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   § 1. Introduction. 

   An almost Hermitian manifold M=(M, J, <, >) is called an almost Kahler 
manifold if the corresponding Kahler form of M is closed (equivalently, 

<(a1J)Y, Z>+<(V J)Z, X)+<(VZJ)X, Y>=O, for all X, Y, ZE (M), where X(M) 
denotes the Lie algebra of all differentiable vector fields on M). By the defini-
tion, a Kahler manifold (aJ=O) is necessarily an almost Kahler manifold. If 
the almost complex structure J of an almost Kahler manifold M is integrable, 
then M is a Kahler manifold [10]. A strictly almost Kahler manifold is an 
almost Kahler manifold whose almost complex structure is not integrable. 
Several examples of strictly almost Kahler manifolds are known [1], [2], [3], 

[7], [9]. By an Einstein almost Hermitian manifold we mean an almost Hermi-
tian manifold which is Einstein in the Riemannian sense. The following con-

jecture is well-known [4], [9] : 

   CONJECTURE. The almost complex structure of a compact Einstein almost 
Kahler manifold is integrable. 

   Concerning this conjecture, some progress has been made under some 
curvature conditions ([4], [6], and etc. ). 

   In this paper, we shall give a partial positive answer to the above conjec-
ture. Namely, we shall prove the following 

   THEOREM. Let M=(M, J, <, >) be a compact Einstein almost Kahler mani-

fold whose scalar curvature is non-negative. Then M is a Kahler manifold. 

   § 2. Preliminaries. 

   In this section, we prepare some elementary equalities which will be used 
in the proof of Theorem in § 1. 
   Let M=(M, J, <, >) be a 2n-dimensional almost Hermitian manifold with 

the almost Hermitian structure (J, <, >) and Q the Kahler form of M defined 
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by Q (X, Y)=(X, JY>, for X, Y (M). In the sequel, we assume that M is 

oriented by the volume form Q=((-1)n/n !)QT. We denote by a, R, p and z 

the Riemannian connection, the curvature tensor, the Ricci tensor and the scalar 

curvature of M, respectively. The curvature tensor R is defined by 

(2.1) R(X, Y)Z = [ax, DY]Z-Q~x,Y~Z , 

for X, Y, Z E X(M). We introduce a tensor field p* of type (0, 2) (the tensor 

field p* is called the Ricci *-tensor [8]) defined by 

(2.2) p*(x, y) = (1/2) trace of (z F--* R(x, Jy)Jz), 

for x, y, z E T pM (the tangent space of M at p), p E M. We denote by z* (z* 

is called the *-scalar curvature) the trace of the linear endomorphism Q* defined 

by <Q*x, y>= p*(x, y), for x, y E TM, pE M. By (2.2), we get immediately 

(2.3) p*(x, y) = p*(Jy, Jx), 

for x, y E TM, p E M. We denote by TM and AkM (k 1) the tangent bundle 

of M and the vector bundle of real exterior k-forms over M, respectively. 

Then we may regard A kM as a Riemannian vector bundle over M in the 
natural way. The curvature operator (also denoted by R) is the symmetric 

endomorphism of the vector bundle A2M of real exterior 2-forms defined by 

(2.4) <R(r(x)A~(y)), c(z)nc(w)> = -(R(x, y)z, w), 

for x, y, z, w E TM, p E M, where denotes the duality : TM_*Al M=T *M (the 

cotangent bundle of M) defined by means of the metric <,)'. For 1-form w, Jw 
is the 1-form defined by Jw(X)=-w(JX), for XE (M). Then we have J(c(x)) 
=c(Jx), for x TM, p E M. Let {e1} be an orthonormal basis of T pM at any 

point p E M. In this paper, we shall adopt the following notational convention : 

(2.5) Rhijk = CR(eh, ei)ej, ek>, 

               Rhijk = <R(Jeh, ei)ej, ek>, 
                                                                                    ............... 

              R~,k = <R(Jeh, Jei)Jej, Jek>, 

                pij = p(ei, ... , p~; = p(Jei, Jej) , 

                 p*ij = p*(ei, ej), ... , p*~, = p*(Jei, Jej), 

              Jij = <Jei, e,>, oiJjk = <(DeiJ)ej, ek>, 

and so on, where the Latin indices run over the range 1, 2, ..., 2n. We get 

easily 

(2.6) QiJm = -'QuJjk. 

Now, we shall define differentiable functions f 1, ... , f on M respectively by
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(2.7) fl(p) = L.~Rabij(Rabij-Raba3) 

            12(P) = L~Raaij(Rbbij-Rbbij) 

           f3(p) = L.~Raaij(QbJik)QbJjk 

          f 4(~) = ~Rabij(QbJik)QaJjk 

           f (p) = ~(C R(ei n ej-Jei AJe'), ea A eb-_ Jea A Jeb>)2 , 

at any point pEM, where ei=c(ei) (1<_i<_2n). We shall evaluate the values of 
the functions f1, , f 4 at each point p M. By the definition of the function 

f 1, we have easily the following 

   LEMMA 2.1. 

    f1(p) = 1 ~<R(e1Aej-Je1AJej), eaAebXR(eiAej-Je1AJe'), JeaAJeb>. 

2 Similarly, taking account of (2.2) and (2.3), we have the following 

   LEMMA 2.2. f 2(p) = 2~(p*i j- p* ji)2. 

   In the rest of this section, we assume that M=(M, J, <, >) is a 2n-dimen-

sional almost Kahler manifold. Then it is known that M is a quasi Kahler 

manifold [10], i. e., 

(2.8) (V 1J)Y+(V JxJ)JY = 0, 

for X, Y (M). 

   LEMMA 2.3. 2(QbJik)(QaJjk)(QaJih)QbJjh = 0 

   PROOF. Taking account of (2.8), we get 

(2.9) L.~(QbJik)(QaJjk)(QaJih)QbJjh = ~(QbJik)(QaJjk)(QaJih)VbJjh 

                               _ -!~(Qb ,Tik)(QdJjk)(QaJih)QbJjh 

                            = -E(QbJik)(QaJjk)(QaJih)QbJjh 

On one ;hand, we get also 

(2.10) ~(QbJik)(QaJjk)(QaJih)QbJjh _ 2(QbJik)(QaJjk)(QaJih)QbJjh 

From (2„9) and (2.10), the lemma follows immediately. Q. E. D. 

   By (2.8), we get 

(2.11) L.i(QaJij)Q5Jij (QaJ~j)Q2J?j = -~(VaJij)QbJij 
                                                                                                 2,) 

Similarly, by (2.6) and (2.8), we get 

(2.12) ~(QjJia)YjJib= ~(QjJia)QjJib= `~(Q,Jia)Q,J1,. 
                    i, j 1,j i, j
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Since M is an almost Kahler manifold, we get 

                    1 ~ v v v (2.13 (viJbk)Ja •v'Jki = (     ) i, j, k ~ ~ 2 i, j, k iJbk- kJbi)Ja~ jJkt 

                           = - 1 (QbJk i)Qa Jk i 
                                          2 i, k 

Similarly, we get 

(2.14) Jbk(QjJaj)QjJki- Jbk(Qafji)QjJki'"- Jbk(QjJia)QjJki 
            i, j, k i, j, k i, j, k 

                   = -1 Jbk(vaJji)(vjJki-viJkj)+ (v J )v J -
                                                                                j as j ab                                       2 i

, j, k 

                    = - 1 ~(QaJij)QbJij+l~(QjJia)QjJib 

From (2.8), taking account of (2.11)(2.14), we get 

(2.15) L+QiaJbi -" j JbkJajQijJki 

                    QiaJbi-~ (viJbk)JajVjJki_i Jbk(QiJaj)QjJki                                   i i,j,k 

                _ -L .~QiaJbi+J(vjJia)vjJib• 
                                  i i, j 

   LEMMA 2.4. P*ab+P*ba = Pab+Pab+ 2 (QjJia)QjJib 
                                                                        i, J 

   PROOF. By (2.2) and the first Bianchi identity, we get 

(2.16) 2P*ab-2Pab = ~' Riiab+~ Riiab 

                                                                '-

On one hand, we get easily 

(2.17) G+QiaJbi-~QaiJbi = Pab+~'Riabi 

From (2.17), taking account of (2.8), we get 

2 (2.1) Riabi = -Pab+~'viaJbi. 

By (2.12), (2.15), (2.16) and (2.18), we get 

(2.19) 2P*ab-2P*ab - 2Pab-2Pab-.L~vaaJbi-~~viaJbi+L.~vib,jai+QtibJai 

                 = 2Pab--2Pab+2 (QjJia)QjJib • 

From (2.19), the lemma follows immediately. Q. E. D.
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   Now, we evaluate the value f 3(p) of the function f g at any point p E M. 

We may choose an orthonormal basis {e1} = {ea, en+a =Jea } (1 <a, 1S _< n) in such 

a way that 

(2.20) j (QjJka)QjJkb = Aaoab, 

where Al=An+~~ We denote by f the continuous function on M 

defined by 

(2.21) 1(P) = (A1-21)2. 

By (2.21), we get 

(2.22) f (p) = 4n Ai-2 ~' Ai2j = 4n ~' Ai-2IIVJIl4(p) 

i 

   LEMMA 2.5. 

         f3(p) = -2~ '°i''(obJik)abJjk 1 f (P)- 1 IIVJII4(P),                               4n 2n 

at any point pEM. 

   PROOF. By (2.7), (2.8), (2.20), (2.22) and Lemma 2.4, we get 

          f3(p) = ~Raaij(Q&Jik)QbJjk 

              = Raai3(QbJik)QbJjk 

               _ -~(p*ij~'p*ji)(QbJik)QbJjk 

               = -2~ `°ti''(QbJtik)QbJ''k- 1 f(p)- 1 IIVJII4(p)                                4
n 2n                                                               Q .E.D. 

   Lastly, we evaluate the value f 4(p) of the function f 4 at any point p E M. 

We denote by the vector field on M defined by 

(2.23) p = ~ ( Rabi,(QbJik)Jjk)ea, at pEM. 
                                      a b, 2, j, k 

From (2.7) and (2.23), by the direct calculation, we have easily the following 

   LEMMA 2.6. 

             f 4(p) = (dlv )(p)+L.i(Qipbj Qjpbi)(QbJik)Jjk 

                  + 1 ~(<R(eiAej-Je~AJe'), eaAeb>)2. 

4 By Lemmas 2.1, 2.6, and (2.7), we have the following immediately 

   LEMMA 2.7. 

     f 1(p)-2f4(p)=-2(dly )(p)- 1 f 5(p)-2~(Qp                                        i bj-Qjpbi)(QbJik)Jjk 4
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   § 3. An integral formula. 

   In this section, we establish an integral formula on a compact almost Kahler 

manifold which plays an essential role in the proof of Theorem in § 1. 

First, we start with a general almost Hermitian manifold M=(M, J, <, >). 

We assume that dim M= 2n >_4. We denote by V' the linear connection on M 

defined by 

(3.1) V~Y = VxY- 1 J(V1J)Y 

2 for X, Y E(M) [10]. Then we may easily check that both of the Riemannian 
metric <,> and the almost complex structure J are parallel with respect to the 
linear connection V'. Furthermore, by direct calculation, we have the following 

   LEMMA 3.1. The curvature tensor R' of the linear connection V' is given by 

   R'(X, Y)Z = (R(X, Y)Z-JR(X, Y)JZ)-1((V1J)(VYJ)Z-(VYJ)(VXJ)Z), 
            2 4 

for X, Y, Z E BE(M). 

   We denote by p1(V) (resp. ,u1(V')) the first Pontrjagin form corresponding to 

the metric connection V (resp. V'). Then, by the well-known Chern-Weil theo-
rem, the first Pontrjagin class p1(M) of M is represented by the 4-form p1(V) 

(resp. p1(V')) in the de Rham cohomology group. The 4-form p1(V) (resp. p1(V')) 
is given by 

(3.2) p1(Q) = 1 ~RabijRcai''eanebnec%ed                  p 322 

(resp. p1(V') = 1 Rabi jRcai jeanebnecAed), at any point pEM, [5]. Let           p 322 ~ ~ 

{ ei } be an orthonormal basis of the tangent space T pM of the form {e1} = 

{ea, Jea } . Then we get 

(3.3) Q = --~ e"AJea. 

a From (3.3), we get easily 

(3.4) Qn-2 = (-1)n-2(n_2) a~ e'AJe1n ... 

                    neap Jean... neon Je~A ... AenA Jen 

where ^ denotes the delation. We here assume Q°=1. By (3.2) and (3.4), we 

get
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(3.5) 'a1(Q)AQn-2 = 32n2                       (-1)n-2(n-2) 1(~Raai''Rb§ij-2~RabijRabij)t , 

(resp. l1(V')/~ Qn-2 = (-1)2(n _2) ~ (~Raaa,Rbba,-2~Rabi Rdbi ')a)~ 322c2 ~ 3 

   In the rest of this section, we assume that M is a 2n(n>_2)-dimensional 
compact almost Kahler manifold. Then it follows that the 2n-form p1(Y) n Q n-2 
-p1(Q') A QTh 2 is exact. Thus, by Stokes' theorem, we get 

(3.6) M(~1(p)-1(p'))~~n-2 =0. 

From (3.5) and (3.6), taking account of (2.7), (2.8) and Lemmas 2.3, 3.1, we 
have finally the following 

   PROPOSITION 3.2. Let M=(M, J, <, >) be a 2n(n>_2)-dimensional compact 
almost Kahler manifold. Then we have 

                        Mf 1 ,f 2 +,f 3- 2f 4 a= 0. 2 

   § 4. Proof of Theorem. 

   It is well-known that any 2-dimensional almost Hermitian manifold is a 
Kahler manifold. On one hand, the present author has proved that Theorem 
is true in the case dim M=4 [6]. So, for the proof of Theorem, it suffices to 
consider the case dim M>4. Let M=(M, J, <, >) be a 2n(n >2)-dimensional 
compact Einstein almost Kahler manifold. Then we have 

(4.1) p(X, Y) = z <X, Y>,                          2n 

for X, YE~E(M). By (4.1) and Lemma 2.7, we get 

(4.2) (f1-2f4)6 = -1 f5Q .                       M 4M 

Furthermore, by (2.20), (4.1) and Lemma 2.5, we get 

(4.3) f3Q = - II 7J112+ 1 f+ 1 IIvjl4 ~.                 M M n 4n 2n 

Thus, from Proposition 3.2, taking account of (4.2) and (4.3), we have finally 

(4.4) (--f5 + 1 f2 q= z I vJII2+ 1 f+ 1 IIvjI 4 0.           M 4 2 M n 4n 2n 

From (4.4), taking account of (2.7), (2.21) and Lemma 2.2, we may easily show 

that if the scalar curvature v of M is non-negative, then aJ vanishes identically 

on M, that is, M is a Kahler manifold. This completes the proof of Theorem.
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