On some compact Einstein almost Kähler manifolds

By Kouei Sekigawa

(Received May 17, 1986)

§ 1. Introduction.

An almost Hermitian manifold $M=(M, J,<,>)$ is called an almost Kähler manifold if the corresponding Kähler form of M is closed (equivalently, $\left\langle\left(\nabla_{X} J\right) Y, Z\right\rangle+\left\langle\left(\nabla_{Y} J\right) Z, X\right\rangle+\left\langle\left(\nabla_{Z} J\right) X, Y\right\rangle=0$, for all $X, Y, Z \in \mathfrak{X}(M)$, where $\mathfrak{X}(M)$ denotes the Lie algebra of all differentiable vector fields on M). By the definition, a Kähler manifold ($\nabla J=0$) is necessarily an almost Kähler manifold. If the almost complex structure J of an almost Kähler manifold M is integrable, then M is a Kähler manifold [10]. A strictly almost Kähler manifold is an almost Kähler manifold whose almost complex structure is not integrable. Several examples of strictly almost Kähler manifolds are known [1], [2], [3], [7], [9]. By an Einstein almost Hermitian manifold we mean an almost Hermitian manifold which is Einstein in the Riemannian sense. The following conjecture is well-known [4], [9]:

Conjecture. The almost complex structure of a compact Einstein almost Kähler manifold is integrable.

Concerning this conjecture, some progress has been made under some curvature conditions ([4], [6], and etc.).

In this paper, we shall give a partial positive answer to the above conjecture. Namely, we shall prove the following

Theorem. Let $M=(M, J,<,>)$ be a compact Einstein almost Kähler manifold whose scalar curvature is non-negative. Then M is a Kähler manifold.

§ 2. Preliminaries.

In this section, we prepare some elementary equalities which will be used in the proof of Theorem in $\S 1$.

Let $M=(M, J,<,>)$ be a $2 n$-dimensional almost Hermitian manifold with the almost Hermitian structure $(J,<,>)$ and Ω the Kähler form of M defined

This research was partially supported by Grant-in-Aid for Scientific Research (No. 441260018661), Ministry of Education, Science and Culture.
by $\Omega(X, Y)=\langle X, J Y\rangle$, for $X, Y \in \mathfrak{X}(M)$. In the sequel, we assume that M is oriented by the volume form $\sigma=\left((-1)^{n} / n!\right) \Omega^{n}$. We denote by ∇, R, ρ and τ the Riemannian connection, the curvature tensor, the Ricci tensor and the scalar zurvature of M, respectively. The curvature tensor R is defined by

$$
\begin{equation*}
R(X, Y) Z=\left[\nabla_{X}, \nabla_{Y}\right] Z-\nabla_{[X, Y]} Z, \tag{2.1}
\end{equation*}
$$

for $X, Y, Z \in \mathfrak{X}(M)$. We introduce a tensor field ρ^{*} of type (0,2) (the tensor field ρ^{*} is called the Ricci *-tensor [8]) defined by

$$
\begin{equation*}
\rho^{*}(x, y)=(1 / 2) \text { trace of }(z \longmapsto R(x, J y) J z) \text {, } \tag{2.2}
\end{equation*}
$$

for $x, y, z \in T_{p} M$ (the tangent space of M at p), $p \in M$. We denote by $\tau^{*}\left(\tau^{*}\right.$ is called the ${ }^{*}$-scalar curvature) the trace of the linear endomorphism Q^{*} defined by $\left\langle Q^{*} x, y\right\rangle=\rho^{*}(x, y)$, for $x, y \in T_{p} M, p \in M$. By (2.2), we get immediately

$$
\begin{equation*}
\rho^{*}(x, y)=\rho^{*}(J y, J x), \tag{2.3}
\end{equation*}
$$

for $x, y \in T_{p} M, p \in M$. We denote by $T M$ and $\Lambda^{k} M(k \geqq 1)$ the tangent bundle of M and the vector bundle of real exterior k-forms over M, respectively. Then we may regard $\Lambda^{k} M$ as a Riemannian vector bundle over M in the natural way. The curvature operator (also denoted by R) is the symmetric endomorphism of the vector bundle $\Lambda^{2} M$ of real exterior 2 -forms defined by

$$
\begin{equation*}
\langle R(\iota(x) \wedge \iota(y)), \iota(z) \wedge \iota(w)\rangle=-\langle R(x, y) z, w\rangle, \tag{2.4}
\end{equation*}
$$

for $x, y, z, w \in T_{p} M, p \in M$, where ι denotes the duality: $T M \rightarrow \Lambda^{1} M=T^{*} M$ (the cotangent bundle of M) defined by means of the metric \langle,$\rangle . For 1$-form $\omega, J \omega$ is the 1 -form defined by $J \omega(X)=-\omega(J X)$, for $X \in \mathfrak{X}(M)$. Then we have $J \iota(x))$ $=\iota(J x)$, for $x \in T_{p} M, p \in M$. Let $\left\{e_{i}\right\}$ be an orthonormal basis of $T_{p} M$ at any point $p \in M$. In this paper, we shall adopt the following notational convention:

$$
\begin{align*}
& R_{h i j k}=\left\langle R\left(e_{h}, e_{i}\right) e_{j}, e_{k}\right\rangle, \tag{2.5}\\
& R_{\bar{h} i j k}=\left\langle R\left(J e_{h}, e_{i}\right) e_{j}, e_{k}\right\rangle, \\
& \quad \ldots \ldots \ldots \ldots \ldots \\
& R_{\bar{h} i \bar{j}}=\left\langle R\left(J e_{h}, J e_{i}\right) J e_{j}, J e_{k}\right\rangle, \\
& \rho_{i j}=\rho\left(e_{i}, e_{j}\right), \cdots, \quad \rho_{\bar{i} j}=\rho\left(J e_{i}, J e_{j}\right), \\
& \rho^{*}{ }_{i j}=\rho^{*}\left(e_{i}, e_{j}\right), \cdots, \quad \rho^{*}{ }_{i \bar{j}}=\rho^{*}\left(J e_{i}, J e_{j}\right), \\
& J_{i j}=\left\langle J e_{i}, e_{j}\right\rangle, \quad \nabla_{i} J_{j k}=\left\langle\left(\nabla_{e_{i}} J\right) e_{j}, e_{k}\right\rangle,
\end{align*}
$$

and so on, where the Latin indices run over the range $1,2, \cdots, 2 n$. We get easily

$$
\begin{equation*}
\nabla_{i} J_{j \vec{j}}=-\nabla_{i} J_{j k} \tag{2.6}
\end{equation*}
$$

Now, we shall define differentiable functions f_{1}, \cdots, f_{5} on M respectively by

$$
\begin{align*}
& f_{1}(p)=\Sigma R_{a b i j}\left(R_{\bar{a} \bar{b} i j}-R_{\bar{a} \bar{b} \bar{i})},\right. \tag{2.7}\\
& f_{2}(p)=\Sigma R_{a \bar{a} i j}\left(R_{b \bar{b} i j}-R_{b \bar{b} \bar{j}}\right), \\
& f_{3}(p)=\Sigma R_{a \bar{a} i j}\left(\nabla_{\bar{b}} J_{i k}\right) \nabla_{b} J_{j k}, \\
& f_{4}(p)=\Sigma R_{a b i j}\left(\nabla_{\bar{b}} J_{i k}\right) \nabla_{\bar{a}} J_{j k}, \\
& f_{\overline{5}}(p)=\Sigma\left(\left\langle R\left(e^{i} \wedge e^{j}-J e^{i} \wedge J e^{j}\right), e^{a} \wedge e^{b}-J e^{a} \wedge J e^{b}\right\rangle\right)^{2},
\end{align*}
$$

at any point $p \in M$, where $e^{i}=\iota\left(e_{i}\right)(1 \leqq i \leqq 2 n)$. We shall evaluate the values of the functions f_{1}, \cdots, f_{4} at each point $p \in M$. By the definition of the function f_{1}, we have easily the following

Lemma 2.1.

$$
f_{1}(p)=\frac{1}{2} \Sigma\left\langle R\left(e^{i} \wedge e^{j}-J e^{i} \wedge J e^{j}\right), e^{a} \wedge e^{b}\right\rangle\left\langle R\left(e^{i} \wedge e^{j}-J e^{i} \wedge J e^{j}\right), J e^{a} \wedge J e^{b}\right\rangle
$$

Similarly, taking account of (2.2) and (2.3), we have the following
Lemma 2.2. $\quad f_{2}(p)=2 \Sigma\left(\rho^{*}{ }_{i j}-\rho^{*}{ }_{j i}\right)^{2}$.
In the rest of this section, we assume that $M=(M, J,<,>)$ is a $2 n$-dimensional almost Kähler manifold. Then it is known that M is a quasi Kähler manifold [10], i.e.,

$$
\begin{equation*}
\left(\nabla_{X} J\right) Y+\left(\nabla_{J X} J\right) J Y=0 \tag{2.8}
\end{equation*}
$$

for $X, Y \in \mathfrak{X}(M)$.
Lemma 2.3. $\quad \Sigma\left(\nabla_{b} J_{i k}\right)\left(\nabla_{a} J_{j_{k}}\right)\left(\nabla_{\bar{a}} J_{i h}\right) \nabla_{\bar{b}} J_{j h}=0$.
Proof. Taking account of (2.8), we get

$$
\begin{align*}
\Sigma\left(\nabla_{b} J_{i k}\right)\left(\nabla_{a} J_{j k}\right)\left(\nabla_{\bar{a}} J_{i n}\right) \nabla_{\bar{b}} J_{j h} & =\Sigma\left(\nabla_{b} J_{i k}\right)\left(\nabla_{a} J_{\bar{j} k}\right)\left(\nabla_{\bar{a}} J_{i h}\right) \nabla_{\bar{b}} J_{\bar{j} h} \tag{2.9}\\
& =-\Sigma\left(\nabla_{b} J_{i k}\right)\left(\nabla_{\bar{a}} J_{j k}\right)\left(\nabla_{\bar{a}} J_{i h}\right) \nabla_{b} J_{j h} \\
& =-\Sigma\left(\nabla_{b} J_{i_{k} k}\right)\left(\nabla_{a} J_{j k}\right)\left(\nabla_{a} J_{i h}\right) \nabla_{b} J_{j h}
\end{align*}
$$

On one hand, we get also

$$
\begin{equation*}
\Sigma\left(\nabla_{b} J_{i k}\right)\left(\nabla_{a} J_{j k}\right)\left(\nabla_{\bar{a}} J_{i n}\right) \nabla_{\bar{b}} J_{j h}=\Sigma\left(\nabla_{b} J_{i k}\right)\left(\nabla_{a} J_{j k}\right)\left(\nabla_{a} J_{i n}\right) \nabla_{b} J_{j h} . \tag{2.10}
\end{equation*}
$$

From (2.9) and (2.10), the lemma follows immediately.
Q.E.D.

By (2.8), we get

$$
\begin{equation*}
\sum_{i, j}\left(\nabla_{a} J_{i j}\right) \nabla_{\bar{b}} J_{i j}=-\sum_{i, j}\left(\nabla_{\bar{a}} J_{\bar{i} j}\right) \nabla_{b} J_{\bar{i} j}=-\sum_{i, j}\left(\nabla_{\bar{a}} J_{i j}\right) \nabla_{b} J_{i j} \tag{2.11}
\end{equation*}
$$

Similarly, by (2.6) and (2.8), we get

$$
\begin{equation*}
\sum_{i, j}\left(\nabla_{j} J_{i a}\right) \nabla_{j} J_{i \bar{b}}=\sum_{i, j}\left(\nabla_{j} J_{\bar{i} a}\right) \nabla_{\bar{j}} J_{\bar{i} \bar{b}}=-\sum_{i, j}\left(\nabla_{j} J_{i \bar{a}}\right) \nabla_{j} J_{i b} \tag{2.12}
\end{equation*}
$$

Since M is an almost Kähler manifold, we get

$$
\begin{align*}
\sum_{i, j, k}\left(\nabla_{i} J_{b k}\right) J_{a j} \nabla_{j} J_{k i} & =\frac{1}{2} \sum_{i, j, k}\left(\nabla_{i} J_{b k}-\nabla_{k} J_{b i}\right) J_{a j} \nabla_{j} J_{k i} \tag{2.13}\\
& =-\frac{1}{2} \sum_{i, k}\left(\nabla_{b} J_{k i}\right) \nabla_{\bar{a}} J_{k i} .
\end{align*}
$$

Similarly, we get

$$
\begin{align*}
\sum_{i, j, k} J_{b k}\left(\nabla_{i} J_{a j}\right) \nabla_{j} J_{k i} & =-\sum_{i, j, k} J_{b k}\left(\nabla_{a} J_{j i}\right) \nabla_{j} J_{k i}-\sum_{i, j, k} J_{b k}\left(\nabla_{j} J_{i a}\right) \nabla_{j} J_{k i} \tag{2.14}\\
& =-\frac{1}{2} \sum_{i, j, k} J_{b k}\left(\nabla_{a} J_{j i}\right)\left(\nabla_{j} J_{k i}-\nabla_{i} J_{k j}\right)+\sum_{i, j}\left(\nabla_{j} J_{i a}\right) \nabla_{j} J_{i \bar{b}} \\
& =-\frac{1}{2} \sum_{i, j}\left(\nabla_{a} J_{i j}\right) \nabla_{\bar{b}} J_{i j}+\sum_{i, j}\left(\nabla_{j} J_{i a}\right) \nabla_{j} J_{i \bar{b}}
\end{align*}
$$

From (2.8), taking account of (2.11) $\sim(2.14)$, we get

$$
\begin{align*}
\sum_{i} \nabla_{i \bar{a}}^{2} J_{\bar{b} i} & =\sum_{i, j, k} J_{b k} J_{a j} \nabla_{i j}^{2} J_{k i} \tag{2.15}\\
& =-\sum_{i} \nabla_{i a}^{2} J_{b i}-\sum_{i, j, k}\left(\nabla_{i} J_{b k}\right) J_{a j} \nabla_{j} J_{k i}-\sum_{i, j, k} J_{b k}\left(\nabla_{i} J_{a j}\right) \nabla_{j} J_{k i} \\
& =-\sum_{i} \nabla_{i a}^{2} J_{b i}+\sum_{i, j}\left(\nabla_{j} J_{i \bar{a}}\right) \nabla_{j} J_{i b} .
\end{align*}
$$

LEMMA 2.4. $\quad \rho^{*}{ }_{a b}+\rho^{*}{ }_{b a}=\rho_{a b}+\rho_{\bar{a} \bar{b}}+\sum_{i, j}\left(\nabla_{j} J_{i a}\right) \nabla_{j} J_{i b}$.
Proof. By (2.2) and the first Bianchi identity, we get

$$
\begin{align*}
2 \rho_{a \bar{b}}^{*}-2 \rho_{a \bar{b}}^{*} & =\sum_{i} R_{i \bar{i} a b}+\sum_{i} R_{i \bar{i} \bar{a} \bar{b}} \tag{2.16}\\
& =-\sum_{i} R_{i a b \bar{i}}-\sum_{i} R_{i b \bar{i} a}-\sum_{i} R_{i \bar{a} \bar{b} \bar{i}}-\sum_{i} R_{i \bar{b} \overline{\mathrm{a}} \bar{a}}
\end{align*}
$$

On one hand, we get easily

$$
\begin{equation*}
\sum_{i} \nabla_{i a}^{2} J_{b i}-\sum_{i} \nabla_{a i}^{2} J_{b i}=\rho_{a \bar{b}}+\sum_{i} R_{i a b \bar{i}} \tag{2.17}
\end{equation*}
$$

From (2.17), taking account of (2.8), we get

$$
\begin{equation*}
\sum_{i} R_{i a b \bar{i}}=-\rho_{a \bar{b}}+\sum_{i} \nabla_{i a}^{2} J_{b i} \tag{2.18}
\end{equation*}
$$

By (2.12), (2.15), (2.16) and (2.18), we get

$$
\begin{align*}
2 \rho_{a \bar{b}}^{*}-2 \rho_{\bar{a} b}^{*} & =2 \rho_{a \bar{b}}-2 \rho_{\bar{a} b}-\sum_{i} \nabla_{i a}^{2} J_{b i}-\sum_{i} \nabla_{i \bar{a}}^{2} J_{\bar{b} i}+\sum_{i} \nabla_{i b}^{2} J_{a i}+\sum_{i} \nabla_{\bar{i} \bar{b}}^{2} J_{\bar{a} i} \tag{2.19}\\
& =2 \rho_{a \bar{b}}-2 \rho_{\bar{a} b}+2 \sum_{i, j}\left(\nabla_{j} J_{i a}\right) \nabla_{j} J_{i \bar{b}}
\end{align*}
$$

From (2.19), the lemma follows immediately. Q. E. D.

Now, we evaluate the value $f_{3}(p)$ of the function f_{3} at any point $p \in M$. We may choose an orthonormal basis $\left\{e_{i}\right\}=\left\{e_{\alpha}, e_{n+\alpha}=J e_{\alpha}\right\}(1 \leqq \alpha, \beta \leqq n)$ in such a way that

$$
\begin{equation*}
\sum_{j, k}\left(\nabla_{j} J_{k a}\right) \nabla_{j} J_{k b}=\lambda_{a} \delta_{a b} \tag{2.20}
\end{equation*}
$$

where $\lambda_{1}=\lambda_{n+1} \leqq \cdots \leqq \lambda_{n}=\lambda_{2 n}$. We denote by f the continuous function on M defined by

$$
\begin{equation*}
f(p)=\sum_{i, j}\left(\lambda_{i}-\lambda_{j}\right)^{2} . \tag{2.21}
\end{equation*}
$$

By (2.21), we get

$$
\begin{equation*}
f(p)=4 n \sum_{i} \lambda_{i}^{2}-2 \sum_{i, j} \lambda_{i} \lambda_{j}=4 n \sum_{i} \lambda_{i}^{2}-2\|\nabla J\|^{4}(p) . \tag{2.22}
\end{equation*}
$$

Lemma 2.5.

$$
f_{3}(p)=-2 \Sigma \rho_{i j}\left(\nabla_{b} J_{i k}\right) \nabla_{b} J_{j k}-\frac{1}{4 n} f(p)-\frac{1}{2 n}\|\nabla J\|^{4}(p),
$$

at any point $p \in M$.
Proof. By (2.7), (2.8), (2.20), (2.22) and Lemma 2.4, we get

$$
\begin{aligned}
f_{3}(p) & =\Sigma R_{a \bar{a} i j}\left(\nabla_{\bar{b}} J_{i k}\right) \nabla_{b} J_{j k} \\
& =\Sigma R_{a \bar{a} i j}\left(\nabla_{b} J_{i k}\right) \nabla_{b} J_{j k} \\
& =-\Sigma\left(\rho_{i j}+\rho^{*}{ }_{j i}\right)\left(\nabla_{b} J_{i k}\right) \nabla_{b} J_{j k} \\
& =-2 \Sigma \rho_{i j}\left(\nabla_{b} J_{i k}\right) \nabla_{b} J_{j k}-\frac{1}{4 n} f(p)-\frac{1}{2 n}\|\nabla J\|^{4}(p)
\end{aligned}
$$

Q.E.D.

Lastly, we evaluate the value $f_{4}(p)$ of the function f_{4} at any point $p \in M$. We denote by ξ the vector field on M defined by

$$
\begin{equation*}
\xi_{p}=\sum_{a}\left(\sum_{b, i, j, k} R_{a b i j}\left(\nabla_{b} J_{i k}\right) J_{j k}\right) e_{a}, \quad \text { at } p \in M . \tag{2.23}
\end{equation*}
$$

From (2.7) and (2.23), by the direct calculation, we have easily the following
Lemma 2.6.

$$
\begin{aligned}
f_{4}(p)= & (\operatorname{div} \xi)(p)+\Sigma\left(\nabla_{i} \rho_{b j}-\nabla_{j} \rho_{b i}\right)\left(\nabla_{b} J_{i k}\right) J_{j k} \\
& +\frac{1}{4} \Sigma\left(\left\langle R\left(e^{i} \wedge e^{j}-J e^{i} \wedge J e^{j}\right), e^{a} \wedge e^{b}\right\rangle\right)^{2} .
\end{aligned}
$$

By Lemmas 2.1, 2.6, and (2.7), we have the following immediately
Lemma 2.7.

$$
f_{1}(p)-2 f_{4}(p)=-2(\operatorname{div} \xi)(p)-\frac{1}{4} f_{5}(p)-2 \Sigma\left(\nabla_{i} \rho_{b j}-\nabla_{j} \rho_{b i}\right)\left(\nabla_{b} J_{i k}\right) J_{j k}
$$

§ 3. An integral formula.

In this section, we establish an integral formula on a compact almost Kähler manifold which plays an essential role in the proof of Theorem in §1. First, we start with a general almost Hermitian manifold $M=(M, J,<,>)$. We assume that $\operatorname{dim} M=2 n \geqq 4$. We denote by ∇^{\prime} the linear connection on M defined by

$$
\begin{equation*}
\nabla_{X}^{\prime} Y=\nabla_{X} Y-\frac{1}{2} J\left(\nabla_{X} J\right) Y \tag{3.1}
\end{equation*}
$$

for $X, Y \in \mathfrak{X}(M)$ [10]. Then we may easily check that both of the Riemannian metric \langle,$\rangle and the almost complex structure J$ are parallel with respect to the linear connection ∇^{\prime}. Furthermore, by direct calculation, we have the following

Lemma 3.1. The curvature tensor R^{\prime} of the linear connection ∇^{\prime} is given by

$$
R^{\prime}(X, Y) Z=\frac{1}{2}(R(X, Y) Z-J R(X, Y) J Z)-\frac{1}{4}\left(\left(\nabla_{X} J\right)\left(\nabla_{Y} J\right) Z-\left(\nabla_{Y} J\right)\left(\nabla_{X} J\right) Z\right),
$$

for $X, Y, Z \in \mathfrak{X}(M)$.
We denote by $\mu_{1}(\nabla)$ (resp. $\left.\mu_{1}\left(\nabla^{\prime}\right)\right)$ the first Pontrjagin form corresponding to the metric connection ∇ (resp. ∇^{\prime}). Then, by the well-known Chern-Weil theorem, the first Pontrjagin class $p_{1}(M)$ of M is represented by the 4 -form $\mu_{1}(\nabla)$ (resp. $\mu_{1}\left(\nabla^{\prime}\right)$) in the de Rham cohomology group. The 4 -form $\mu_{1}(\nabla)$ (resp. $\mu_{1}\left(\nabla^{\prime}\right)$) is given by

$$
\begin{equation*}
\mu_{1}(\nabla)_{p}=\frac{1}{32 \pi^{2}} \Sigma R_{a b i j} R_{c d i j} e^{a} \wedge e^{b} \wedge e^{c} \wedge e^{d} \tag{3.2}
\end{equation*}
$$

(resp. $\mu_{1}\left(\nabla^{\prime}\right)_{p}=\frac{1}{32 \pi^{2}} \Sigma R_{a b i j}^{\prime} R_{c d i j}^{\prime} e^{a} \wedge e^{b} \wedge e^{c} \wedge e^{d}$), at any point $p \in M$, [5]. Let $\left\{e_{i}\right\}$ be an orthonormal basis of the tangent space $T_{p} M$ of the form $\left\{e_{i}\right\}=$ $\left\{e_{\alpha}, J e_{\alpha}\right\}$. Then we get

$$
\begin{equation*}
\Omega=-\sum_{\alpha} e^{\alpha} \wedge J e^{\alpha} . \tag{3.3}
\end{equation*}
$$

From (3.3), we get easily

$$
\begin{align*}
\Omega^{n-2}=(-1)^{n-2}(n-2)! & \sum_{\alpha<\beta} e^{1} \wedge J e^{1} \wedge \cdots \tag{3.4}\\
& \wedge \widehat{e^{\alpha} \wedge J e^{\alpha}} \wedge \cdots \wedge e^{\beta} \wedge J e^{\beta}
\end{align*} \cdots \wedge e^{n} \wedge J e^{n}, ~ l
$$

where \wedge denotes the delation. We here assume $\Omega^{0}=1$. By (3.2) and (3.4), we get

$$
\begin{equation*}
\mu_{1}(\nabla) \wedge \Omega^{n-2}=\frac{(-1)^{n-2}(n-2)!}{32 \pi^{2}}\left(\Sigma R_{a \bar{a} i j} R_{b \bar{b} i j}-2 \Sigma R_{a b i j} R_{\bar{\alpha} \bar{b} i j}\right) \sigma \tag{3.5}
\end{equation*}
$$

(resp. $\mu_{1}\left(\nabla^{\prime}\right) \wedge \Omega^{n-2}=\frac{(-1)^{n-2}(n-2)!}{32 \pi^{2}}\left(\Sigma R_{a \bar{a} i j}^{\prime} R_{b \bar{b} i j}^{\prime}-2 \Sigma R_{a b i j}^{\prime} R_{\bar{a} \bar{b} i j}^{\prime}\right) \sigma$).
In the rest of this section, we assume that M is a $2 n(n \geqq 2)$-dimensional compact almost Kähler manifold. Then it follows that the $2 n$-form $\mu_{1}(\nabla) \wedge \Omega^{n-2}$ $-\mu_{1}\left(\nabla^{\prime}\right) \wedge \Omega^{n-2}$ is exact. Thus, by Stokes' theorem, we get

$$
\begin{equation*}
\int_{M}\left(\mu_{1}(\nabla)-\mu_{1}\left(\nabla^{\prime}\right)\right) \wedge \Omega^{n-2}=0 \tag{3.6}
\end{equation*}
$$

From (3.5) and (3.6), taking account of (2.7), (2.8) and Lemmas 2.3, 3.1, we have finally the following

Proposition 3.2. Let $M=(M, J,<,>)$ be a $2 n(n \geqq 2)$-dimensional compact almost Kähler manifold. Then we have

$$
\int_{M}\left(f_{1}-\frac{1}{2} f_{2}+f_{3}-2 f_{4}\right) \sigma=0 .
$$

§4. Proof of Theorem.

It is well-known that any 2-dimensional almost Hermitian manifold is a Kähler manifold. On one hand, the present author has proved that Theorem is true in the case $\operatorname{dim} M=4$ [6]. So, for the proof of Theorem, it suffices to consider the case $\operatorname{dim} M>4$. Let $M=(M, J,<,>)$ be a $2 n(n>2)$-dimensional compact Einstein almost Kähler manifold. Then we have

$$
\begin{equation*}
\rho(X, Y)=\frac{\tau}{2 n}\langle X, Y\rangle, \tag{4.1}
\end{equation*}
$$

for $X, Y \in \mathfrak{X}(M)$. By (4.1) and Lemma 2.7, we get

$$
\begin{equation*}
\int_{M}\left(f_{1}-2 f_{4}\right) \sigma=-\frac{1}{4} \int_{M} f_{5} \sigma . \tag{4.2}
\end{equation*}
$$

Furthermore, by (2.20), (4.1) and Lemma 2.5, we get

$$
\begin{equation*}
\int_{M} f_{3} \sigma=-\int_{M}\left(\frac{\tau}{n}\|\nabla J\|^{2}+\frac{1}{4 n} f+\frac{1}{2 n}\|\nabla J\|^{4}\right) \sigma . \tag{4.3}
\end{equation*}
$$

Thus, from Proposition 3.2, taking account of (4.2) and (4.3), we have finally

$$
\begin{equation*}
\int_{M}\left(\frac{1}{4} f_{5}+\frac{1}{2} f_{2}\right) \sigma=-\int_{M}\left(\frac{\tau}{n}\|\nabla J\|^{2}+\frac{1}{4 n} f+\frac{1}{2 n}\|\nabla J\|^{4}\right) \sigma . \tag{4.4}
\end{equation*}
$$

From (4.4), taking account of (2.7), (2.21) and Lemma 2.2, we may easily show that if the scalar curvature τ of M is non-negative, then ∇J vanishes identically on M, that is, M is a Kähler manifold. This completes the proof of Theorem.

References

[1] E. Abbena, An example of an almost Kähler manifold which is not Kählerian, Boll. Un. Mat. Ital. (6) 3A (1984), 383-392.
[2] L. A. Cordero, M. Fernandez and A. Gray, Symplectic manifolds with no Kaehler structure, preprint.
[3] L. A. Cordero, M. Fernandez and M. de Leon, Examples of compact non-Kähler almost Kähler manifolds, Proc. Amer. Math. Soc., 95 (1985), 280-286.
[4] S. I. Goldberg, Integrability of almost Kähler manifolds, Proc. Amer. Math. Soc., 21 (1969), 96-100.
[5] S. Kobayashi and K. Nomizu, Foundations of Differential Geometry, II, New York, Interscience, 1969.
[6] K. Sekigawa, On some 4-dimensional compact Einstein almost Kähler manifolds, Math. Ann., 271 (1985), 333-337.
[7] W.P. Thurston, Some simple examples of symplectic manifolds, Proc. Amer. Math. Soc., 55 (1976), 467-468.
[8] F. Tricerri and L. Vanhecke, Curvature tensors on almost Hermitian manifolds, Trans. Amer. Math. Soc., 267 (1981), 365-398.
[9] B. Watson, New examples of strictly almost Kähler manifolds, Proc. Amer. Math. Soc., 88 (1983), 541-544.
[10] K. Yano, Differential geometry on complex ${ }^{7}$ and almost complex spaces, New York, Pergamon, 1965.

Kouei Sekigawa

Department of Mathematics
Faculty of Science
Niigata University
Niigata 950-21
Japan

