A note on *l*-parts of ray class groups

By Teruo TAKEUCHI

(Received Feb. 19, 1986)

1. Notation and the result.

Let l be an odd prime number and let k be an algebraic number field of finite degree. For an integer i > 0, let ζ_i denote a primitive l^i -th root of unity and put $k_i = k(\zeta_i)$. For an ideal \mathfrak{a} of k, let $k(\mathfrak{a})$ denote the group of elements of k prime to \mathfrak{a} and let $k_\mathfrak{a}$ denote the ray number group of k modulo \mathfrak{a} , i.e., $k_\mathfrak{a} = \{x \in k(\mathfrak{a}) \mid x \equiv 1 \mod \mathfrak{a}\}$. Further, let $I(\mathfrak{a})$ (resp. $P(\mathfrak{a})$) denote the group of ideals (resp. principal ideals) of k prime to \mathfrak{a} , and $P_\mathfrak{a}$ the ray ideal group of kmodulo \mathfrak{a} , i.e., $P_\mathfrak{a} = \{(x) \mid x \in k_\mathfrak{a}\}$. Moreover let $P'_\mathfrak{a}$ (resp. $k'_\mathfrak{a}$) denote the group of elements of $P(\mathfrak{a})$ (resp. $k(\mathfrak{a})$) whose order modulo $P_\mathfrak{a}$ (resp. $k_\mathfrak{a}$) is prime to l. The purpose of this note is to prove the following.

THEOREM. Assume $\zeta_1 \notin k$ and $k_1 \neq k_2$. Let

$$1 \longrightarrow N \longrightarrow M \xrightarrow{g} I/P \longrightarrow 1$$

be an abelian extension of the ideal class group I/P of k by a finite abelian l-group N. Then there exist infinitely many ideals S of k which satisfy the following: there is an isomorphism $\Phi: I(S)/P'_S \rightarrow M$ such that Φ induces an isomorphism $\Phi: P(S)/P'_S \rightarrow N$ and the diagram

commutes.

2. Proof of the theorem.

Let $(a_i)_{i=1,\dots,s}$ and $(b_j)_{j=1,\dots,r}$ be bases of M and N, respectively. Choose distinct prime ideals a_1, \dots, a_s prime to l which represent $g(a_1), \dots, g(a_s)$, respectively (if $g(a_i)=1$, then choose an arbitrary principal prime ideal a_i). Put A=

This research was partially supported by Grant-in-Aid for Scientific Research (No. 61540022), Ministry of Education, Science and Culture.

T. TAKEUCHI

 $\langle \mathfrak{a}_1, \cdots, \mathfrak{a}_s \rangle$ (the ideal group generated by $\mathfrak{a}_1, \cdots, \mathfrak{a}_s$). Since A is free, we can define an epimorphism $f: A \to M$ by setting $f(\mathfrak{a}_i) = \mathfrak{a}_i$. Then f induces an epimorphism $f: A \cap P \to N$. Indeed, if $\mathfrak{b} = \prod_i \mathfrak{a}_i^{\mathfrak{e}_i} \in A \cap P$, then $g(f(\mathfrak{b})) = g(\prod_i \mathfrak{a}_i^{\mathfrak{e}_i}) = (\prod_i \mathfrak{a}_i^{\mathfrak{e}_i} \mod P) = 1$, hence we see $f(\mathfrak{b}) \in N$. Conversely, if $b = \prod_i \mathfrak{a}_i^{\mathfrak{e}_i} \in N$, then $1 = g(b) = g(\prod_i \mathfrak{a}_i^{\mathfrak{e}_i}) = (\prod_i \mathfrak{a}_i^{\mathfrak{e}_i} \mod P)$, and so $\prod_i \mathfrak{a}_i^{\mathfrak{e}_i} \in P$. Thus for $\mathfrak{b} = \prod_i \mathfrak{a}_i^{\mathfrak{e}_i} \in A \cap P$ we have $f(\mathfrak{b}) = b$. Therefore, since ker $(f) \subset A \cap P$, we have a commutative diagram

$$\begin{split} 1 &\longrightarrow A \cap P/\ker(f) \longrightarrow A/\ker(f) \longrightarrow A/A \cap P \longrightarrow 1 \\ & & \downarrow \mathbb{R} & & \downarrow \mathbb{R} \\ 1 &\longrightarrow N & \longrightarrow M & \longrightarrow I/P & \longrightarrow 1, \end{split}$$

where $A/A \cap P \rightarrow I/P$ is the natural injection.

Let $F = \{x \in k \mid (x) \in A \cap P\}$, then F is finitely generated and F/E_k is free since $A \cap P$ is a finitely generated free abelian group, where E_k denotes the group of units of k. Hence there exists a direct decomposition $F = E_k \oplus D$ such that $D \cong \mathbb{Z}^m$ for some positive integer m. Let $\varphi: F \to A \cap P/\ker(f)$ be the epimorphism defined by $\varphi(x) = [(x) \mod \ker(f)]$. Let $N_j = l^{n_j}$ be the order of b_j for $j=1, \dots, r$. Put $N_0 = \max N_j$. Since $f \circ \varphi: F \to N$ is an epimorphism and $E_k \subset$ $\ker(f \circ \varphi)$, we can choose elements β_j $(j=1, \dots, r)$ of D with $f(\varphi(\beta_j)) = b_j$. Let $F_0 = \langle \beta_1, \dots, \beta_r \rangle$, then $D \subset F_0 \cdot \ker(f \circ \varphi)$ since $f(\varphi(D)) = f(\varphi(F_0)) = N$. Moreover, since $\{f(\varphi(\beta_j))\}_{j=1,\dots,r}$ is a basis of N and $D/D^{N_0} \cong (\mathbb{Z}/N_0\mathbb{Z})^m$, we have a direct decomposition $D/D^{N_0} = (F_0 \cdot D^{N_0}/D^{N_0}) \oplus (F'' \cdot D^{N_0}/D^{N_0})$ with $F'' \subset \ker(f \circ \varphi)$. Put $F' = F'' \cdot E_k \cdot F^{N_0}$, $\overline{F}' = F'/F^{N_0}$, and $\langle \overline{\beta}_j \rangle = \langle \beta_j \rangle F^{N_0}/F^{N_0}$. Then $F/F^{N_0} = \langle \overline{\beta}_1 \rangle \oplus \langle \overline{\beta}_2 \rangle$ $\oplus \dots \oplus \langle \overline{\beta}_r \rangle \oplus \overline{F}'$ with $f \circ \varphi(F') = 1$. Furthermore, put $F_j = \langle \beta_1, \dots, \beta_{j-1}, \beta_{j+1}, \dots, \beta_r \rangle$. F' for $j=1, \dots, r$.

Now, by assumption, we can choose prime ideals $\mathfrak{p}_1, \dots, \mathfrak{p}_r$ of k which satisfy the following conditions: For $j=1, \dots, r$, it holds that (i) \mathfrak{p}_j is prime to l and $\mathfrak{a}_1, \dots, \mathfrak{a}_s$; (ii) the decomposition field of a prime divisor of \mathfrak{p}_j in $k_{n_j}(^{N_j}\sqrt{F})/k$ is $k_{n_j}(^{N_j}\sqrt{F_j})$; (iii) a prime divisor of \mathfrak{p}_j in k_{n_j} inerts in k_{n_j+1} . To see this, we first note $k_1 \neq k_2$ implies $k_i \neq k_{i+1}$ for $i=1, 2, \cdots$. Moreover we see that l>2 implies $F^{N_j}=F\cap k_{n_j}^{\times N_j}$. Indeed, if $x=\gamma^{N_j}\in F$ for $\gamma\in k_{n_j}$, then by [1, Satz 1] there exists an element c of k such that $x=c^{N_j}$. On the other hand, since $x\in F$, we can write $(x)=(c)^{N_j}=\prod_i\mathfrak{a}_i^{\mathfrak{q}_i}$. Here we note that \mathfrak{a}_i are distinct prime ideals of k, so that we have $N_j|\mathfrak{e}_i$ and $(c)=\prod_i\mathfrak{a}_i^{\mathfrak{q}_i/N_j}\in A$. Thus we obtain $c\in F$ and $x=c^{N_j}\in F^{N_j}$. Hence we have a natural isomorphism $F/F^{N_j}=F/(F\cap k_{n_j}^{\times N_j})\cong F\cdot k_{n_j}^{\times N_j}/k_{n_j}^{\times N_j}$, and so $\operatorname{Gal}(k_{n_j}(^{N_j}\sqrt{F})/k_{n_j})$ is isomorphic to the dual of F/F^{N_j} . Furthermore $k_{n_j}(\sqrt{F})$ and k_{n_j+1} are linearly disjoint over k_{n_j} . In fact, if $k_{n_j+1}\subset k_{n_j}(^{N_j}\sqrt{F})$, then we can choose an element x of F such that $k_{n_j+1}=k_{n_j}(\sqrt[1]{x})$. Since k_{n_j+1}/k is an abelian extension, it follows that $k(\sqrt[1]{x})/k$ is a cyclic extension of degree l; in particular, $k(\sqrt[1]{x})$ contains ζ_1 . On the other hand,

 $[k(\zeta_1): k]$ divides l-1, and hence from $[k(\sqrt[l]{x}): k] = l$ we see that $\zeta_1 \in k$, which contradicts the assumption. This proves that $k_{nj}({}^{N_j}\sqrt{F})$ and k_{nj+1} are linearly disjoint over k_{nj} . Therefore we can take elements σ and τ of $\operatorname{Gal}(k_{nj+1}({}^{N_j}\sqrt{F})/k_{nj})$ such that $\langle \sigma \rangle = \operatorname{Gal}(k_{nj+1}({}^{N_j}\sqrt{F})/k_{nj+1}({}^{N_j}\sqrt{F_j}))$ and $\langle \tau \rangle = \operatorname{Gal}(k_{nj+1}({}^{N_j}\sqrt{F})/k_{nj}({}^{N_j}\sqrt{F}))$. Put $\rho = \sigma \tau$ and let K be the fixed field of $\langle \rho \rangle$. Then $k_{nj+1}({}^{N_j}\sqrt{F})/K$ is cyclic of degree N_j . Hence by the Čebotarev density theorem we can choose a prime ideal \mathfrak{P}_j of $k_{nj+1}({}^{N_j}\sqrt{F})$ prime to $\mathfrak{a}_1, \dots, \mathfrak{a}_s$, and l such that the decomposition group of \mathfrak{P}_j is $\langle \rho \rangle$. Put $\mathfrak{p}_j = \mathfrak{P}_j \cap k$. Then \mathfrak{p}_j satisfies (i), (ii), and (iii).

Put $S = \mathfrak{p}_1 \cdots \mathfrak{p}_r$. We prove this S satisfies the conditions of our theorem. First we see the following: (1) $\#(k(\mathfrak{p}_j)/k'_{\mathfrak{p}_j})=N_j$; (2) $F_j \subset k'_{\mathfrak{p}_j}$; (3) $F' \subset k'_s$, in particular, $E_k \subset k'_S$, i.e., $P(S)/P'_S \cong k(S)/k'_S$; (4) $F \cdot k'_{\mathfrak{p}_i}/k'_{\mathfrak{p}_i} = \langle \beta_i \rangle k'_{\mathfrak{p}_i}/k'_{\mathfrak{p}_i}$ is cyclic of order N_j ; (5) $F \cdot k'_S / k'_S \cong \prod_j (F \cdot k'_{\mathfrak{p}_j} / k'_{\mathfrak{p}_j})$ (direct product). Indeed, from (ii) and (iii) we see that p_j is completely decomposed in k_{n_j} but not in $k_{n_{j+1}}$, so that (1) holds by [2, Teil I, Satz 19, S. 39]. Let \mathfrak{P} be a prime divisor of \mathfrak{p}_j in k_{n_j} . Then, as is easily seen, $k_{n_j}(\mathfrak{P})/(k_{n_j})_{\mathfrak{P}} \cong k(\mathfrak{p}_j)/k_{\mathfrak{p}_j}$ and $k \cap (k_{n_j})_{\mathfrak{P}} = k_{\mathfrak{p}_j}$, since \mathfrak{p}_j is completely decomposed in k_{n_j} . Therefore using (1) we have that, for $x \in k(\mathfrak{p}_j)$, x is N_j -th power residue modulo \mathfrak{P} in k_{n_j} if and only if $x \in k'_{p_j}$. Hence, by Kummer Theory (e.g. see [2, Teil II, S. 45]) $x \in k'_{p_i}$ if and only if p_j is completely decomposed in $k_{n,i}(N_j\sqrt{x})/k$, and so we have (2) and (3) from (ii). Furthermore (4) follows from (1) and (2), because we know by (ii) that β_i is not *l*-th power residue modulo \mathfrak{p}_{i} . Finally we check (5). Clearly the natural homomorphism: $F \cdot k'_S / k'_S \rightarrow \prod_j (F \cdot k'_{\mathfrak{p}_j} / k'_{\mathfrak{p}_j})$ is injective. Moreover, using the direct decomposition $F/F^{N_0} = \langle \bar{\beta}_1 \rangle \oplus \cdots \oplus \langle \bar{\beta}_r \rangle \oplus \bar{F}'$ and (4), we see this is surjective, so that (5) holds.

Next we prove ker $(f) = A \cap P'_s$. If $\prod_i a_i^{h_i} \in P'_s$, then $\prod_i a_i^{h_i} = (x)$ for $x \in F \cap k'_s$. Here we write $x = \prod_j \beta_j^{i_j} y$ with $y \in F'$. Since $f(\varphi(y)) = 1$, we see $f \circ \varphi(x) = \prod_j f \circ \varphi(\beta_j)^{i_j}$, i.e., $\prod_i a_i^{h_i} = \prod_j b_j^{i_j}$. On the other hand, $x, y \in k'_s$ implies $\prod_j \beta_j^{i_j} \in k'_s$, so that $N_j | t_j$ by (2), (4) and (5). Hence we obtain $\prod_i a_i^{h_i} = \prod_j b_j^{t_j} = 1$, which shows $A \cap P'_s \subset \ker(f)$. In particular, $\#(A \cap P/A \cap P'_s) \ge \#(A \cap P/\ker(f)) = \#(N)$. On the other hand, using (1)~(5), we see $A \cap P/A \cap P'_s \cong F/F \cap k'_s \cong F \cdot k'_s/k'_s \cong \prod_j (F \cdot k'_{*j}/k'_{*j}) \cong \prod_j (\langle \beta_j \rangle k'_{*j}/k'_{*j}) \cong \prod_j (k(\mathfrak{p}_j)/k'_{*j}) \cong k(S)/k'_s \cong P(S)/P'_s$. In particular, $\#(A \cap P/A \cap P'_s) = \#(P(S)/P'_s) = \prod_j N_j = \#(N)$. Thus we have ker $(f) = A \cap P'_s$.

Therefore we obtain a commutative diagram:

T. TAKEUCHI

Since $A \cap P/A \cap P'_S \cong P(S)/P'_S$, we see by the diagram that the natural injection: $A/A \cap P'_S \to I(S)/P'_S$ gives an isomorphism. Thus we obtain an isomorphism $\Phi: I(S)/P'_S \to M$, as required. This proves the theorem.

3. Remark.

The assumptions $\zeta_1 \notin k$ and $k_1 \neq k_2$ are necessary for the theorem. However we can prove similarly without these assumptions that for an arbitrarily given abelian extension M of the ideal class group I/P of k by a finite abelian lgroup N there exist infinitely many tamely ramified abelian extensions K/kwhich satisfy the following: (1) K coincides with the genus field of K/k (i.e., the maximal abelian extension of k contained in the Hilbert class field of K); (2) there exists an isomorphism $\Phi: \operatorname{Gal}(K/k) \to M$ inducing an isomorphism $\operatorname{Gal}(K/\bar{k}) \to N$, which makes the diagram

commutative, where \bar{k} denotes the Hilbert class field of k.

References

- H. Hasse, Zum Existenzsatz von Grunwald in der Klassenkörpertheorie, J. Reine. Angew. Math., 188 (1950), 40-64.
- [2] H. Hasse, Bericht über neuere Untersuchengen und Problem aus der Theorie der algebraischen Zahlkörper, Physica-Verlag Würzburg-Wien, 1970.

Teruo TAKEUCHI

Department of Mathematics Faculty of General Education Niigata University Niigata 950-21 Japan