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First- and Second-Order Phase Transitions between the Uniform and
FFLO Excitonic States in the Three-Chain Hubbard Model for Ta2NiSe5
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We examine the free energy and the thermodynamic properties in the three-chain Hubbard

model for Ta2NiSe5 to clarify the phase transitions between the uniform and the FFLO exci-

tonic states which are expected to be observed in Ta2NiSe5 under high pressure.

The narrow gap semiconductor Ta2NiSe5 shows an orthorhombic-to-monoclinic phase

transition at Tc=328 K,1) below which the flattening of the valence band top is observed in

the ARPES experiments2, 3) and is well interpreted as excitonic condensation from a normal

semiconductor to the excitonic insulator (EI) on the basis of the three-chain Hubbard model

simulating a quasi-one-dimensional Ta-NiSe-Ta chain.4, 5) The model has been investigated

also for the semimetallic case,6) where the difference in the band degeneracy between the

conduction and valence bands inevitably causes the imbalance of each Fermi wavenumber

and results in a remarkable Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) excitonic state charac-

terized by the condensation of excitons with finite center-of-mass momentum q, as expected

to be observed in Ta2NiSe5 under high pressure.7) To clarify the feature of the phase tran-

sition between the uniform (q = 0) and FFLO (q , 0) excitonic phases (EPs), this paper

examines the free energy and the thermodynamic properties which have not been discussed

in the previous paper6) but would be important for the comparison with experiments under

pressure.7)

Our model Hamiltonian is given by

H =
∑
kσ

∑
α=1,2

ϵckc†kασckασ +
∑
kσ

ϵ
f
k f †kσ fkσ,

+ V
∑

iα

∑
σσ′

(
c†i−1ασci−1ασ + c†iασciασ

)
f †iσ′ fiσ′ , (1)

where ckασ(ciασ) and fkσ( fiσ) are the annihilation operators for conduction (c) and va-

lence ( f ) electrons with wavenumber k (site i), spin σ =↑, ↓ and chain degrees of free-

dom for the c electron α = 1, 2. The noninteracting c( f ) band dispersion is given by
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Fig. 1. (Color online) Phase diagram of the three-chain Hubbard model for Ta2NiSe5 as functions of the

energy gap D and temperature T around the phase boundary between the uniform (q = 0) and FFLO (q ,

0) excitonic phases for n=2 and V=0.4 eV. Solid and dashed lines indicate the second- and first-order phase

transitions, respectively.

ϵ
c( f )
k = 2tc( f ) (cosk − 1) + (−)D/2, with the hoppings tc = −0.8 eV and t f = 0.4 eV.4) D

is the energy gap between the c and f bands describing both semiconducting (D > 0) and

semimetallic (D < 0) cases, and is varied as a decreasing function of pressure.7) V is the c- f

Coulomb interaction crucial for the excitonic order and is set to 0.4 eV.6)

When the condensation of excitons with center-of-mass momentum q takes place, the

excitonic order parameter

∆(k, q) = −V
N

∑
k′

(1 + ei(k−k′))⟨ f †k′+qσck′ασ⟩ = ∆q(1 + eike−iϕq)

becomes finite, where ∆q and ϕq are the magnitude and the relative phase of the order pa-

rameter, respectively,6) and N is the total number of unit cells. Within the mean-field approx-

imation, the Hamiltonian Eq. (1) is diagonalized to yield the mean-field band dispersion as

Ek,± = ϵ+(k, q) ±
√
ϵ2−(k, q) + 4∆2

q(1 + cos(k − ϕq)) with ϵ±(k, q) = (ϵck ± ϵ
f
k+q)/2. We obtain ∆q

and ϕq by solving the self-consistent equations,6) that generally yield non-unique solutions

with different values of q. Therefore, we determine the most stable solution by minimizing

the free energy

F(∆q, ϕq) = −kBT
N

∑
ksσ

ln
(
1 + e−(Eks−µ)/kBT

)
+ µn +

8∆2
q

V
(2)

with respect to q, where s is the band index and µ is the chemical potential determined so as

to fix the number of electrons per unit cell to n = nc + n f = 2.

Figure 1 shows the excitonic phase diagram on the D−T plane around the phase boundary
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between the uniform and FFLO EPs. As shown in the previous paper,6) the phase transition

between the normal phase and the EPs is always second-order at the phase transition temper-

ature Tc which shows a peak around the crossover region between the BEC (D >∼ 0) and BCS

(D <∼ 0) regimes. As for the phase transition between the uniform and FFLO EPs, the previ-

ous paper6) has revealed that the order parameter changes continuously at high temperatures

while discontinuously at low temperatures indicating the second- and first-order phase transi-

tions, respectively (see Fig. 1). However, within numerical methods, it is difficult to exclude

the possibility that the transition is continuous but very sharp. Then, we perform detailed cal-

culations of the free energy which enables us to determine the order of the phase transition

directly as shown below.

In Fig. 2, the free energy F(∆q, ϕq) given in Eq. (2) is plotted as a function of q at several

values of T around the phase boundary between the uniform and FFLO EPs for D = −0.087

eV, where a uniform-FFLO-uniform reentrant transition takes place as seen from Fig. 1. In

Fig. 2(a), the minimum of F(∆q, ϕq) shifts smoothly from zero to finite values as T decreases,

displaying the second-order phase transition from the uniform to FFLO EP at Tc = 0.0168

eV. On the other hand, in Fig. 2(b), the minimum of F(∆q, ϕq) shows a jump from a finite q

to zero as T decreases, displaying the first-order phase transition from the FFLO to uniform

EP at Tc = 0.0044 eV. We thus confirmed the first- and second-order phase transitions shown

in Fig. 1. We also performed the same calculations for various values of V and tc( f ) and

confirmed that the essential feature of the phase diagram including the first- and second-

order phase transitions on the uniform-FFLO phase boundary, which is considered to be an

intrinsic property of this system.

Here, we examine the thermodynamic properties in the phase boundary region. The en-

tropy S is calculated by using the following explicit form

S =
kB

N

∑
ksσ

{
ln
(
1 + e−(Eks−µ)/kBT

)
+

Eks − µ
kBT

f (Eks)
}

(3)

with the fermi distribution function f (ϵ) = [e(ϵ−µ)/kBT + 1]−1, and then, the specific heat C is

obtained from the numerical derivative of S with respect to T or that of the internal energy

E = 1
N

∑
ksσ Eks f (Eks)+ 8∆2

q/V . Figures 3(a) and 3(b) show the T -dependence of S and C for

D = −0.087 eV, where three phase transitions are observed as seen from the phase diagram in

Fig. 1 (see also Fig. 2). As T decreases, the system shows two second-order phase transitions

from the normal to the uniform EP at Tc = 0.0351 eV and from the uniform EP to the FFLO

EP at Tc = 0.0168 eV, where the jump in the specific heat for the latter transition is much

smaller than that for the former one. Then, the system finally shows the first-order phase
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Fig. 2. (Color online) The free energy F(∆q, ϕq) as a function of center-of-mass momentum of excitons q for

D = −0.087 eV around the phase boundary between the uniform and FFLO EPs, displaying the second-order

phase transition at Tc = 0.0168 eV (a) and the first-order one at Tc = 0.0044 eV (b).

transition from the FFLO EP to the uniform EP (reentrant transition) at Tc = 0.0044 eV with

a tiny latent heat of T∆S ∼ 0.0044 × 0.032 = 0.00014 eV per unit cell.

For the case with a slightly larger value of D = −0.082 eV, the system shows three second-

order phase transitions: normal-to-uniform EP at Tc = 0.0353 eV, uniform-to-FFLO EP at

Tc = 0.0145 eV, and FFLO-to-uniform EP (reentrant) at Tc = 0.0075 eV, as shown in Figs.

3(c) and 3(d). The former two transitions have typical lambda-shapes of the second-order

phase transition while the third one has an anomalous mirror-writing lambda-shape which is

considered to be a specific feature of the reentrant transition. Actually, such a mirror-writing

lambda-shape has been observed for the magnetic-field dependence of the specific heat in the

reentrant SDW phase of (TMTSF)2ClO4,8) but has not for the temperature dependence as far

as the authors know. Then, we need further investigation on the reentrant transitions including

the present system from both theoretical and experimental points of view.
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Fig. 3. (Color online) T -dependence of the entropy S and the specific heat C for D = −0.087 eV (a) and (b),

and for D = −0.082 eV (c) and (d), respectively. Dotted line indicates the first-order phase transition.

5/6



J. Phys. Soc. Jpn. SHORT NOTES

References

1) F. J. DiSalvo, C. H. Chen, R. M. Fleming, J. V. Waszczak, R. G. Dunn, S. A. Sunshine,

and J. A. Ibers: J. Less-Common Met. 116 (1986) 51.

2) Y. Wakisaka, T. Sudayama, K. Takubo, T. Mizokawa, M. Arita, H. Namatame,

M. Taniguchi, N. Katayama, M. Nohara, and H. Takagi: Phys. Rev. Lett 103 (2009)

026402.

3) Y. Wakisaka, T. Sudayama, K. Takubo, T. Mizokawa, N. L. Saini, M. Arita, H. Namatame,

M. Taniguchi, N. Katayama, M. Nohara, and H. Takagi: J. Supercond. Nov. Magn. 25

(2012) 1231.

4) T. Kaneko, T. Toriyama, T. Konishi, and Y. Ohta: Phys. Rev. B 87 (2013) 035121.

5) K. Sugimoto, T. Kaneko, and Y. Ohta: Phys. Rev. B 93 (2016) 041105(R).
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