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   1. Introduction. 

   This paper extends some results of [2, 3, 6]. We have an interest in the 
invariant subspace structure of certain subalgebras of von Neumann algebras 
constructed as crossed products of finite von Neumann algebras by trace-preserv-
ing automorphisms. These subalgebras were studied systematically by McAsey, 
Muhly and the second author (and by others) [2, 3, 4, 5, 6, 7, etc.] under the 
name "nonselfadjoint crossed products" ; nowadays, for a variety of reasons, we 
call them "analytic crossed products". 

   In this paper, our setting is the following. Let (X, p) be a a-finite standard 
Borel space and let z be an invertible measure-preserving ergodic transformation 
on X. Then z induces uniquely a unitary operator u on L2(X, p) such that 

(ux)(t)=x(T-1t), x E L°°(X, 1c)nL2(X,'u). Form the Hilbert space L2=12(Z) 
®L2(X, p) and consider the operators Lx, x E L°'(X, p) and La defined on V 
by the formulae Lx=I®x and La=S®u where S is the usual shift on 12(Z). 
Then the von Neumann crossed product determined by L°°(X, p) (=M) and is 
defined as the von Neumann algebra 3 on V generated by { Lx : x E L°°(X, 4} 

(=L(M)) and La, while the subalgebra which we call an analytic crossed pro-
duct is the o-weakly closed subalgebra 3+ generated by L(M) and the positive 

powers of La. Let H2 be the subspace 12(Z+)®L2(X, ~i) of L2, where Z+= 
{n n >_O } . We shall denote by Lat(3+) the set of all invariant subspaces 
9)1 under £+ such that fnz0La fit= {0}. 

   In [2, 3], McAsey introduced the notion of canonical models for Lat(+). 
That is, a family of left-pure, left-full, left-invariant subspaces { 9 i } jEl in Lat(3+) 
constitutes a complete set of canonical models for Lat(3+) in case (a) for no two 
distinct indices i and j, Pea is unitary equivalent to P~~ by a unitary operator 
in 91 (='); and (b) for every 9)1 in Lat(+), there is an i in 1 and a partial 
isometry V in 991 such that VP iV *=P~, so that 9)1= V9J12. Let M=1°%X ), 

 where X is a finite set with elements t0i t1, • • • , t k _ 1 and let v be the permuta-
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tion of X defined by v(t1)=t1+1 (i~ k-1) and z(tk_l)=to. Then McAsey [4] 

studied a complete set of canonical models for Lat(3+) which consists of two-

sided invariant subspaces of L2. Further, Solel [6] studied a complete set of 

canonical models for Lat(+) in case (X, p) is a non-atomic standard Borel space 

with a finite measure p. We refer the reader to [1, 5, 7, etc. ] concerning in-

variant subspace structure in more general framework. 

   In this paper, we consider a complete set of canonical models for Lat(+) 
in the following setting. Let X be a standard Borel space with a Q-finite 

infinite positive measure ~i, that is, p(X )= oo. Let r be an invertible measure-

preserving ergodic transformation on X. First we shall prove that, for every 
Z+U { oo }-valued measurable function m on X, there exists a left-pure, left-

invariant subspace 1Y of L2 with the multiplicity function n. As a corol-

lary, we can construct a left-pure, left-full, left-invariant subspace 1L of L2 

such that m(t)=oo for almost everywhere t in X where m is the multiplicity 
function of D1,. Therefore, we have that, for every non-zero J E Lat( +), there 

exists a partial isometry V in such that VP~~V *=Pj, so that J= VJJL. 

This implies that the complete set of canonical models is the singleton { B } in 

this case. Finally we shall consider the structure of two-sided invariant sub-

spaces of L2 and the case that (X, p) is an atomic measure space. 

   2. Definitions and preliminaries. 

   Let (X, p) be a Q-finite standard Borel space with p(X )= oo. Let z be an 

invertible measure-preserving ergodic transformation on X. Using the product 

of the counting measure on the integers Z, and the measure p on X, we may 

realize Z X X as a measure space. The space L2(Z X X) of all measurable func-

tions on ZX X satisfying 

                     If (n, t) I2dp(t) < ,                                nEZ X 

is a filbert space with inner product 

         (f, g) = f (n, t)g(n, t)dp(t), f, g~ L2(ZX X) . 
                         nEZ X 

We shall denote it by L2. Define the following bounded linear operators on L2; 

                (Laf)(n, t) = f (n-1, z-lt) 

               (Raf)(n, t) = f (n-1, t) 

              (L0 f)(n, t) = ~b(t)f (n, t) , cE L°°(X) 
and 

              (R~f)(n, t) = c(z"nt)f (n, t), c L°°(X).
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Note that Ld and R~ are unitary operators on L2. Put M=L°°(X). Let L(M) 

(resp. R(M)) denote the algebra generated by {L : ~5EM} (resp. { R¢ : E M } }. 
Clearly L(M) and R(M) are abelian von Neumann algebras. The left (resp. 
right) von Neumann crossed product of L°°(X) by r is defined as the von Neu-
mann algebra 3 (resp. R) generated by L(M) and Ls (resp. R(M) and R5). 

Define the left (resp. right) analytic crossed product as the Q-weakly closed 
subalgebra £+ (resp. ~R+) generated by L(M) and Lb (resp. R(M) and R5). 

Furthermore, we define H2` { f E L2 : f (n, •)=0, n <o}. 

   DEFINITION 2.1. Let be a closed subspace of L2. We shall say that2 

is left-invariant if + C , left-reducing if I CJ, left-pure if 1J contains no 

non-trivial left-reducing subspace and left-full if the smallest left-reducing sub-

space containing is L2 itself. The right-hand versions of these concepts are 

defined similarly, and a closed subspace which is both left- and right-invariant 

will be said to be two-sided invariant. 

   In this paper, all results will be formulated in terms of left-invariant sub-

spaces. We leave it to the reader to rephrase them to obtain "right-hand" 

statements. 
   An important tool for dealing with invariant subspaces is the notion of 

multiplicity function introduced in [2, 3]. To obtain it, note that the space L2 

may lie identified with the direct integral X12(Z)dp(t), and the algebra L(M)', 
acting on it, may be identified with 

XB(12(Z))dp(t), where B(12(Z)) is the alge-
bra of all bounded linear operators on 12(Z). Let be a left-invariant subspace 

of L2. Then the orthogonal projection P~ on D1eLb ) = lies in L(M)', so it 

is written as a direct integral 
XP(t)dp(t), where P(t) is a projection in B(12(Z)) 

for almost everywhere t E X. We define the multiplicity function m by letting 

m(t) be the dimension of the range of P(t). Then it is cleart hat m is a meas-
urable function on X with values in Z+kJ { oo } . By [3, Theorem 3.4], we have 

the following proposition. 

   PROPOSITION 2.2. For i=1, 2, let J~ be a left-pure, left-invariant subspace 

of L2. Let i= iOLb z and m1 the multiplicity function of z. Then the 

following statements are equivalent : 
   (1) P~1=VP 2V* for a partial isometry V in 1t, so that jii1=VjJi2i 

   (2) m1(t)m2(t) a. e., and 

   (3) P51<P52 in L(M)'. 

   Let B1 be a left-pure, left-invariant subspace of L2. We shall denote the 

multiplicity function by m[9Jt](t) in this note.
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   3. Invariant subspace structure. 

   Keep the notations and the assumptions in § 2. Our aim in this section is 
to construct a left-pure, left-full, left-invariant subspace of L2 such that the 
multiplicity function m(t)=oo for almost everywhere t in X. To do this, we 

need some lemmas. 

   LEMMA 3.1. Let {JJ1i}2EI is a finite or countable collection of left-pure, left-
invariant subspaces of V such that is orthogonal to f1;, for i * j. Then 
 =L .~iEI®i is a left-pure, left-invariant subspace with the multiplicity function 
m[g](t)=~tiErm[ 1](t), a. e. 

   PROOF. See [6, Lemma 3.1]. 

   Let XE be a characteristic function of a measurable subset E in X. We 
define a projection P in L(M)' by 

                          X(t)f(0 E, t), n=0, 
              (Pf)(n, t) =                              0

, n*0. 

Let En be the projection on V defined by the formula 

                             f (k, t) , k=n, 
              (Enf)(k, t) = 

                             0, k*n. 

Since P<_ Eo and since { La Eo La n } nEZ is mutually orthogonal, { La PLs n } fEZ is 
mutually orthogonal. We define a subspace 9)1(E) of V by 91(E)= 

~~=o®(L5 PLa n)L2. As in [6, Lemma 3.2] and [5, Lemma 5.1], we have 

   LEMMA 3.2. (i) 9)1(E) is a left-pure left-invariant subspace of H2 with the 
multiplicity function XE(t). 

   (ii) I f a(E)<oo, then 9)1(E) is the closed linear span of { La L eo : ~5E L°°(X, iu), 
n0}, where eo(n, t)=0 i f n=/=0 and eo(0, t)=XE(t). 

   Let E and F be measurable subsets of X such that there are measurable 
subsets {E}0 n n=and { Fn } n=o with the following properties : 

   (1) En C E and Fn C F, n0,                                >_

(2) EnfE,n = FnnF,n = 0 , n *m , 

   (3)~r'l-~(E\ U En) = (F\ U Fn) = 0, and 
                  n=o n=o 

   (4) Fn = T n(En) , n0.                    ~

Then we have the following lemma.
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   LEMMA 3.3 ([6, Lemma 3.4]). U=~k OLXFkLS is a partial isometry in 3+ 
with the initial projection LXE and the final projection LXF. 

   By the proof of [6, Lemma 3.5] and [5, Lemma 5.4], we have 

   LEMMA 3.4. Let E, F, {En}, {Fn} be as (1)'(4) in the above. Suppose that 

p(E)=~c(F)<oo. Then there exists a left-pure, left-invariant subspace 9fl of iJ1(E) 
such that m[JJ1](t)=XF(t) a. e. and nEzLPaLP=RxE where 

   Let be a left-pure, left-invariant subspace of L2. Then m[O](t) is a 
measurable function with values in Z+U { oo }. Conversely, we have the following 

   THEOREM 3.5. Let m be a measuable function on X with values in Z+U{oo}. 
Then there exists a left-pure, left-invariant subspace 1J1 of L2 with the multiplicity 

function m(t). 

   PROOF. Put En={tEX: m(t)>_n} for all n€ Z+U{oo}. Then En is a 
measurable subset of X and m(t)=~n=1XEn(t). If i(En)=oo, by the Q-finiteness 
of ;u, there exists a family { En k } k 1 of mutually disjoint measurable subsets of 
X such that p(Enk)<oo, for all k, and such that En=Jk 1Enk. Therefore we 
may rewrite 

                m(t) _ 2 XE, (t), p(En)<oo, n>_1. 
                                          n=1 n 

At first, put F1=Ei. Define the set {F2k'}k 0 and {G2k'}k °, inductively as fol-
lows. For k=0, let FZ°'=EZn(X\F1) and GZ°'=F2°'. For k>_1, put 

                                                      k-1 k-i 

             F2k) = r-k(E2\ U G2n))n(X\ U F2n))n(X\F1) 
                                            n=o n=o 

and 
                         GZk) = rk(F2k') . 

Then { FZ k' } k ° and {G}°0 Z k > are mutually disjoint respectively. Put F2= 

Uk °FZk' and G2=U°G2k'. Then F1fF2=Q and G2CE2. For k>_1, we have 

         0 = F2k)n(X\FZk>) 

                                          k-1 k-1 

           =r-k(E2\ U G2n))n(X\ U F2n))n(X\FI)n(X\FZk>) 
                                        ra=0 n=o 

                                      k-1 k-1 

           = r-k(E2\ U G2n))n(X\ U F2n))n(X\F1) 
                                  n=0 n=0 

             r-k(E2\G2)n(X\F2)n(X\FI) 

           = r-k(E2\G2)n(X\(F1UF2)) . 

Thus r-k(E2\G2)CFiUF2 for all k>_1. Put K=Uk 1r-k(E2\G2). Then r-1(K)C 

KCFIUF2. Since r is measure-preserving and p(F1UF2)<oo, p(K\r-1(K))=O
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and so z-1(K)=K a. e. Thus p(K)=0. This implies that p(EZ\G2)=0. Thus 

{F}0 2 k' k and {G}°0 Z k' satisfy the following conditions : 

   (1) F2= F2k' and EZ = G2k' a. e., and 
                    k=0 k=0 

   (2) GZk' = zk(FZk'), k?0. 

Inductively, we can define the measurable subsets {F}1, n n={F}_1 and {G}=1 

with the following properties : for n >_ 1, 

   (1) Fn = Fnk', Fnk'fFnk'' = O (k~k') and En = Gnk), 
                     k=0 k=0 

   (2) Gnk' = rk(Fnk)), k?0, Gnk'nGnk'' = 0 (k* k') and 

   (3) FnfFm = 0, for nom. 

By Lemma 3.4, there exists a left-pure, left-invariant subspace s of !J1(Fn) such 
that 9n[iJIn](t)=XEn(t). Since {Fn}n=1 is mutually disjoint, the family {J1(Fn)}n=1 

of left-pure, left-invariant subspaces of L2 is mutually orthogonal. Put = 

~n=1E JL By Lemma 3.1, is a left-pure, left-invariant subspace of L2 and 

            m[3](t) = m[J1n](t) = X(t) = m(t). 
                                       n=1 n=1 

Thus the multiplicity function of 1J is m. This completes the proof. 

   COROLLARY 3.6. Let m be a measurable function on X such that m(t)=oo 

for almost all t E X. Then there exists a left-pure, left-full, left-invariant sub-
space XL o f L2 such that m ['iJJ~] (t) = oo for almost all t X. 

   PROOF. Since (X, i) is Q-finite, there exists a family { En } n=1 of measurable 
subsets of X such that X=Un=1En, EicE2C and p(En)<oo, n>_1. 
Then we have m(t)=~n=1XE'n(t)=oo a. e. Let {Fn}n=1 be the family of mutually 

disjoint measurable subsets of X as in the proof of Theorem 3.5. Thus there exists 
a left-pure, left-invariant subspace 1J1 of L2 such that m[](t)=oo, for almost 
all tin X and ~nEzL~ P LC n=RzUn_1 Fn' where =~eLo. Put F0=X \Un=1Fn. 
Define =J1(F0)®lJL It is clear that L is a left-full, left-pure, left-invariant 
subspace of L2 such that m[L](t)=oo. This completes the proof. 

   By Corollary 3.6, we can construct a left-pure, left-full, left-invariant sub-
space of L2 such that m(t)=oo for almost all t c X. We denote this space by 
1L. Then we have the following theorem. 

   THEOREM 3.7. Let WI be a left-pure, left-invariant subspace of L2. Then 
there exists a partial isometry V in t such that P~= VP~~V *, so that WI = VW~. 

   PROOF. Since m [W2] (t) < oo =m [W~] (t), Proposition 2.2 implies the conclusion.
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   4. Remarks. 

   In this section, we shall remark the structure of two-sided invariant sub-

spaces of L2. Keep the notations and the assumptions as in § 2 and § 3. 

   At first, we suppose that (X, p) is non-atomic and p(X)=oo. As in the 

proof of [6, Theorem 4.1], we have the following theorem. 

   THEOREM 4.1. Let m(t) be a non-zero measurable function with values in 

Z+U{oo}. Then there is a two-sided invariant subspace Y)1 with multiplicity func-

tion m(t) i f and only i f there is a measurable function d on X with values in Z 

such that d(t)-d(T-1(t))=1-m(t) a. e. and I d(t) I <oo a. e. 

   By Theorem 4.1, if m(t) is a multiplicity function of a two-sided invariant 

subspace of L2, then a(m-1({ oo } )) =0. However, by Corollary 3.6, we can 
construct a left-pure, left-full, left-invariant subspace 9L such that {t E X : 

m[ L](t)=oo}= X. Thus, 1L is not two-sided invariant. Therefore, it is im-

possible to find a complete set of canonical models among the two-sided invari-
ant subspaces. 
   Finally, we suppose that (X, 4a) is atomic and i(X)=oo. Thus the space X 

is countably discrete. Let X = { x n } n=_~ and the map z will be the translation 

r(x)=x+1 of X. In this case, McAsey studied the structure of invariant sub-

spaces in [2, Chapter IV]. He considered the four classes of all non-negative 

Z+U { ao }-valued functions on X. A function m from X to Z+U { oo } is of type 
0 (resp. 1, 2) in case the cardinality of the set m-1({ oo }) is 0 (resp. 1, 2). Such 

a function is of type 3 in case the cardinality is greater than or equal to 3. 

Further, he defined the notion of admissible functions. That is, the function m 

from X to Z+U { oo } is an admissible function in case m is either of 

   i) type 0, or 

   ii) type 1 (suppose m(xk)=oo) and one of the following conditions holds : 

      a) supp m= { x k }, 
     b) supp mC{xk}UC and supp m~ {xk}, 

     c) supp mC { x k } UD and supp m * { x k }, 

where C={xk-1, xk-2, xk-3, "'} and D={xk+1, xk+2, xk+3, 

   iii) type 2 (suppose that m(xk)=m(x;)=oo, j>k) and supp mn(CUE)=O, 

where C= { x k _1, x k _2i x k _3, .. } and E = { x2+1, x;+2, x;+3, ' .. } . By [1, Theorem 

4.13], a function m from X to Z+U { oo } is an admissible multiplicity function 
if and only if it is the multiplicity function of a two-sided invariant subspace. 

However, in § 3, we constructed a left-pure, left-full, left-invariant subspace L 

such that m[L](xk)=oo for all kEZ. Of course, YL is not two-sided invariant.
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