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1. Introduction.

Let G be a L.C.A. group and G be its dual group. Let M(G) be the
measure algebra on G and L*(G) be the group algebra on G. In [7], Taylor
showed that: There are a compact topological abelian semigroup S and an
isometric isomorphism @ of M(G) into M{S) such that;

(a) O(M(G)) is a weak-*dense subalgebra of M(S);

(b) &, the set of all continuous semicharacters on S, separates the points
of S;

(¢) for fe§, ,u-+§fd0,u (reM(G)) is a non-zero complex homomor-

phism of M(G);

(d) for a non-zero complex homomorphism F of M(G), there is an 7e8

such that F(p):g fdOu for pe M(G).

We can consider that S is the maximal ideal space of M(G), G S, and the
Gelfand transform of peM(G) is given by /i(f):ﬁg fdop (f€8). A closed

subspace (ideal, subalgebra) N C M(G) is called an L-subspace (L-ideal, L-sub-
algebra) if L'(u) C N for every pe N, where L'(u)={1e€M(G); 4 is absolutely
continuous with respect to g (A< p)}. We denote by Rad L'(G) the radical of
L'(G) in M(G), that is, Rad L'(G)={peM(G); p(f)=0, for all feS\G}. We
put £(G)=3 Rad L*(G;), where z runs through over L.C. A. group topologies
on G Whichrare stronger than the oryirginal one. Then £(G)c M(G) and 2(G)
is an L-subalgebra ([2]). For peM(G), we put p*(E)=pu(—E) for every Borel
subset £ of G. We denote by I the set of all symmetric measures of M(G), that
is, M={peM(G); p*(f)=4A(f) for every 78}, Then it is easy to show that
QG)C M. A measure pe is called singular-symmetric if g is singular with
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Q(G) (zLL(G)). In [4], the author shows that if R is the Bohr compactifica-
tion of the real line R, then there exists a singular- symmetric measure g on R.
Moreover it is easy to show that g (constructed in [47) has the property
yweﬁ:tﬁ(}?) By the same method as in [4], we can construct ¢ on an infinite
compact abelian group G whose dual group has an infinite independent subset,
such that s is singular-symmetric with pepeL(G). In this paper, we show

THEOREM. Let G be an infinite compact abelian group. If G has an infinite
independent subset, then there exists a singular-symmetric measure p on G such
that p* is singular-symmeiric for every positive integer n, where pt=p"" Yipt
(nz2) and p'=p.

2. Proof of theorem.

Let G be an infinite compact abelian group such that G has an infinite
independent subset E which we may suppose to generate G without loss of
generality. Then there is a famlly of infinite subsets of E, {En:;n=1,2, -
i=1, 2, ---, 2"}, which satisfies the following properties :

1) For n=l, V{E.q; 1<ig27) =E;
9) for 1<i<j<2", E,; & E,.; and E, \E. ; is an infinite set;
3) ETH—I»k (o En_i fOl‘ k<22 and En-l—l.zi::En,i (1gl§2n).
Let H,,,i’be the subgroup of G generated by E,q, then {H,}.. has the
following properties by 1), 2) and 3):
4) For nzl and 1=i<j<S2", Hyi S Hujs H,.;/H,.; is an infinite group,.
and H, ;=G ;

5) Hpi 2 Hpenn and Hpi/Hpw is an mﬁmte group for k<2i, and
H, i=Hpyyo for 11527,
By the above facts 4) and 5), we have :
6) For n<s and 1=i=2°""j, H, ;D H,; and H,, j/Hs is an infinite
group if 125" j, and H,, ;=H; ss-nj.
Let GM be the annihilator of Hy:in G (Gn:=H}:C G), then G,H is a
compact subgroup of G and {Gn .. satisfies the following by 4), 5) and 6):
7) For n=1 and 1=£i<j=2", Gni 2 Gr.j» Gni/Gnj is an infinite compact
- group, and G n.on=1{0}, where 0 is the unit element of G;
8) GniF Grerx a0d Gruns/Ga is an infinite compact group for k<2i,
and Gp.i=Gpsu for 151527

- 9) for n<=s and 1=4i£2° "), G, ;C G, and G,.¢/Gx.; is an infinite com-
pact group if i#2°° "), and Gn, ;=G 05-nj.
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For a compact subgroup G,C G, we denote by m (G, the normalized Haar
measure on G,. We put

a=2{(1/2)" m(G,.4); 151527 (nzl),

then p,=0, [gall=1, p¥=p.. For a fixed y&G, there is a non-negative integer
P2 (0=p,<2") such that y&H, ,, and y€H, ,,.,, where H,,=0. Then we
have 2,(7)=(1/2)"(2"—p,)>0. Also there is pns; (0=p,;<27*1) such that
Lani(N=1/2)"1 2" —~poyr). Since ppy=2p, or Puu=2p,+1 by 4) and 5),
we have
Pasr (N)=/2)" (2 =2 p)=(1/2)" (2" — pa) =2, ()
or
P (N=Q/2)" (2" =2 p—1)=, (1) —(1/2)"*1.
So that 2,(7)= 8,4 () for every n=1. This implies that {sx,};.,; has only one
weak-*cluster point g in M(G) and g has the following properties:
100 p=0, lpgl=1, p*=p and {£(r); 7€G) is dense in {x&R;0=x=1};
11)  £@)=lim 2,(7) for every reG.

‘We will show that x satisfies the conditions of our theorem. At first, we
show that peit. For 1=n, 1=i=<2" and n=<k, we put

tn ki =2{(1/2) m(Gy.p); 24 (1) <j=2% "1}
Then
L 0520, lptn v, ol =(1/2)" 25" =(1/2)"
and
12) #kzz{#n,k,ii 1=1=27).

By the same way as in the previous part, {g¢..:.:}#. has only one weak-*cluster
point 4,.; in M(G) and which satisfies

13) 25,420, [4,,41=(1/2)", jn.i(r):ﬁg} fn. s (r) for 7€G, and 2,,:EM(Gy,4)
by 8) and 9).
Since fin, 1.+ (7)=0 for ye& H,,; by the definition of p,.4,¢, we have
14) Zn.:()=0 if ye&Hy. ;.
By 11), 12) and 13), we have

p@)=1im 4, (V=S {lim fo.s.o(7); 156527}

={1.:();1Zig27  for red.
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This implies
15) p=X{ln; 1£1=2" for n=1,2, ..

Let f&S(f=0) and nzl. Since m(Gn #m(Gn )=m(Gn.q) for ISi£;£2" by
7), there exists j,(1=7,=2") such that

16) m(Gn)(f)=1 if j,<k=2" and
m(Gn, N()=0 if 1Sk<j,.
Then we have the following:
17y For 1=2k<j,, 2u.:()=0;
18) for jn<k=27%, 1o (/)=l2nsll-

Because, let 1=<k<j,, then we have 2, #m (Gn.jp-1)=4a,r by 4) and 14). By

16), we have 1, (f)=21,.:() m(Gn,jn_;)(f):O. This implies 17). Let j,<k=2".
Since f24.4 e €M (Gy.5,) for n=q by 9) and the definition of .4, wWe have

19) -Zn.'k eM (Gn.jn) .

Since (G, (f)=1 by 16), we have that Zn.(f)=2n.s(1)=[4n.sll. This
shows 18).

Let M be a prime L-subalgebra generated by {m(Gn.;)}n=1, where
M c M(G) is called a prime L- subalgebra if M is an L-subalgebra and M=
{2e M (G); AL M} is an L-ideal. Then there is a z,ES such that n%==, and
M= {2 M(G): 62 is concentrated on O(z,)}, where O(z,)={x&S;z(x)=1}
(see [7]). By Dunkl and Ramirez [1], we have ﬂ:,Ecl(G)\G where cl(G) is

the closure of G in S. S’mce m(Ga. jn)(n =1, we have
20) Aua(m)=I2nul  (Ga<k=2%) by 19).
Since f=zr,, we have
S 21 Aaa(mp=0  for 1Sk<j, by 17).

Then we have that for n=1,

iﬁ(kf)-? Wz )= IE {2, i(f) 15152”}*2 {Tni(myp); 11520
=120, 1, ()= Ay (@ NE N2 3, | =(1/2)",
by 13), 15), 17), 18), 20) and 21). This implies
22)  a(f)=p(x,) for every fe8 (f=0).
Here we note that

23) AN=lmE {204 (f); ja<k=2") for eS8 (fz0
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We put J(f)={x€S;/(x)#0} and u=y,+7,, where Oy, is concentrated on
S\J(f) and 67, is concentrated on J(f). Then 67, is concentrated on O(x,)

for y€G and g-maecl(G\G (this fact is proved easily by [1]), we have
0=s(g-m)=1. This shows

24) fA(g)=0 for every geg.

Since p*=g and p¢=0 by 10), we have p=t.

In the rest of this paper, we will show that x" 1 8(G) for every positive
integer n.

Suppose that p"° 4 L'(G.) for a positive integer n, and a L.C.A. group
topology 7 on G which is stronger than the original one. Since M(G,) is a
prime L-subalgebra of M(G), there exists f(z)&S such that Jf(&)=f(z) and
M(G)={2eM(G); 62 is concentrated on O(f(r))}. We put p=y,+v, and
a,=|lv:ll, where y;eM(G,) and v, L M(G,), then A(f(z))=a,. Since M(G,) is
a prime L-subalgebra and L'(G.) C M(G.), we have |v;|=a,>0. Since |u]=1,
we have 0<a,=1. Let vj'=4,+2,, where 1,&L’(G,) and 4,1 L*(G,). Then A,
is the part of g®° which is contained in L*(G.), and put a,=}il. Then we
have a¢,Za,>0. By 16), there is 1=j,=2" (depending on f(zr) and n) such
that .,

25) M(Gn.;,) © M(G:) and M(Gn.x) & M(G,) for k<j,.

Since f(f (:))¢O, we have that j,<2" for sufficient large positive integers n
by 23). Since 2, ,€M(G,.,) and M(,.,) & M(G,.,) for 1=£¢<p=<2" by 7) and
13), we have that by 25)

26) /zn. kEA/f(Gn‘jﬂM)’ Al(Gn.jnH)«LLl(Gn‘jn)y AICGn,jnH)_LLI (Gt’) and
Aan LLYG,) for j,+1<k=s2m,

Since n. 01 (S (2))= 120, s | =(1/2)" — 0 (n — c0) by 13) and 18), we have
27) lim% Ve (f(2)); Jut1<k=2" =4(f(c))=a, by 23).
Since An, s (f(©))=02n.1ll (B>7a) and @, 2 {1 Zn.4ll; ju-+1<k=27} by 7), 25) and
the definition of «,, there is a positive integer n, such that
28) 0=a?'—(Z {1 Any el 5 Jn, F1<k=2")"0<a, by 27).
Since X{An.k; Ja, H1<k=2"} €M (Gny gy 0) by 26) and M(Gayy,40) is an L-
subalgebra, we have that
B2l = 10— (Z{ny a5 TnyH1<kE2m) )0
=a7'—= (Z ny il 5 Jn, H1<k=E2M1})0<a,y,
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because v;—3{2n,.1; ja,+1<kZ2™} is a positive measure, and by 25) and 28).
This contradicts [4,=a,. Thus we have that p"1L'(G.) for every
positive integer n and L.C.A. group topology = on G. Moreover we have
#* LRad L'(G:) by [8]. This shows that p"1€(G) for every positive
integer n. This completes the proof.

REMARK 1. We denote by ¢ (1) the spectrum of A€M(G), that is, ¢ ()=
{1(f); feS}. By 10) and 24), we have

o(py={xeR;0=x=1}.

REMARK 2. In [5], it is proved that for a positive integer n, there exists
peM(G) such that ;1"}}3(6) for k<n and p'=8(G) for g=n, under the same
assumptions of G.
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