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   Introduction. 

   G. Gentzen introduced the notion of sequent, which consists of the antece-

dent and of the succedent, each of which in turn is a sequence of finite formulas, 

and utilizing that notion he formulated the formal system L K for the classical 

logic. Then by restricting sequents to ones whose succedents are sequences of 

at most one formula, he obtained from L K the formal system L f for the in-

tuitionistic logic. Later, Takahashi in [3], and Rousseau in [1] independently, 

extended the notion of sequent to that of matrix, which consists of the 1st row, 

the 2nd row, • • • , and of the N7 th row, each of which in turn is a sequence of 
finite formulas, where Al is a natural number greater than 1, and then utilizing 

that notion they formulated the formal system M L K for each M -valued logic. 

   What is obtained from the system M-LK, when we restrict matrices to 

ones whose M th rows or more rows are sequences of at most one formula? 

This paper is one answer to this problem. 
   Let U be a subset of the non-empty finite set T of truth-values. We take 

a formal system for a many-valued logic having T as the set of truth-values, 
and then restrict every inference rule by which a connective is introduced in 

some p-th row where U so that the v-th rows where v U of the conclusion 

consist of one formula in all. We call by an intuitionistic many-valued logic what 

is represented by the above-obtained system. If U=T, then the intuitionistic 

many-valued logic is of course identical with the usual many-valued logic (cf. 3.43) ; 

if T = {t, f } and U= {f}, then the logic is identical with the intuitionistic logic as 

is expected (cf. 3.11). Though somewhat artificial, the intuitionistic many-valued 

logic can also be characterized semantically (cf. Theorem 1). If either U=T or 

U contains at most one element, then the system enjoys the cut-elimination prop-

erty (cf. Theorem 4). Moreover, if U contains one and only one element, then 

the logic enjoys the disjunction property (cf. Theorem 5). On the contrary, if 

U contains at least two elements (and if sufficiently many connectives are in-

volved), then surprisingly the intuitionistic many-valued logic coincides with the 
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usual many-valued logic (cf. 4.12). 

   In view of the above facts, the authors propose the intuitionistic many-

valued logics with U containing one and only one element as a candidate for a 

many-valued analogue of the intuitionistic logic. 
   In this paper only propositional logics are studied. The intuitionistic many-

valued logics studied in this paper differ from ones studied in Rousseau [2], 

each of which is determined by the help of a linear order on the set of truth-

values instead of a subset. 

   § 1. Preliminaries. 

   1.1. An intuitionistic many-valued logic is determined by choices of a non-

empty finite set T, a set F of functions on T, and a subset U of T. Elements 

of T are denoted by A, p, v, 
   For p in T, we put ;f = { A A: p } following Takahashi [3]. 

   1.2. Primitive symbols are countably many propositional variables, a con-
nective Cf (abbreviated by `f') for each f in F, parentheses and a comma. 

   The connective f is k-ary if f is a k-ary function on T. 

   1.3. Formulas are defined by the following recursion : a propositional variable 

standing alone is a formula; if f is a k-ary connective and A1i • • , Ak are for-

mulas, then f (A1, ..•, Ak) is also a formula. Formulas are denoted by A, B, 

   1.4. A signed formula is an ordered pair <p, A> of p in T and of a formula 

A. A matrix is a finite set of signed formulas. Matrices are denoted by K, 

L ... 
   The empty set 0 is also called the empty matrix. For a subset S of T and 

a formula A, the direct product S x { A } denotes the matrix {<p, A) ( p E S } by 

one of set-theoretical conventions. For a matrix K, we put KU= { (p, A) E 

K I p€ U}. 
   Expression of a matrix by a set is due to Takahashi [4]. 

   1.41. KU c K; (KU)U^ KU ; (KU L )U=KU~)LU ; KU LU whenever Kc L. D 

   § 2. A formal system for the intuitionistic many-valued logic. 

   2.1. A proof-figure is a finite tree of matrices such that every matrix in 

  is either basic, where a matrix K is basic if T X {A} cK for some A, or the 

conclusion of one of the following inference rules every premise of which is 

also in ~3. 

    Cut inference :
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Ku, A)} KU{w, A)}

connective and p E U : 

f (i 1... , ftk)=fJ

411

K 

where p*.         v
Left inference (f, p), where f is a k-ary 

        KU(pl^ x {A1})U...U(pk^X {Ak}) 

            for every p, , f 1k falsifying
                    K ' 

where <p, f (A1, ••, • Ak)> E K. The pair <p, f (A1, • • • , A k)> is called the p 
signed formula of this inference. 
   Right inference (f, 1c), where f is a k-ary connective and p U : 

        KUU(p1^X {A1})U...U(pk^X {Ak}) 

              for every pl, , p k falsifying (p1, •.. , k)=;a

rincipal

                   K ' 

where <p, f (A1, , Ak)> E K. The pair <p, f (A1, , Ak)> is called the principal 

signed formula of this inference. 
   The end-matrix of a proof-figure is the lowest matrix in it. 

   The form of left and right inferences has come from Rousseau [1]. 

   2.2. A matrix K is provable (H K) if it is the end-matrix of some proof-

figure. A matrix K is cut-free provable (H K) if it is the end-matrix of some 

proof-figure in which the cut inference is not applied. 
   More precisely, a matrix K is provable with rank n (H n K), where n is a 

natural number, if it is the end-matrix of some proof-figure which is constructed 

from n matrices; the notion of K being cut-free provable with rank n (Hn K) is 

defined similarly. 

   The notation `H<n K (H< n K, resp.)' is an abbreviation for `IHmK (-gym K, 

resp.) for some in less than n'. 

   2.21. Hn K (H K, resp.) whenever Hn K (H K, rasp.) ; Hn L (Hn L, H L or 

H L, resp.) whenever Hn K (- K, H K or H K, resp.) and Kc L. 

   § 3. A semantical characterization of the intuitionistic many-valued logic. 

   3.1. A model is a triplet (X, R, v) of a non-empty set X, a reflexive, 

transitive relation R on X, and a function v which maps each pair of an ele-
ment of X and of a formula into an element of T, satisfying the following 

conditions Ml, M2 and M3: 

   M1. PRJ & v(d, A)EU =H HP, A)=v(J, AL
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   M2. pEU & f(v(r, A1), •••, v(r, Ak))=p 

                       v(P, f (A1, •••, Ak))=;a. 

   M3. p U & d4 [PR4 = f (v(4, A1), ... , v(4, Ak))=,a' 

                  = v(P, f (A1, •••, Ak))=;a. 

   3.11. In this paragraph, we assume that T = {t, f}, F= { n, v, ~, } and 
U= { f }, where n, V and are binary functions while unary on T defined 
as follows: [tnv=t if a=t and v=t; pVv=t if either p=t or v=t; pm=t 
if either p=f or v=t; -ia=t if p=f. 

   Then the notion of model agrees with that of Kripke model for the intui-
tionistic logic, so that, in view of Theorem 1 stated in 3.3 below, the intui-
tionistic many-valued logic coincides with the intuitionistic logic. 

   3.2. Let (X, R, v) be a model and P X. A matrix K is P-true (P-false, 
resp.) in (X, R, v) if <v(P, A), A) E K for some A (for no A, resp. ). 

   3.21. I f PR4 and K is T f alse, then KU is 4-false. PROOF. Suppose that 
P R4 and KU is 4-true. Then <v(4, A), A) E KU for some A. Hence v(4, A) U, 
so <v(P, A), A>=<v(4, A), A> E K by Ml, so K is P-true. 0 

   3.3. A matrix is valid if it is T-true in (X, R, v) for every model (X, R, v) 
and every P in X. 

   Then the intuitionistic many-valued logic is characterized semantically as 
follows. 

   THEOREM 1. A matrix is provable if and only if it is valid. 

   We shall prove the `only if' part and the `if' part in 3.5 and in 3.6-3.8, 
respectively. 

   3.4. A valuation is a function w which maps each formula into an element 
of T satisfying w(f (A1, , Ak))= f (w(A1), ••• , w(Ak)) for every k-ary connective 
f and every formulas A1i ..•, A k. 

   3.41. Let w be a valuation. If we put X={1},R={<1,1>} and v(1, A)-w(A) 

for every A, then the triplet (X, R, v) forms a model. Q 

   3.42. The empty matrix is not valid. PROOF. Since valuations exist, so do 
models. p 

   3.43. In view of Theorem 2 below and of Theorem 1, when U=T, the 
intuitionistic many-valued logic coincides with the usual many-valued logic as 
is expected. 

   THEOREM 2. Assume U=T. Then a matrix K is valid i f and only i f for
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every valuation w we obtain (w(A), A> E K for some A. 

   PROOF. To prove the `only if' part, suppose that K is valid and w is a 
valuation. Since K is 1-true in (X, R, v), which is the model constructed by 
the method stated in 3.41, <v(1, A), A> E K and so <w(A), A> E K for some A. 
   Next, to prove the contraposition of the `if' part, suppose that K is not 
valid. Then K is 1'-false in (X, R, v) for some model (X, R, v) and some 1' in 
x. We put w(A)=v(1', A) for every A. Then w forms a valuation and 

<w(A), A> K for no A. D 

   3.5. PROOF of the `only if' part of Theorem 1. It suffices to prove that 
K is valid whenever f- n K, which we shall demonstrate by induction on n. 
   Suppose that I- n K, (X, R, v) is a model and that T c X. We must show 

that K is 1'-true. 
   Case 1. K is basic. Then T x { A } _c K for some A. Hence <v(1', A), A> E K, 

so K is 1'-true. 
   Case 2. K is the conclusion of the cut inference. Suppose that H<n K v 

{<p, A)'}, H< n K U {<i, A>} and p ~ v. Suppose, on the contrary to the con-
clusion, that K is T-false. By the induction hypothesis both Ku {<p, A>} and 
K U { w, A>} are 1'-true, while either v(1', A) ~ 4a or v(1', A)*, vwhich is a 
contradiction in either case. So K is 1'-true. 
   Case 3. K is the conclusion of a left inference. Suppose that H<n KU 

(pl^x {A1})U...U(pk"X {Ak}) for every ~1i , 1k falsifying f(p1, ..., ~k)= fJ, 
and that p U and <p, f (A1, ..•, A k)> E K. Suppose, on the contrary to the 
conclusion, that K is T-false. Then v(1', f (A1, A k)) /=p, so f (v(F, A1), 
v(1', Ak)) ~ p by M2. Putting a =v(T, A;) for j=1, k, we obtain f (p i , 

pk) /= , so KU(p1 x {A1})U•••U(pk~x {Ak}) is 1'-true by the induction hypo-
thesis, which is a contradiction. Hence K is T-true. 
   Case 4. K is the conclusion of a right inference. Suppose that H<n K°U 

(p' x {A1})U...U(pk^ x {Ak}) for every Pi, ... , pk falsifying f (p1, ..., Irk) =~a 
and that p U and <p, f (A1, ..•, Ak)) E K. Suppose, on the contrary to the 

conclusion, that K is T-false. Then v(T, f (A1, Ak)) ~ p, so f (v(4, A1), 
v(4, Ak))~ a for some 4 such that FR4 by M3. Putting ,u;=v(4, A;) for j = 
1,..., k, we obtain f (p , ... pk)~4a, so K°u(~i1 x {A1})U...U(pk"x {Ak}) is 
4-true by the induction hypothesis, which contradicts 3.21. Hence K is F-true. 

D 

   3.6. We shall devote the rest of this section to the proof of the `if' part 
of Theorem 1. 

   A generalized matrix (abbreviated by `g-matrix') is a finite or infinite set of 
signed formulas. A g-matrix is provable if it contains a provable matrix. A 

g-matrix is maximal unprovable if it is unprovable and any proper extension of
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it is provable. 

   3.61. Any matrix is a g-matrix. A matrix is provable i ff it is provable as 
a g-matrix. D 

   3.62. Any unprovable g-matrix can be extended to a maximal unprovable one. 
PROOF. Suppose that 11 is an unprovable g-matrix, and let C,uo, Av>, C,u1, Al>, 

CP2, A2>, • • • be an enumeration of all the signed formulas. We define the g-
matrix II n by the following recursion : 11o=11; Hn+1=11 n or =11,u An>} 
according as HnU { C pn, A>} is provable or not. Then the g-matrix UT°°o 11 n 
is the required one. 0 

   3.63. I f 1' is a maximal unprovable g-matrix, then for every A there exists 
one and only one p falsifying CSC, A> E r. PROOF. If T x {A} ~ F, then F is 

provable, which is a contradiction. Hence CSC, A> F for some p. Next, sup-
pose that <n1, A> F, Cpl, A> F and ~1 ~ p2. Then both Eu {<p, A>} and 
r U { C,u2, A> } are provable since they are proper extensions of F. So in view 
of the cut inference, F is provable, which is a contradiction, too. Hence there 
is one and only one p falsifying Cp, A> ET. 0 

   3.7. We introduce the model (X, R, v) as follows : X is the set of maximal 

unprovable g-matrices ; R= {CI', 4> EX2 I Cp, A> E4 whenever CSC, A> ET and 

pEU} ; for every F in X and every formula A, v(F, A) is the unique p fal-
sifying CSC, A> E I'. 

   LEMMA. The triplet (X, R, v) defined above certainly forms a model. 

   PROOF. The empty matrix is unprovable by 3.5, so X is not empty; R is 
clearly reflexive and transitive. 
   To verify Ml, suppose ERA and v(4, A) E U. Then Cv(4, A), A> F since 

Cv(4, A), A> 4, so v(F, A)= v(4, A). 
   To verify M2, suppose ,u E U and v(1', f (A1, , Ak)) gyp. Since Cp, f (A1, 
A k)> E 1', in view of the left inference (f, p), the g-matrix F U(p1" x { Al } )U 
U(pk~ x { Ak }) is unprovable for some ,ul, Ilk falsifying f (p, p k) =p• 
Then (p1, A1> 1', ... , C,uk, Ak> I', so v(F, A1) =,u1, ... v(T, Ak) =,uk, so 

f (v(F, A1), ..., v(r, Ak)) ~ p• 
   To verify M3, suppose pr U and v(F, f (A1, Ak))~ p. Since Cp, f (A1, , 
Ak)> E F, in view of the right inference (f, p), the g-matrix FU J(p1„ x { A1}) 

 U•••U(pk'x {Ak}) is unprovable for some ~1, ~k falsifying f (p1, , ~k)=, 
where TU={Cv, B>ET vEU}. Then FUU(p1~x {A1})U•••U(pk~x {Ak})c4 

 for some 4 in X. It follows ERA from FUc4. On the other hand, \u1, A1> 

  4, ... , Cuk, Ak>4, so v(4, A1)-p1, ... , v(4, Ak)=,ak, so f (v(d, A1), ... , v(4, Ak)) 
 gyp. Hence it is not the case that d4 [ERA f (v(4, A1), ••• , v(4, Ak))=,u]. 

0
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   3.8. PROOF of the `if' part of Theorem 1. To prove the contraposition, 
suppose that K is unprovable. Then K is extended to a maximal unprovable 

g-matrix 1'. We claim that K is 1'-false in the model (X, R, v) introduced 
above. Suppose, on the contrary to the conclusion, that K is T-true. Then 

<v(T', A), A> E K for some A. So <v(P, A), A> E 1', which is a contradiction. 
Hence K is I'-false, so it is not valid. D 

   § 4. Syntactical properties of the formal system. 

   4.1. In this paragraph we wish to display the choice of U, so we denote 

H K and H n K by H U K and H n K, respectively. 

   4.11. Suppose U V c T . Then KU c KY ; IH n K (H" K, resp.) whenever H n K 

(H U K, res p. ). D 

   4.12. According to Theorem 3 below and to 3.43, if Card(U)>_2, where 
Card(U) denotes the cardinality of U, then the intuitionistic many-valued logic 
has no sense as an intuitionistic one. 

   THEOREM 3. Assume that Card(U)>_2 and every unary function on T is con-
tained in F. Then, Hr K if and only if HU K. 

   PROOF. The `if' part is a special case of 4.11. To show the `only if' part, 
it suffices to prove, on the assumption of the theorem, that if HU KU(p1 X 

{A1})U•••U(;uk~ X {Ak}) for every ~1, ~k falsifying f (/fi, ••• , and if 
4a U and <4a, f (A1, ..•, A k)> E K, then H U K. 

   Take A and 2' such that 2, 2'E : U and 2 * 2'. Let K= {<', B1), • • • , <v?z, B>}                                                               n
and let g1 be the unary function on T such that g1(v)=A or =2' according as 
v=vi or not, for i=1, ••• , n. 
   First we remark the fact that for every matrix L and every formula B, 

(1) HU LU{wi, B>} iff HU LU {<A, gz(B)>}. 

   Suppose, first, that H U L U {<i ti, B>}. If gi(v) * A, that is, if v *v, then 
LU{<, B>}FLU{<A, gi(B)>}U(it x {B}), so HU LU{<A, gti(B)>}U(tx {B}). 
Hence by the left inference (gti, A) we obtain HU LU{<A, gti(B))}. To show the 
converse, suppose HU LU{<A, gi(B)>}. If gi(v)~A', that is, if v=vi, then LU 

{ wi, B>, <2', g(B)>} U(,/' X { B }) contains T X { B }, so it is basic and so prova-
ble. Hence by the left inference (gi, A') we obtain HU LU{< , B>, <A', gti(B)>}, 
from which together with H U L U { <1, B>, <A, g(B)>} by the cut inference we 
obtain HU LU{<1f B>}. This completes the proof of (1). 
   Now suppose that HUKU(p1'X{A1})UU(pk~X{Ak}) for every 1i 

 k falsifying f (p1, ..•, and that 4a ~E U and <p, f (A1, ..•, A k)> E K. We 
must show H U K. If f (p1, • • • , fJ k;) *;u, then
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        HU {wl, B1>, ... , Cvn, Bn>}U(~1^X {Ai})U...U(~k^X {Ak})~ 

so by the repeated use of the `only if' part of (1), 

     I-U {CA, g1(B1)>, ..., <A, gn(Bn)>}U(p1^X{A1})U."U(pk^X{Ak}), 

that is, 

          HU ({<p, f (A1, ... , Ak)>, <A, g1(B1)>, •••, CA, g(B)>})U                                               nn

U(X{A1})U...U(pk^X {Ak}). 

Hence by the right inference (f, p), 

           HU {C~, f (A1, •, Ak)>, <A, g1(B1)>, •••, <A, gn(Bn)>}, 

so by the repeated use of the `if' part of (1), 

              HU {gyp, f (A1, ... , Ak)>, <v1, B1>, •••, wn, B>}, 

that is, H U K. E 

   4.2. Concerning the cut-elimination property the following theorem holds. 
Since the proof is rather long, we shall give it in 4.4. 

   THEOREM 4. Assume that either U=T or Card(U)<_1. Then every provable 

matrix is cut-free provable. 

   4.3. With respect to the disjunction property, Theorem 5 below holds. 

   THEOREM 5. Assume Card(U)=1. I f H {<Pi, Al>, , <pa, A>} and •.., 
 n U, then H { <p1, A>} for some i (i=1, • • • , n). 

  PROOF. We put K= { < p1 i Al>, ..•, A>}, and suppose IH K and p1, 

~n U. Then H K by Theorem 4 which is assumed to have been proved. 
Since U='= 0 the matrix K is not basic, so it is the conclusion of a left or right 
inference. Let w, f (B1, ••• , Bk)> be the principal signed formula. Then 

w, f(B1, ..., Bk)>EK, so (v, f(B1, ......Bk)>=<pI, A~> for some i (i=1, ... , n). 
Hence v=p2 U, so K is the conclusion of the right inference (f, v), so H KU 
U(v1^x {Bi})U•••U(vk^x {Bk}) for every vi, , vk falsifying f (L11, ••• , vk)=v. 
But KU= O = { <v, f (B1, ..., B k )> } U, so 

           N {w, f(B1, ..., Bk)>}UU(vi^x {B1})U...U(vk^X {Bk}) 

for every vl, falsifying f (vl, ..•, k) =v. Hence by the right inference 

(f, v) we obtain H{<v, f(B1, ... , Bk)>}, so H {<Pi, A~>}. 0 

   4.4. PROOF of Theorem 4. It suffices to prove, on the assumption of the 
theorem, that
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(2) if Hn1 Ku {<2, A>}, Ku {<22, A>} and 21*/t2, then H K. 

   We shall prove (2) by induction on w • d (A) + n 1 + n 2, where d (A) denotes the 
number of occurrences of connectives in A. 

   First, we remark the fact that for every matrix L and every formula B, 

(3) if H LU(1fx {B}) for every p in T and if d(B)<d(A), 

      then H L U(S x { B }) for every subset S of T, in particular H L. 

   Suppose that H L u(1f x { B }) for every p in T and that d(B) < d(A) and 

S C T . We shall prove H L U(S x { B }) by induction on Card(T-S). Case 1. 

Card(T-S)=0. The matrix L U(S x { B }) is basic since it contains T x { B }, so 

H LU(Sx {B}). Case 2. Card(T-S)=1. Since S=p# for some p in T, by 

the assumption H LUIS x { B} ). Case 3. Otherwise. Take 21 and 22 such that 

21, 22E T-S and 21 * 22, then by the hypothesis of induction on Card(T--S) we 
have H L U(S x { B } )U { <21, B>} and H L U(S x { B } )U { <22, B>}, so by the hypo-

thesis of induction on w • d(A)+ n1+n2 we obtain H LUIS x { B } ). This com-

pletes the proof of (3). 
   Now, to prove (2) suppose that Hnl KU{<21, A>}, Hn2 KU{<22, A>} and 21 

*22. We put Kti =K `J { <2i, A>} for i=1, 2. 
   For the cut-free provable matrix K1 (i=1, 2), one of the following five cases 

occurs : 

    I. Ki is basic. 

   ii. Kz is the conclusion of a left inference, and the principal signed formula 
belongs to K. 

   III. Ki is the conclusion of a right inference, and the principal signed for-

mula belongs to K. 

   N. Ki is the conclusion of a left inference, and the principal signed for-

mula is <2i, A>. 

   V. Kti is the conclusion of a right inference, and the principal signed for-
mula is <2i, A>. 

   Remark that neither the case III nor the case V occurs when U=T. 

   We shall show H K by cases. 

   Case 1. Either K1 or K2 is of case I. We suppose, without loss of 

generality, that K1 is the case. Then T x { B } c K1 for some B. If B is distinct 
from A, then T x { B } c_ K, so K is basic, so H K; if B is identical with A, then 

<22, A>EK, so K2-K, so F-* K. 
   Case 2. Either K1 or K2 is of case II. We suppose that K1 is the case. 

Suppose that H~~1 K1u(v1.' x {B1})U•••U(vh"x {Bh}) for every vl, , vh falsi-

fying g(v1, , vh)=v, and that v E U and <v, g(B1i , B h)> E K. If g(v1, , vh) 

~ v, then
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           H<n1 KU(vl"x {B1})U...U(yh"X {Bh})U{<A1, A>} 

and 

           Hn2 KU(y1*x {B1})U...U(yhAX {Bh})U{<A2, A>}, 

so by the induction hypothesis H K U(vl" x { B1 } )U • • • U (v h ' x { Bh } ). Hence 
H K by the left inference (g, v). 
   Case 3. Both K1 and K2 are of case III. In this case, U ~ T and so Card(U) 
<1 by the assumption of the theorem, hence either Al U or A2 U. We sup-

pose, without loss of generality, that Al U. Suppose that H<nl (K1)UU(vl" x 
{ B1 } )U U(vh ' x {Bh }) for every i, •", vh falsifying g(vl, ••', vh)=v, and that 
v U and <v, g(B1, .••, Bh)>~K. Then H KUU(v1 x {B1})U...U(yh"x {Bh}) 
for every vl, • • • , vh falsifying g(.1, •••, vh)=v, since (K1)U=KU. Hence H K by 
the right inference (g, v). 
   Case 4. One of K1 and K2 is of case DI, while another of case IV. We 

suppose that K1 is of case III, while K2 of case 1V. In this case also, U ~ T 
and so either Al U or A2 U. Since K2 is of case N we have A2 E U, so Al U. 
So H K by the similar proof as Case 3. 
   Case 5. One of K1 and K2 is of case III, while another of case V. We 

suppose that K1 is of case III, while K2 of case V. Suppose that H<, (K1)UU 

(i. x {B1})U•••U(vh" X {Bh}) for every vl, , vh falsifying g(vl, , vh)=v, 
and that v U and <v, g(B1i B,)> K. Suppose further that H<n2 (K2)UU 

(p1^ x {A1})U...U(/2k" x {Ak}) for every pl, ... , f2k falsifying f (p, ... , 
and that A2 U and f (A1, , Ak) is identical with A. To show H K, it suffices 
to prove 

(4) ~--i KUU(vl~X {B1})U...U(yh^X {Bh}) 

      for every vl, falsifying g(vl, ..•, 

since from (4) it follows f-* K by the right inference (g, v). With a view to 

proving (4), suppose g(v1, ..•,h)*. vThen 

          ~'<nl KUU(v1^X {B1})U...U(vh~x {Bh})U A1, A>} ; 

while 

          H<n2 (KUU(v1"X {B1})U...U(yh^X {Bh})U{<A2, A>})U 

                   U(p1~X {A1})U...U(pk"x {Ak}) 

for every 4a, • • • , p k falsifying f (p1, ..•, 4f)-_A2, kso by the right inference (f, A2) 
we obtain 

          Hn2 KUU(y1 x {B1})U...U(yh~x {Bh})U{<A2, A>}. 

Hence H KUU(v1 x { B1 } )U • • • U(vh~ x { Bh }) by the induction hypothesis. So 

(4) has been proved.
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   Case 6. Both K1 and K2 are either of case N or of case V. Suppose that 
N<ni (Ki)*U(p1^x {A1})U...U(pk^x {Ak}) for every Ili, ••, f-k falsifying f(;al, 
• • • , ~k)=~1, and that f (A1, , Ak) is identical with A, where (K1)*=K1 or =(K1)v 
according as K1 is of case Iv or of case V. Suppose further that H<n2 (K2)** 
U(p1^x {A1})U...U(pk^x {Ak}) for every f2i, ... , 1k falsifying f (p1, ... , Pk)=22, 
where (K2)**=K2 or =(K2)° according as K2 is of case lv or of case V. Since 
Ai~A2, either f (;al, ••, /lk)~A1 or f (p1, ..., k)*22 for every It1, •.., k. If 

f (jul, •.. , pk)~A1, then 

          H<n1 KU(pl^x {A1})U...U(pk"x {Ak})U{<A1, A>} 

and 
          Hn2 K(Kx {A1})U...U(ik^x {Ak})U{<A2, A>}, 

so H KU(pl^x {A1})U•••U(pk^x {Ak}) by the induction hypothesis; if f (p ••• , 

pk)*A2, we obtain the same result similarly. Hence for every p1, ••• , 11k we 
have H KU(p1^x {A1})U•••U(;uk^x {Ak}). So H K by the repeated use of (3) 
in view of the fact that d(A1), ••• , d(Ak)<d(A)< o 
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