is given by

ϵ
c( f )
k = 2tc( f ) (cosk− 1) + (−)D/2,

wheretc and t f are thec and f hopping parameters and set
to tc = −0.8 eV andt f = 0.4 eV, respectively, which have
been determined in Ref.8) so as to fit the energy band from the
first-principles calculation for Ta2NiSe5. D is the energy gap
between thec and f bands atk = 0, describing both semicon-
ducting (D > 0) and semimetallic (D < 0) cases. AsD is con-
sidered to be a decreasing function of pressure, we varyD as a
parameter instead of fixingD to 0.2 eV as in Ref.8) so as to re-
produce the first-principles energy band at ambient pressure.
In Eq. (2), we consider the intersitec- f Coulomb interaction
V which is crucial for the excitonic order as shown below,
while we neglect the on-site Coulomb interaction, which can
be effectively included inD and/or the chemical potentialµ
within the mean-field approximation by excluding the mag-
netic and density-wave-type orders.8)

Now, we discuss the excitonic order within the mean-field
approximation in whichH′ in Eq. (2) is replaced by

H′MF =
∑
kqσ

∑
α=1,2

(
∆(k,q)c†kασ fk+qσ + H.c.

)
+ const.

Here the excitonic order parameter∆(k,q) = − V
N

∑
k′(1 +

ei(k−k′))⟨ f †k′+qσck′ασ⟩ becomes finite when the condensation of
excitonic c- f pairs with center-of-mass momentumq takes
place and is assumed to be independent ofσ andα for sim-
plicity. DiagonalizingHMF = H0+H′MF to yield the mean-field
band dispersion

EMF
k,± = ϵ+(k,q) ±

√
ϵ2−(k,q) + 2|∆(k,q)|2 (3)

with ϵ±(k,q) = (ϵck ± ϵ
f
k+q)/2, we obtain the gap equation to

determine∆(k,q) as

∆(k,q) =
V
N

∑
k′

(1+ ei(k−k′))∆(k′,q)g(k′,q) (4)

with g(k,q) = 1
2( f (EMF

k,− ) − f (EMF
k,+ ))/

√
ϵ2−(k,q) + 2|∆(k, q)|2,

where f (ϵ) = 1/(e(ϵ−µ)/kBT + 1). In Eq. (4),∆(k,q) can be
rewritten as

∆(k,q) = ∆(0)
q + ∆

(1)
q eik = ∆q(1+ eike−iϕq), (5)

where∆q is the magnitude of the order parameter andϕq is
the relative phase between the nearest-neighborc- f pair with
thec-site to the right of thef -site∆(0)

q and that to the left∆(1)
q .

Substituting Eq. (5) into Eq. (4), we obtain the following self-
consistent equations to determine∆q andϕq :

χ(0)(q) + |χ(1)(q)| = 1/V, (6)

tanϕq = Im χ(1)(q)/Reχ(1)(q), (7)

whereχ(n)(q) = 1
N

∑
k eikng(k, q). When we setq = ϕq = 0

in Eqs. (6) and (7), the solution coincides with that in Ref.,8)

where the semimetallic case (D < 0) responsible for the finite
q (ϕq) solution is not considered.

Generally, Eqs. (6) and (7) yield self-consistent solutions
of ∆q andϕq for various values ofq. Therefore, we determine
the most stable solution by minimizing the free energy

δFq(n,T,∆q, ϕq) = FMF
q (n,T,∆q, ϕq) − F0(n,T)

Fig. 2. (Color online) Excitonic phase diagrams of the three-chain Hub-
bard model for Ta2NiSe5 as functions of the energy gapD and temperature
T for n=2 andV=0.4 eV, where the magnitudes of the order parameter∆q (a)
and wavenumberq/π (b) are shown.

= −T
N

∑
ksσ

ln

1+ e−(EMF
ks −µ)/kBT

1+ e−(E0
ks−µ0)/kBT

 + (µ − µ0)n+
8|∆q|2

V

w.r.t. the wavenumberq, whereF0, E0
ks, andµ0 are the free

energy, the energy band, and the chemical potential for the
normal state with∆q = ϕq = 0, respectively,s is the band
index, andµ andµ0 are determined so as to fix the number
of electrons per unit cell ton = nc + nf . Note that the self-
consistent Eqs. (6) and (7) can be reproduced by the stationary
conditions∂δFq/∂∆q = 0 and∂δFq/∂ϕq = 0 for a givenq. In
the present study, we setn = 2 andV = 0.4 eV and varyT and
D as parameters. Here and hereafter, the energy is measured
in units of eV.

Figure 2(a) shows the excitonic phase diagram on theD−T
plane, where the excitonic order with∆q , 0 is realized for
D <∼ 0.1 below the transition temperatureTc. In the semicon-
ducting case with a narrow gap between thec and f bands for
0 < D <∼ 0.1, the transition from the semiconductor to the EI,
i. e., the BEC of excitons, takes place as previously reported
in Ref.8) When the gapD decreases,Tc rapidly increases with
increasing carrier density, as expected in the BEC regime.Tc

still increases with decreasingD in the semimetallic case with
slightly overlappingc and f bands for−0.06 <∼ D < 0, where
the exciton binding energy∼ ∆q is larger than the Fermi en-
ergy measured relative to the band edge∼ |D|/2. On the other
hand, in the semimetallic case with relatively largerc- f band
overlapping forD <∼ −0.06 where∆q is smaller than|D|/2, the
transition from the semimetal to a BCS-like excitonic conden-
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sation takes place. In this case,Tc gradually decreases with
increasing the band overlapping|D|. Thus, the system shows
a BCS-BEC crossover atD ∼ −0.06, whereTc shows a max-
imum as shown in Fig. 2(a).

In the semimetallic case with the differentc- f band degen-
eracy, where the band overlapping causes the imbalance of
the Fermi wavenumberkc

F , k f
F, one can expect that the con-

densation of excitons with finite center-of-mass momentumq
takes place, analogous to that of Cooper pairs in FFLO super-
conductivity under an external magnetic field, where the Zee-
man splitting causes the imbalance of the Fermi wavenum-
ber for each spink↑F , k↓F. In fact, the FFLO excitonic state
with q , 0 is stabilized in a wide parameter region for the
semimetallic case as shown in Fig. 2(b), where the wavenum-
berq for which the free energyδFq becomes minimum is plot-
ted on theD − T plane. The FFLO EP (q , 0) is observed for
D <∼ −0.08, while the uniform EP (q = 0) is observed for
D >∼ −0.14, and the phase boundary between the two is lo-
cated at−0.14 <∼ D <∼ −0.08 depending onT.

In Figs. 3(a)-(c), we plot the magnitude of the excitonic or-
der parameter∆q, its relative phaseϕq, and the wavenumberq
for which the free energyδFq becomes minimum as functions
of D for several values ofT. In the EP,∆q becomes finite and
increases (decreases) with decreasingD in the BEC (BCS)
regime and then shows a peak in the crossover region. In the
FFLO EP, bothq andϕq become finite and monotonically in-
crease with decreasingD towards the phase boundary with
the normal phase. When approaching the transition from the
EP to the normal phase,∆q continuously becomes zero, in-
dicating a second-order phase transition. When approaching
the transition from the FFLO EP to the uniform EP, bothϕq

andq continuously become zero at relatively high tempera-
tures ofT = 0.01− 0.03, where the transition is the second-
order, while discontinuously become zero atT = 0.005 where
∆q also shows a discontinuous jump indicating the first-order
phase transition. Detailed calculations indicate that the transi-
tion between the uniform and FFLO EPs is second-order for
T >∼ 0.006 but first-order forT <∼ 0.006, as shown in Fig.
3(g), where a remarkable reentrant transition is observed at
the phase boundary between the uniform and FFLO EPs as
mentioned in detail below.

To observe the reentrant transition explicitly, we plot the
T-dependence of∆q, ϕq, and q for several values ofD in
the narrow region of the uniform-FFLO phase boundary with
−0.09 ≤ D ≤ −0.08 in Figs. 3(d)-(f), respectively. For
D = −0.09, bothϕq andq monotonically increase with de-
creasingT below the critical temperatureT = 0.018 at which
the second-order phase transition between the uniform and
FFLO EPs takes place. ForD = −0.08 (−0.084), whenT
decreases, we observe the reentrant transition atT = 0.013
(0.016) from the uniform EP to the FFLO EP and atT = 0.009
(0.006) from the FFLO EP to the uniform EP, where both tran-
sitions are found to be the second-order. On the other hand,
for D = −0.087, whenT decreases, we observe the second-
order phase transition from the uniform EP to the FFLO EP
at T = 0.017 but the first-order transition from the FFLO EP
to the uniform EP atT = 0.004, where∆q also shows a dis-
continuous jump. Around the first-order phase transition, we
also confirmed that the free energyδFq has a double minimum
with respect toq (not shown).

A significant difference between the uniform and FFLO ex-

0

0.01

0.02

0.03

0

0.04

0.08

0.12

0.16

0.08

0.12

0.16

T=0.005 eV
=0.010 eV
=0.020 eV
=0.030 eV

(b) φq/π

(a) ∆q [eV]

(c) q/π

D=−0.080 eV
=−0.084 eV

(e) φq/π × 10

(f) q/π × 3

=−0.087 eV
=−0.090 eV

(d) ∆q [eV]

Fig. 3. (Color online)D-dependence of the magnitude of the excitonic or-
der parameter∆q (a), its relative phaseϕq (b), and the wavenumberq/π (c)
for several values ofT. T-dependence of∆q (d),ϕq (e), andq/π (f) for several
values ofD. (g) Enlargement of Fig. 2(b) around the phase boundary between
the uniform and FFLO EPs.

citonic states is the corresponding band dispersion given by
Eq. (3), which yields a more explicit form upon using Eq. (5)
as

EMF
k,± = ϵ+(k,q) ±

√
ϵ2−(k,q) + 4∆2

q(1+ cos(k− ϕq)). (8)

In Figs. 4(a)-(c), the energy band structures near the chemical
potentialµ are plotted as functions of wavenumberk/π around
the Brillouin zone center atT = 0.005 eV in the following
three specific cases. Figure 4(a) shows the energy band of the
EI in the uniform EP with∆q = 0.022 andϕq = q = 0 for
the semiconducting case withD = 0.03, where the flattening
of the valence band top is observed, as shown in the previous
theory,8) which well accounts for the ARPES experiments on
Ta2NiSe5.6,7) For the EI in the semimetallic case with slight
band overlapping withD = −0.08, where∆q = 0.028 and
ϕq = q = 0 (uniform EP), the valence band top shows a dou-
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Fig. 4. (Color online) Energy band structures near the chemical potential
µ as functions of wavenumberk/π around the Brillouin zone center atT =
0.005 eV: (a) EI in the uniform EP forD = 0.03 eV, (b) that forD = −0.08
eV and (c) excitonic semimetal in the FFLO EP forD = −0.09 eV.

ble peak structure [see Fig. 4(b)]. This is caused by the strong
hybridization ofc and f bands due to the excitonic condensa-
tion with large∆q. In contrast, in the FFLO EP forD = −0.09
eV, where∆q = 0.020,ϕq/π = 0.013, andq/π = 0.053, we
observe the semimetallic band structure with a marked asym-
metry with respect tok = 0 [see Fig. 4(c)]. This is caused by
the hybridization ofc and f bands with a wavenumber shift
q due to the imbalance of the Fermi wavenumberk f

F − kc
F and

also by the nontrivial wavenumber shift due to the relative
phase of the order parameterϕq as shown by Eq. (8). Note
that the transition between the EI in the uniform EP and the
excitonic semimetal in the FFLO EP is first-order at the low
temperatureT = 0.005 eV as shown in Figs. 3(a)-(g).

In addition to the FFLO state withq > 0 andϕq > 0
mentioned above, another degenerate FFLO state exists with
−q and ϕ−q = −ϕq, where the dispersionEMF

k,± with −q is
equivalent toEMF

−k,± with q as can be seen from Eq. (8). The
two degenerate states are categorized into the Fulde-Ferrell
(FF) type, in which the order parameter has a homogeneous
magnitude but a modulated complex phase factor. This de-
generacy may be resolved by various effects in real materi-
als such as surface, impurity, and lattice distortion, resulting
in the Larkin-Ovchinnikov (LO) type states in which the or-
der parameter is real and spatially modulated. In fact, in the
electron-hole bilayer system with density imbalance, the LO
type state has been found to be stabilized in a finite-size sys-
tem13) compared with the FF type state, which was revealed
by momentum space calculations11,12) similar to those in the
present study. Therefore, discussing the possibility of the LO
type excitonic states in the present model will be an interest-

ing future problem.
Here, we briefly discuss the effect of the orthorhombic-

to-monoclinic structural transition in Ta2NiSe5, which was
found to be induced in the EI by taking account of the cou-
pling g between the electron and the uniform shear distor-
tion δ of the chain.8) Then, we consider the effect of the same
electron-lattice coupling and obtain some preliminary results:
the FFLO state is suppressed byδ as it resolves the conduc-
tion band degeneracy but survives up to a critical valueδc,
for example,gδc ∼ 0.01 eV for D = −0.1 eV. Therefore, we
expect that the FFLO state with small monoclinic distortion
will be realized in semimetallic Ta2NiSe5 under high pres-
sure, where the monoclinic phase is suppressed by pressure
and finally disappears at a critical pressure.14) Detailed results
with the explicit inclusion of the electron-lattice coupling will
be reported in a subsequent paper.

In summary, we have investigated the three-chain Hubbard
model for Ta2NiSe5 over the wide range of the energy gap
D between the twofold degeneratec band and the nondegen-
erate f band and have obtained the excitonic phase diagram
on theD − T plane, where the second-order phase transition
from the normal phase to the excitonic phase occurs atTc.
There is a peak ofTc in the crossover region between the
BEC (D >∼ 0) and BCS (D <∼ 0) regimes. In the semimetal-
lic case withD < Dc < 0, where the band overlapping is
larger than a critical value|Dc|, the imbalance of thec and
f Fermi wavenumber due to the difference in the band de-
generacy results in the remarkable FFLO excitonic state. This
state is characterized by the condensation of excitons with fi-
nite center-of-mass momentumq corresponding to the Fermi
wavenumber imbalance. The band structure of the FFLO state
is asymmetric with respect tok = 0 owing to the wavenumber
shift q together with the relative phase of the order parameter
ϕq, in contrast to the uniform excitonic state withq = ϕq = 0
realized in the semiconducting (D > 0) and slightly band
overlapping semimetallic (Dc < D < 0) cases. In these cases,
flattening or a double peak structure of the valence band top
is observed. With decreasingD, corresponding to increasing
pressure, the system shows a first-order phase transition from
the uniform state to the FFLO state at low temperatures while
a second-order phase transition at relatively high tempera-
tures. A reentrant uniform-FFLO-uniform transition is also
observed as a function ofT for a fixedD aroundDc.

In the semiconducting case withD > 0, our results re-
garding the EI are the same as the previous results in Ref.,8)

where the orthorhombic-to-monoclinic structural transition in
Ta2NiSe5 at ambient pressure was well accounted for by the
transition from the semiconductor to the EI, which shows the
flattening of the valence band top as observed in the ARPES
experiments below the transition.6,7) The present results for
the semimetallic case withD < 0 including the FFLO exci-
tonic state have been obtained from a straightforward exten-
sion of the semiconducting case and are therefore expected to
be realized in Ta2NiSe5 under high pressure asD is consid-
ered to be a decreasing function of pressure. In fact, Ta2NiSe5

becomes semimetallic under high pressure and also shows
the orthorhombic-to-monoclinic structural transition, which
is suppressed by pressure and finally disappears at the criti-
cal pressure around which superconductivity is observed.14)

Our preliminary calculation with the random phase approxi-
mation revealed that the superconductivity occurs due to the
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enhanced excitonic fluctuation towards the excitonic phase
boundary. Explicit results for the superconductivity as well as
detailed results for the FFLO excitonic state including ther-
modynamic, transport, and optical properties will be reported
in subsequent papers.
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