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1. Notation and the result.

Let / be an odd prime number and let 2 be an algebraic number field of
finite degree. For an integer :>0, let {; denote a primitive /*-th root of unity
and put k;=Fk({;). For an ideal a of %, let k(a) denote the group of elements
of % prime to a and let 2, denote the ray number group of 2 modulo g, i.e.,
k,={xek(a) | x=1 mod a}. Further, let I(a) (resp. P(a)) denote the group of
ideals (resp. principal ideals) of % prime to a, and P, the ray ideal group of %
modulo a, i.e., P,={(x)| x=k,}. Moreover let P, (resp. k) denote the group
of elements of P(a) (resp. k(a)) whose order modulo P, (resp. k,) is prime to
I. The purpose of this note is to prove the following.

THEOREM. Assume &k and ki+#k,. Let

g
l1—>N—>M—I]/P—1

be an abelian extension of the ideal class group I/P of k by a finite abelian [-group
N. Then there exist infinitely many ideals S of k which satisfy the following:
there is an isomorphism @ :I1(S)/Ps—M such that @ induces an isomorphism
@ : P(S)/Ps—N and the diagram

1— P(S)/Ps — I(S)/P§ —> I/P—>1

[ m [ H

1— N — M —IJ/P—1

commutes.

2. Proof of the theorem.

Let (@)i=,...s and (b;);=s,...» be bases of M and N, respectively. Choose dis-
tinct prime ideals ay, .-+, a, prime to / which represent g(a,), ---, g(as), respec-
tively (if g(a;)=1, then choose an arbitrary principal prime ideal a;). Put A=
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{ay, ---, a;» (the ideal group generated by a,, ---, a;). Since A is free, we can
define an epimorphism f: A—M by setting f(a;)=a;. Then f induces an epi-
morphism f: ANP—N. Indeed, if b=Il;a%= ANP, then g(f(b)=gL:as)=
(IT:;a% mod P)=1, hence we see f(b)eN. Conversely, if b=II;a*< N, then 1=
g)y=g(IT:;a%)=TI;a¢ mod P), and so II:;a¢cP. Thus for b=IL;a¢c ANP we
have f(6)=b. Therefore, since ker (f)CANP, we have a commutative diagram

1— ANP/ker(f) —> A/ker(f) — A/ANP—1

[ [ [

1— N — M — I/P —>1,

where A/ANP—I/P is the natural injection.

Let F={xck | (x)e ANP}, then F is finitely generated and F/E, is free
since ANP is a finitely generated free abelian group, where E, denotes the
group of units of k.. Hence there exists a direct decomposition F=FE DD such
that D=Z™ for some positive integer m. Let ¢: F—>ANP/ker(f) be the epi-
morphism defined by ¢(x)=[(x) mod ker(f)]. Let N,=["i be the order of b, for
7=1, -, r. Put Ny=max N;. Since fep:F—N is an epimorphism and E,C
ker (f-¢), we can choose elements 8; (y=1, :--, r) of D with f(¢(B8,))=b;. Let
Fy={B1, =, B>, then DCF,-ker(f-¢p) since f(p(D))=f(¢p(Fy))=N. Moreover,
since {f(¢(B)}j=1,..r is a basis of N and D/D¥o=(Z/N,Z)™, we have a direct
decomposition D/D¥o=(F,-D¥o/DVNo)P(F”-D¥o/DVo) with F”Cker (fep). Put
F'=F"-E,-F¥o, F'=F’/F¥o, and {(B;>={B8,5F¥o/F¥. Then F/F¥={B,>P{Bs>
P -+ BBHPF’ with fep(F)=1. Furthermore, put F;=<{By, -, Bj-1, Bjs, -
B>+ F’ for j=1, -, 7.

Now, by assumption, we can choose prime ideals p,, -, p, of £ which
satisfy the following conditions: For j=1, ---, », it holds that (i) p; is prime
to / and ay, -, a;; (ii) the decomposition field of a prime divisor of p; in
knYiNF)/k is kn(Yiv/F;); (iii) a prime divisor of p; in kn; inerts in k,4;. To
see this, we first note k,+ k, implies k;# k;4, for i=1, 2, ---. Moreover we see
that />2 implies F¥i=FNk;Ys. Indeed, if x=y¥ieF for ye ka; then by [1,
Satz 1] there exists an element ¢ of %k such that x=c?¥i. On the other hand,
since xF, we can write (x)=(c)¥i=TI;a%. Here we note that a; are distinct
prime ideals of %, so that we have Njle; and (¢)=TI:a¢/¥ic A. Thus we ob-
tain ce F and x=cY/eF¥s. Hence we have a natural isomorphism F/F¥i=
F/(FNk3Y)=F-k;Yi/k3Y4, and so Gal(knj(Nf\/F)/knj) is isomorphic to the dual
of F/F¥i, Furthermore knj(” ia/F) and kaj+: are linearly disjoint over k. In
fact, if kn;+:C knj(” iv/F), then we can choose an element x of F such that %, 41
=kn(A/x). Since ky;+1/k is an abelian extension, it follows that k(4/x)/k is a
cyclic extension of degree /; in particular, 2(4/x) contains {;. On the other hand,

’
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[k(&,): k] divides /(—1, and hence from [k(3/x): k]=[ we see that {;k, which
contradicts the assumption. This proves that %, j(N ia/F)and kz;+1 are linearly dis-
joint overk, . Therefore we can take elements ¢ and 7 of Gal(, j+,(N iv/'F)/ k) such
that <6>=Gal(kn1:("IVF)/ kn;si(VI~Fy) and <t>=Gal(kn;:("IVF)/ ka (VIv/F)).
Put p=o7 and let K be the fixed field of <p). Then k,..(*/v/F)/K is cyclic
of degree N,. Hence by the Cebotarev density theorem we can choose a prime
ideal PB; of knj“(Nfﬁ) prime to a,, ---, a;, and / such that the decomposition
group of P; is <p>. Put p;=P,Nk. Then p; satisfies (i), (ii), and (iii).

Put S=p, -+ p,. We prove this S satisfies the conditions of our theorem.
First we see the following: (1) #(k(pj)/k{,j):Nj; (2) chk{,j; 3) F'Ck%, in
particular, E,Cks, i.e., P(S)/Ps=k(S)/ks; (4) F- k{,j/k,’,j:<‘3,~>k{,j/k$j is cyclic
of order N;; (5) F-ks/ks=II,(F- kéj/k{,j) (direct product). Indeed, from (ii) and
(iii) we see that p; is completely decomposed in knj but not in knjﬂ, so that
(1) holds by [2, Teil I, Satz 19, S.39]. Let P be a prime divisor of p; in &y,
Then, as is easily seen, kn(B)/(kn)p=k(p;)/ky; and kN(k.)p=Fk,;, since p; is
completely decomposed in knj. Therefore using (1) we have that, for x < k(p;),
x is Njth power residue modulo P in knj if and only if xe k(,j. Hence, by
Kummer Theory (e.g. see [2, Teil II, S. 45]) x€k;, if and only if p; is com-
pletely decomposed in knj(Nj\/x“)/k, and so we have (2) and (3) from (ii).
Furthermore (4) follows from (1) and (2), because we know by (ii) that B; is
not /-th power residue modulo p;. Finally we check (5). Clearly the natural
homomorphism: F- ks/ks—TI;(F- k{,j/k;j) is injective. Moreover, using the direct
decomposition F/FYo=(3>@ --- B{F,>DF’ and (4), we see this is surjective, so
that (5) holds.

Next we prove ker(f)=ANPs. If IT;akie P, then IT;aki=(x) for x&€ FNks%.
Here we write x=II;85y with yeF’. Since f(p(y)=1, we see feop(x)=
II;fo@(By4, i.e., Tlali=II;¥. On the other hand, x, ye ks implies TI;8%
€ ks, so that N;|¢; by (2), (4) and (5). Hence we obtain IT;a}i=I];b{=1, which
shows ANPsCker(f). In particular, #(ANP/ANPg)=#(ANP/ker (f))=#(N).
On the other hand, using (1)~(5), we see ANP/ANPs=F/FN\ks=F-ks/ks=
TL(F- ki /) =TLi< B k) ks )= TL k(D)) ki, = (S)/ Rs= P(S)/P§.  In particular,
#(ANP/ANP§)=#(P(S)/P$)=II;N;=#(N). Thus we have ker (f)=ANPs.

Therefore we obtain a commutative diagram :

1— P(S)/Ps —> I(S)/Ps — I/P —>1

| | I

1— ANP/ANPs —> A/ANP§ —> A/ANP—>1

[ [ m I

1 —> N — M — /P —>1.
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Since ANP/ANP;=P(S)/Ps, we see by the diagram that the natural injection :
A/ANP{—I(S)/P§ gives an isomorphism. Thus we obtain an isomorphism
@ : I(S)/Pi—M, as required. This proves the theorem.

3. Remark.

The assumptions {,¢& 2 and k,# k, are necessary for the theorem. However
we can prove similarly without these assumptions that for an arbitrarily given
abelian extension M of the ideal class group I/P of k by a finite abelian /-
group N there exist infinitely many tamely ramified abelian extensions K/k
which satisfy the following: (1) K coincides with the genus field of K/k (i.e.,
the maximal abelian extension of %2 contained in the Hilbert class field of K);
(2) there exists an isomorphism @ : Gal(K/k)—M inducing an isomorphism
Gal(K/E)—N, which makes the diagram

1 — Gal(K/k) —> Gal (K/k) —> Gal(k/k) —> 1

l l l

11— N — M —> /P —1

commutative, where %z denotes the Hilbert class field of k.
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