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   0. Introduction. 

   A complete Riemannian manifold M is said to be without conjugate points 

if no geodesic contains a pair of mutually conjugate points. E. Hopf ([9]) and 

L. W. Green ([7]) have proved that the integral of the scalar curvature of a 

compact Riemannian manifold without conjugate points is nonpositive, and it 
vanishes only if the metric is flat. The non-conjugacy hypothesis was discussed 

in [10] and [11]. Namely, it follows that a compact Riemannian manifold is 

without focal points if there is a point which cannot be a focal point to any 

geodesic, although a pole and a point which is not a pole can exist simultaneously 
in a torus T2 of revolution. Recently, N. Innami ([12]) has proved that the 

integral of the scalar curvature of a complete simply connected Riemannian 

manifold Rn without conjugate points is nonpositive if the Ricci curvature is 

summable on the unit tangent bundle, and it vanishes only if the metric is 
flat. Here a function is called summable if its absolute integral exists. The 

purpose of the present paper is to improve the topological hypothesis more. 
   Let M be a complete Riemannian manifold and let SM be the unit tangent 

bundle of M. Let ft: SM--GSM be the geodesic flow, i. e., f tv=jw(t) for any 

vESM where 7v: (-oo, co)-M is the geodesic with j(O)=v. We say that a 

vESM is non-wandering if there exist sequences {vn}ESM and {tn}ER such 

that tn->oo, v---v and f tnvn_~v as n- oo. We denote by Q the set of all non-
wandering points in SM under the geodesic flow. 

   THEOREM. Let M be a complete Riemannian manifold without conjugate 

points. Suppose Q decomposes into at most countably many f t-invariant sets each 
of which has finite volume and the Ricci curvature is summable on SM. Then, 

the integral of the scalar curvature of M is non positive, and it vanishes only if 
M is flat. 

   If the manifold M is flat outside a compact set, then the assumption of 

summability for the Ricci curvature is automatically satisfied. Furthermore, the 

theorem is true without assumption put on the set Q of all non-wandering
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points (see Corollary 3). The proof of Theorem divides into two parts : One 
is for SM-Q and the other is for Q. The typical cases are the following. 

   COROLLARY 1 ([12]). Let M be a complete simply connected Riemannian 

manifold without conjugate points. If the Ricci curvature of M is summable on 

SM, then the integral of the scalar curvature of M is nonpositive, and it vanishes 

only if M is Euclidean. 

   S. Cohn-Vossen ([4]) has proved that a plane without conjugate points has 

the nonpositive integral curvature if it exists ([2]). Corollary 1 is the answer 

of the question when it vanishes. L. W. Green and R. Gulliver ([8]) give a 

partial answer as an application of the theorem of E. Hopf also, proving that a 

plane whose metric differs from the canonical flat metric at most on a compact 
set is Euclidean if there is no conjugate point. 

   COROLLARY 2. Let M be a complete Riemannian manifold without conjugate 

points and with finite volume. If the Ricci curvature of M is summable on SM, 
then the integral of the scalar curvature of M is nonpositive, and it vanishes only 

i f M is flat. 

   It is the difficulty of the proof that the summability of tr A on SM is not 

established where A(v) is the limit of the second fundamental forms at ~r(v) of 
the geodesic spheres S(2r(v), rv(t)) with center T(t) and through r(v) in M as 

t-->co, where ~r is the projection of SM to M. In fact, Corollary 2 is a direct 

consequence of the method of E. Hopf and L. W. Green if we assume in addition 

any condition which ensure the summability of tr A on SM, for example, that 

the sectional curvature of M is bounded below ([7]). To escape from the sum-

mability argument we use the Fubini theorem for SM-Q and the Birkhoff 

ergodic theorem for Q. This is why we assume that Q decomposes into at 

most countably many f t-invariant sets each of which has finite volume. 

   There is a special case that we can calculate the integral of the Ricci cur-

vature over Q without assumption of decomposition. 

   COROLLARY 3. Let M be a complete Riemannian manifold without conjugate 

points which is flat outside some compact set. Then, the integral of the scalar 
curvature of M is nonpositive, and it vanishes only if M is flat. 

   The author would like to express his hearty thanks to the referee who 

suggests Corollary 3 without proof.
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   1. Preliminaries. 

   Let M be a complete Riemannian manifold and let SM be the unit tangent 
bundle. Let f t : SM-~SM be the geodesic flow, i. e., f tv=Yv(t) for any tE 

(-oo, oo) where Iv : (-co, cc)-~M is the geodesic with i(O)=v. Let dc be the 
volume form induced from the Riemannian metric of M and let dO be the 
canonical volume form on the unit sphere in the Euclidean space En, n=dim M. 
Then, dw=diAdO is a volume form on SM and f t-invariant. 

   We define a Riemannian metric g1 on SM as follows : Let E TvSM, vE SM 
and let c : (-E, ~)--GSM be a curve with c(0)=. If c(t)=(c1(t), c2(t)) for any 
tE(-~, ~) by the local trivialization, then 

             g1(, E) = g(~1(O), ~1(O))+g(VC1c2(O), VC1c2(O)) 

where g is the Riemannian metric of M and 0~1c2 is the covariant derivative 
along c1. The orbits of the geodesic flow are geodesics in SM with the Rie-
mannian metric g1. If r : [a, b]-->M is a minimizing geodesic (a=- oo, b=oo 
admitted), then the lift r of r to SM is a minimizing geodesic in SM also. 

   1.1. The trajectories of the geodesic flow. We say that a vESM is non-
wandering if there exist sequences {vn}CSM and {tn}CR such that tn-~co, 
vn--~v and f tnvn-- v. We denote by Q the set of all non-wandering points in 
SM under the geodesic flow. It follows that Q is closed and f t-invariant. We 
introduce an equivalence relation ti in SM-Q in such a way that v'-'w if v=ftw 
for some t (-co, ce), where v, wESM-Q. Let Nbe the set of all equivalence 
classes [v], vESM-Q. Since SM-Q is open and f t-invariant, there exists 
locally a hypersurf ace H in SM- Q containing v and cliff eomorphic to an open 
subset in E2122 2 such that [w]fH= {w} and H intersects [w] transversely for 
any w E H. The collection of such hypersurf aces H yields a differentiable struc-
ture of N with dimension 2n-2. We define the volume form di1 on N such 

that dry w~ A dt=dwU for any [v] E N. Then we have, for any summable func-
tion F on SM-Q, 

(1.1) F dw = dry F(f tv)dt , 
                                  S31-Q -oo 

where Fwj : [v]-->R is given by F[](w)=F(w) for any w E [v]. 

   1.2. The Birkhoff ergodic theorem. Let D be an f t-invariant subset of SM 

with finite volume, The Birkhoff ergodic theorem says that for any summable 

function F on D 

  1) F*v) = lim 1 T F(f tv) dt 
                                          T-.~ T o
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exist and are f t-invariant for almost all vED, 

   2) for any f t-invariant measurable subset BCD, 

                     c F*dw = F dw . 
                                 B B 

   We say that a v E D is uniformly recurrent if for any neighborhood U of v, 

we have 

T 
                     lim inf - Xu(f tv)dt > 0, 

                                   T-.~ T o 

where XU : D->R is the characteristic function of U. We denote by W (D) the 

set of all uniformly recurrent vectors in D. It follows from the Birkhoff ergodic 

theorem that W(D) has full measure in D ([1]). 

   1.3. The limit of the second fundamental forms of geodesic spheres. 

Let R be the curvature tensor of M. For any vESM let R(v) : v--v1 be a 

symmetric linear map given by R(v)(x)=R(x, v)v for any xEvl, where v1= 

{wET~(~)M; w, w>=0}. 
   We assume hereafter that M is without conjugate points unless otherwise 

             N N 

stated. Let M be the universal covering space of M. Then, M is diffeomorphic 
                                               N N N 

to Rn and all geodesics are minimizing in M. For any vESM let AS(v) be the 
second fundamental form at 2r(v) of the geodesic sphere S(n(v), ?'(s)) with center 

yv(s) through ~r(v) relative to -v. It follows from [5], [6], [7], [9], [13] that 
                                      N N 

                        limAS(v) = A(v) 

exists and 

          N N N 

      <A(v)x, x>I <_ max{ <A_1(v)y, y>, <A1(v)y, y>; y~v1, y =1} 

N for any v E SM and any x E vl, x =1. The map 

                              N N 

                         A: SM--~ U L(v1) 
                                                  vESM 

satisfies the following, where L(v -)= { h ; h is a linear map of vl into itself }. 

N 

   1) tr A is measurable. 
             N iy 

   2) A(v) is symmetric for any v E SM. 

N 

   3) A(f tv) is of class C°° for t(-oo, oo). 
  4) A'(f tv)+A(f tv)2+R(f tv) = 0 

for any t(-oo, oo), where A'(fty) is the covariant derivative of A(f tv) along 

rv at rv(t). 

N 

   5) For any compact set KCM there is a constant C(K)>0 such that 
 N N 

~JA(v)!J<C(K) for any vESK, where A(v)j is the norm of A(v). 

N 

   By the construction of the map A we can induce the map _A on SM which
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satisfies the same properties above. 

   1.4. The solution of a matrix equation of Riccati type. We consider the 
following (n-1)X(n--1) matrix differential equation of Riccati type. 

(J) X'(t)+X(t)2+R(t) = 0 

on t(-oo, oo), where R(t) is a symmetric matrix and trR is summable on 

(-oo, oo). The following lemma will be used in the case that R(t)=R(f tv) and 
tr R(t)=Ric (f tv) for almost all v E SM such that the Ricci curvature Ric (f tv) is 

summable over (- oo, oo ). 

   LEMMA 1. Suppose there exists a symmetric solution A(t) of (J) on tE 

(-oo, oo). Then, the integral of trR(t) on (-oo, oo) is nonpositive. If it vanishes, 
then both A(t) and R(t) must be identically zero on (-oo, oo). 

   PROOF. The proof is the same as in [12]. We first prove that there exist 
sequences {an} and {bn} CR such that an-~oo, b0-~-oo, tr A(an)- O and tr A(bn) 
- O as n- °o. Suppose for indirect proof that an s>0 and an s exist such that 
tr A(t) I > E for any t> s. Since 

                      (tr A(t))2 <_ n tr A(t)2 

for any t (- oo, oo ), and, hence, 

t 

                        tr A(t)2dt >_ (s2/n)(t-s) 

s for any t>s, and since 

                                          t t 

             tr A(t)-tr A(s)+ tr A(t)2dt+ tr R(t) dt = 0 
                                                 s s 

for any t> s, we see that tr A(t)e-co as t-~oo, since tr R(t) is summable over 

(- oo, oo ). If we take a u > s such that tr A(t) I > 1 for any t>_ u, then 

        t-u < t tr A(t)2 dt < t tr A'(t) dt + ft tr R(t) dt 
         n u (tr A(t))2 u (tr A(t))2 u (tr A(t))2 

                       <_ !- 1 + 1 + t 1trR(t)1 dt ,                           t
r A(t) tr A(u) ! u 

a contradiction, because the right hand side is bounded above. The existence 
of a sequence {b0} CR we want is proved similarly. 

   Integrating (J) after taking the trace on [b0, an] and taking n->oo, we obtain 

                 :trR(t)dt = - trA(t)2dt <_ 0. 
If the equality holds, then
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            tr A(t)2 = 0 --* A(t) = 0-> A'(t) = 0-> R(t) = 0 

for any t (- oo, cc). Lemma 1 is proved. 

   2. The integral of the Ricci curvature on SM- Q. 

   Let M be a manifold as in Theorem. We will prove the following. 

   LEMMA 2. The integral of the Ricci curvature of M on SM-Q is nonposi-

tive, and it vanishes only if R(v)=R(•, v)v=0 for any vESM-Q. 

   PROOF. Since the Ricci curvature is summable and by the formula (1.1), the 

integral of the absolute Ricci curvature is finite along the geodesic rv: (-CO, 00) 
--~M with t(O)=v for almost all vESM-Q . It follows from (1.3.4) and Lemma 

1 that 

                          Ric (f tv)dt <_ 0 

for almost all vESM-Q. Integrating it on N as in 1.1, we obtain 

                  Ric dw = drl Ric (f tv) dt <_ 0. 
                          SJi-S~ [v)`N -~ -

The equality means from Lemma 1 that R(v)=R(., v)v=0 for almost all vE 

SM-Q. Since R(v) depends continuously on the points vESM, we see that R 
is identically zero on SM-Q. Lemma 2 is proved.

   3. The integral of the Ricci curvature on 9. 

   Let M be a manifold as in Theorem and let Q1CQ be an f t-invariant set 
which has finite volume. We will prove the following. 

   LEMMA 3. The integral of the Ricci curvature of It'1 over Q1 is nonpositive, 
and it vanishes only if R(v)=R(•, v)v=0 for any vEQ1. 

   PROOF. Let X(Q1) be the set of all vectors v such that Ric*(v) exists as in 
(1.2.1). Then, X(Q1)nW(Q1) has full measure in 91. Let a vEX(Q1)fW(Q1) 
and let K be a compact neighborhood of v in 91. It follows from (1.3.5) that 
there exists a constant C(K)>0 such that IA(w)Jj<C(K) for any wEK. Since 
v is uniformly recurrent, there exists a sequence {Tn} CR such that Tn-goo, 
f T nv--~v as n-> oo and f T nv E K for all n. By (1.3.4), we have 

     1 (
trA(f Tnn)-tr A(v))+ 1 Tntr A(f tv)2dt+- T1 TnRic (f tv)dt = 0. 

        in Tn o n o 

Taking n-~ °° we obtain
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T 

                Ric*(v) = -lim ntr A(f tv)2dt 0. 
                                         n-•~Tn o 

Hence, by the Birkhoff ergodic theorem (1.2.2), we get 

                    c Ric dw = Ric*dw <_ 0. 
                          Q1 nI 

   Suppose the equality holds. Then, Xo(Q1)= {vEQ1 ; Ric*(v)=0} has full 

measure in Q1, and, hence, Xo(Q1)nW(Q1) has full measure in Q1. We will 

prove that Ric (v)=0 for any vEXo(Q1)fW(Q1). The idea of the proof is seen 
in [14]. Let a vEXo(Q1)fW(Q1) and let r : [0, oo)-~SM be a geodesic with 

r(t)= f tv for any t(-co, oo). We put A(t)=A(f tv) and Ric (t)=Ric (f tv) for all 
tE(-co, oo). Choose a positive l such that the geodesic open ball B(l) in SM 
with center v and radius l is strongly convex. The convex ball B(l) has a 

property that for any points p, qE B(l) there is the unique minimizing geodesic 

joining p and q which is contained in B(l) possibly except for p and q, where 
B(l) is the closure of B(l) in SM. Since Ric*(v)=o and vEW(Q1), it follows 
from the argument above that 

                      lim- Tntr A(t)Zdt = 0, 
                                          n-•~o T n o 

if a sequence { T n } C R is such that Tn-> cc a s n-> co and (T) lie in the boundary 

of B(l) for all n. 

   ASSERTION. There exists a sequence {t} c:[0, c) such that 
    1) to-* °° as n-~c , 

   2) if An(t) is the matrix given by An(t)=A(tn+t) for any tE [0, l], then 

                        tr An(t)Zdt --~ 0 as n -~ , 

0 and tr An(t)-~O for almost all tE [0, l] as n-->c, 

   3) if rn : [0, l]-~SM is the geodesic given by rn(t)= f to+tv for any tE [o, l], 
then rn converges to the geodesic To: [0, l]-*SM with 7o(t)=ft"/2v for any tE 

[0, l] as n--> oo . 

   PROOF OF ASSERTION. Let k4 be an integer. Since B(i/k) is a convex 

ball and r is a geodesic, r-1(B(l/k)) is the union of intervals whose lengths are 

less than or equal to 21/k, say 

               (ai, bi), (a2, b2), ... , (ai, bi), ... ; 

Put 

                  _ ai+b~ l a~+b~ l                      a ~ 2 -2' 1+ 2 2
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for each i=1, 2, Then, 7([ai, bi])CB(l) and 7(ai), Y(b1) B(l/k), since 

      d 1((t), v) d 1 Y(t), 7(a1 + l + d 1 Y ai +), v< l+ l< l                - 2 2 2 k 

for any tC [ai, bi], and since 

                        l l l l l       d
1(Y(ai), v) ? d1 Y(ai), Y ai+ Z -d1 Y ai+ Z , v > 

from the choice of k, where d1(•, •) is the distance induced from the Rieman-
nian metric defined on SM in Section 1. It follows similarly that d1(Y(bi), v)> 
l/k. Suppose 

                   lim inf b2tr A(t)2dt > a > 0. 

For any n, we have 

           1 Tnt
r A(t)2dt > 1 b2 tr A(t)2dt               T 

n o T n i=1 ai 

         >_ 1 bti tr A(t)2dt + a (b1-a1)                T
n i=1 ai lT n i=m+1 

            a (b
i-a) = a TnXB(llk)(Y(t))dt- a              lT 

n i=m+1 lT n o lT n i=1 

where m n and m are chosen so that 

              bmn < T n < amn+1 and inf tr A(t)2dt > a. 
                                                             i>_m ai 

This implies that 

         0 = lim 1 Tntr A(t)2dt >_ a lim inf 1 rXB(ll k)(f tv) dt >0, 
                     n~~Tn o l r-oo T..o 

a contradiction. Thus we can find an integer i(k)>-k such that 

                 ai(k)+bi(k) bi(k) 1 
         Y 2 C B(l/k) and tr A(t)2dt < -                                                     ai(k) k 

If tk=ai(k) for all k>_4, the sequence {tk} satisfies the condition 1) and the first 

part of 2). For the second part of 2) and 3) we have only to choose a suitable 
subsequence {tn} of {tk} if necessary. 

   We return to the proof of Ric (v)=0. Rewritting (1.3.4) in terms of 2), we 

get for each n 

(3.4) tr An(t)+tr An(t)2+Ricn(t) = 0 

for any t~ [0, l], where Ricn(t)=Ric (tn+t). It should be noted that Ricn(t) con-
verges to Ric (t-l/2) uniformly in tC [0, l] as n-~°o. Suppose Ric (0)=Ric (v)t0,
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say Ric (v)>0. Then, there exist a and bE [0, l], a<l/2<b, such that Ric (t-l/2) 

>0 for any tE [a, b] and tr An(a), tr An(b)-0 as n-->°°. On the other hand, by 
integrating (3.4) on the interval [a, b] and taking n to infinity, we have 

b 

                    Ric t- Z )dt = 0, 
a a contradiction. Therefore, Ric(v)=0 for any vEXp(Q1)fW(Ql). It follows 

from Lemma 1 that R(v)=R(•, v)v=0 for any vEXp(Q1)fW(Q1). Since R(v) 

depends continuously on the points v E SM, we see that R is identically zero on 

Q1. Lemma 3 is proved. 

   4. Proof of Theorem. 

   By Lemmas 2 and 3, we have 

         0n-1 S d
a = Ric dw = Ric dw+ Ric dw <_ 0, 

              n M sM sM-Q i=1 Qi 

where 8 n _ 1 is the volume of the unit sphere in E n, S is the scalar curvature 

of M and Q=~i 1Qi is the decomposition of f t4nvariant sets each of which 

has finite volume. If the equality holds, then

c Ric dw = Ric dw = 0 , 
 sM-Q Sl ti

for all i=1, 2, . Lemmas 2 and 3 state that the curvature tensor R(, v)v is 

zero for any v E SM. Therefore, M is flat. This completes the proof of 

Theorem. 

   5. Proof of Corollaries. 

   If a complete simply connected Riemannian manifold M is without conjugate 

points, then all geodesics are minimizing in M. This implies that Q is a empty 
set. Hence, Corollary 1 follows from Theorem. For Corollary 2 we have 
nothing to prove. 

   For the proof of Corollary 3 we need the notion of totally convex sets. 

We say that a set C in a complete Riemannian manifold M is totally convex if 
for any points p, q E C all geodesic curves joining p and q are entirely contained 

in C. It follows that any totally convex closed set C is an imbedded submani-

fold in M (possibly with not differentible boundary), and if r : [0, oo)-~M is a 

geodesic such that r(0) is in the interior of C and i(s) is in the boundary of C 
for some s, then r(t) is outside C for any t E (s, o o). G. Thorbergsson ([15] ) 

proved by a slight modification of the Cheeger and Gromoll basic construction 
([3]) that if M is a complete Riemannian manifold with nonnegative sectional 
curvature outside some compact set, then there is a family {Kt ; t>0} of com-
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pact totally convex sets with M_-UK and KtCKs for t__<s. 

   5.1. Proof of Corollary 3. Let M be as in Corollary 3 and let K be a com-

pact set in M such that the sectional curvature is zero outside K. By Thorber-

gsson's result we can find a compact set C such that the interior C° of C con-
tains K. We want to prove that SC°nQ is f t-invariant, where SC°= {vE SM; 

ir(v)EC°}, If this were not true, then there is a v~SC°fQ such that ~r(f sv) 

is in M-C for some s>0, since Q is f t-invariant and C is a totally convex 
set. We can choose sequences {vn} CSC° and {tn} CR such that tn- oo, vn-}v 

and f tnvn->v as n- oo, since v is a non-wandering point under the geodesic 

flow. Then it follows that f svn- f sv as n-~oc. Hence, we can find a sufficiently 

large na such that 7r(vm)~C°, ~c(f tmvm)~C° and ir(f svm)C. This contradicts 
that C is a totally convex set in M, since r : [0, oo)--~M given by r(t)=rr(f tvm) 

for any t is a geodesic with r(0) C°, r(tm) E C° and i(s)C. 

   Thus, we can use Lemma 3 to integrate the Ricci curvature over SC°nQ, 

since SC°nQ has finite volume. Now we have in the same notation in Sec-

tion 4 

 8n-1 Sd 
i = Ric dw = Ric dw+ Ric dw+ Ric dw _< 0, 

    n M SM SM-S? SC°nQ (SM-SC°)nQ 

because the third term in the right is zero, since the sectional curvature is zero 

on M-C°. If the equality holds, then 

                ~ Ric dw = Ric dw = 0 . 
                             sM-Q sc°nQ 

Lemmas 2 and 3 state that the curvature tensor R(., v)v is zero for any vE 

(SM-Q)U(SC°nQ). Therefore, M is flat. This completes the proof of Corol-
lary 3. 
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