Interpolating sequences in the maximal ideal space of H°

By Keiji IzUCHI

(Received Oct. 1, 1990)

1. Introduction.

Let H^{∞} be the space of bounded analytic functions on the open unit disc D. H^{∞} becomes a Banach algebra with the supremum norm. We denote by $M\left(H^{\infty}\right)$ the maximal ideal space of H^{∞} with the weak*-topology. We identify a function in H^{∞} with its Gelfand transform. For points x and y in $M\left(H^{\infty}\right)$, the pseudo-hyperbolic distance is defined by

$$
\rho(x, y)=\sup \left\{|h(x)| ; h \in \operatorname{ball}\left(H^{\infty}\right), h(y)=0\right\},
$$

where ball $\left(H^{\infty}\right)$ stands for the unit closed ball of H^{∞}. For z and w in D, we have $\rho(z, w)=|z-w| /|1-\bar{z} w|$. A sequence $\left\{x_{j}\right\}_{j}$ in $M\left(H^{\infty}\right)$ is called interpolating if for every bounded sequence $\left\{a_{j}\right\}_{j}$ there is a function f in H^{∞} such that $f\left(x_{j}\right)=a_{j}$ for every j. It is well known (see [2, p. 283]) that for a sequence $\left\{z_{j}\right\}_{j}$ in $D,\left\{z_{j}\right\}_{j}$ is interpolating if and only if

$$
\inf _{k} \prod_{j \neq k} \rho\left(z_{j}, z_{k}\right)>0
$$

For a sequence $\left\{z_{j}\right\}_{j}$ in D with $\sum_{j=1}^{\infty} 1-\left|z_{j}\right|<\infty$, a function

$$
b(z)=\prod_{j=1}^{\infty} \frac{\bar{z}_{j}}{\left|z_{j}\right|} \frac{z_{j}-z}{1-\bar{z}_{j} z} \quad(z \in D)
$$

is called a Blaschke product with zeros $\left\{z_{j}\right\}_{j}$, and $\left\{z_{j}\right\}_{j}$ is called the zero sequence of b. If $\left\{z_{j}\right\}_{j}$ is interpolating, we call b interpolating. For a function f in H^{∞}, put $Z(f)=\left\{x \in M\left(H^{\infty}\right) ; f(x)=0\right\}$. For a subset E of $M\left(H^{\infty}\right)$, we denote by $\mathrm{cl} E$ the weak*-closure of E in $M\left(H^{\infty}\right)$.

For a point x in $M\left(H^{\infty}\right)$, the set $P(x)=\left\{y \in M\left(H^{\infty}\right) ; \rho(y, x)<1\right\}$ is called a Gleason part of x. If $P(x) \neq\{x\}, P(x)$ is called nontrivial. D is a typical nontrivial part. We set

$$
G=\left\{x \in M\left(H^{\infty}\right) ; x \text { is nontrivial }\right\} .
$$

Hoffman [5] proved that for a point x in G, there is an interpolating sequence $\left\{z_{j}\right\}_{j}$ such that x is contained in $\mathrm{cl}\left\{z_{j}\right\}_{j}$, and there is a continuous map L_{x} from D onto $P(x)$ such that $f \circ L_{x} \in H^{\infty}$ for every $f \in H^{\infty}$, where L_{x} is given
by $L_{x}(z)=\lim _{\alpha}\left(z_{j_{\alpha}}-z\right) /\left(1-\bar{z}_{j_{\alpha}} z\right)$ for a net $\left\{z_{j_{\alpha}}\right\}_{\alpha}$ in $\left\{z_{j}\right\}_{j}$ with $z_{j_{\alpha}} \rightarrow x$. When L_{x} is a homeomorphism, $P(x)$ is called a homeomorphic part.

Our problem is; if $\left\{x_{j}\right\}_{j}$ is an interpolating sequence in G, is there an interpolating Blaschke product b such that $Z(b) \supset\left\{x_{j}\right\}_{j}$? Generally the converse is not true. For, let b be an interpolating Blaschke product with zeros $\left\{z_{n}\right\}_{n}$ in D and let x be a cluster point of $\left\{z_{n}\right\}_{n}$. Put $\left\{x_{j}\right\}_{j}=\left\{z_{n}\right\}_{n} \cup\{x\}$. Then it is not difficult to see that $\left\{x_{j}\right\}_{j}$ is not interpolating and $Z(b) \supset\left\{x_{j}\right\}_{j}$. In [3] and [6], they independently proved that if P is a homeomorphic part and $\left\{x_{j}\right\}_{j} \subset P$, then $\left\{x_{j}\right\}_{j}$ is interpolating if and only if $\left\{x_{j}\right\}_{j}=Z(b) \cap P$ for an interpolating Blaschke product b. In this paper, we study an interpolating sequence whose elements are contained in distinct parts in G. Our theorem is the following.

Theorem. Let $\left\{x_{j}\right\}_{j}$ be a sequence in G such that $P\left(x_{k}\right) \cap \operatorname{cl}\left\{x_{j}\right\}_{j \neq k}=\phi$ for every k. Then the following conditions are equivalent.
(i) There is an interpolating Blaschke product b such that $Z(b) \beth\left\{x_{j}\right\}_{j}$.
(ii) $\left\{x_{j}\right\}_{j}$ is an interpolating sequence.

The idea to prove our theorem is basically the same as in [6]. The difference between them is; let h be a function in H^{∞} with $h\left(x_{1}\right) \neq 0$ and $h\left(x_{j}\right)=0$ for $j \geqq 2$ and let B be a Blaschke factor of h. If $\left\{x_{j}\right\}_{j}$ is contained in the same part, then $B\left(x_{1}\right) \neq 0$ and $B\left(x_{j}\right)=0$ for $j \geqq 2$, but under the assumption of our theorem we can not say anything about B. Previous paper's problem is how to construct an interpolating subproduct b of B such that $b\left(x_{j}\right)=0$ for $j \geqq 2$, but this paper's problem is how to construct an interpolating Blaschke product b such that $b\left(x_{j}\right)=0$ for $j \geqq 2$ using the function h. Therefore this paper is a little bit complicated more than the previous one. The main part of this paper is to prove (ii) \Rightarrow (i). In Section 2, we give eight lemmas. Using them, we prove our theorem in Section 3.

2. Blaschke subproducts.

For an interpolating Blaschke product b with zeros $\left\{z_{j}\right\}_{j}$, put

$$
\delta(b)=\inf _{k} \prod_{j \neq k} \rho\left(z_{j}, z_{k}\right) .
$$

By Hoffman [5, p. 82], we have the following lemma.
Lemma 1. Let $x \in M\left(H^{\infty}\right)$ and let b be an interpolating Blaschke product with $b(x)=0$. If $0<\delta<1$, then there is a subproduct b_{1} of b such that $b_{1}(x)=0$ and $\delta\left(b_{1}\right)>\delta$.

We use the same idea to prove the following lemmas 2,4 and 5 , but these
situations are different, so we shall give these detail proofs. Lemma 6 is a summary of these results. Let $\left\{x_{j}\right\}_{j}$ be an interpolating sequence. Then by the open mapping theorem, there is a universal constant M such that for every sequence $\left\{a_{j}\right\}_{j}$ with $\left|a_{j}\right| \leqq 1$ for every j, there is a function f in H^{∞} with $\|f\| \leqq M$ and $f\left(x_{j}\right)=a_{j}$ for every j. The constant M is called an interpolation constant for $\left\{x_{j}\right\}_{j}$.

Lemma 2. Let $\left\{x_{j}\right\}_{j}$ be a sequence in G and let $\left\{b_{j}\right\}_{j}$ be a sequence of interpolating Blaschke products with $b_{j}\left(x_{j}\right)=0$. Let h be a function in ball $\left(H^{\infty}\right)$ with $Z(h) \cap D=\phi$ and $Z(h) \supset\left\{x_{j}\right\}_{j}$. If x is a point in $M\left(H^{\infty}\right)$ with $h(x) \neq 0$, then for each r with $0<r<1$ there is a Blaschke product $\prod_{j=1}^{\infty} \psi_{j}$ such that
(i) ψ_{j} is a subproduct of b_{j} with $\psi_{j}\left(x_{j}\right)=0$; and
(ii) $\left|\left(\prod_{j=1}^{\infty} \psi_{j}\right)(x)\right|>r$.

Proof. Let $\left\{z_{j, k}\right\}_{k}$ be the zero sequence of b_{j}. Since $b_{j}\left(x_{j}\right)=0$, by [4, p. 205], $x_{j} \in \operatorname{cl}\left\{z_{j, k}\right\}_{k}$. Let M_{j} be an interpolation constant for $\left\{z_{j, k}\right\}_{k}$. Take a sequence $\left\{r_{j}\right\}_{j}$ such that

$$
0<r_{j}<1 \text { and } \prod_{j=1}^{\infty} r_{j}>r
$$

Then take a sequence $\left\{\varepsilon_{j}\right\}_{j}$ such that

$$
\begin{equation*}
0<\varepsilon_{j}<1 \quad \text { and } \quad \prod_{j=1}^{\infty} \frac{r_{j}-M_{j} \varepsilon_{j}}{1+M_{j} \varepsilon_{j}}>r \tag{1}
\end{equation*}
$$

Put

$$
\begin{equation*}
E=\{\zeta \in D ;|h(\zeta)|>|h(x)| / 2\} . \tag{2}
\end{equation*}
$$

By the corona theorem (see [2, p. 318]), x is contained in cl E.
Fix j arbitrary. Then there is a positive integer n, depending on j, such that

$$
\begin{equation*}
r_{j}^{n}<|h(x)| / 2 \tag{3}
\end{equation*}
$$

Let ψ_{j} be a subproduct of b_{j} with zeros $F_{j}=\left\{z_{j, k} ;\left|h\left(z_{j, k}\right)\right|<\varepsilon_{j}{ }^{n}\right\}$. Since $h\left(x_{j}\right)$ $=0$ and $x_{j} \in \operatorname{cl}\left\{z_{j, k}\right\}_{k}$, we have $x_{j} \in \operatorname{cl} F_{j}$, so that $\psi_{j}\left(x_{j}\right)=0$. Since $Z(h) \cap D=\phi$, we may consider that $h^{1 / n}$ is a function in $\operatorname{ball}\left(H^{\infty}\right)$. Since $\left|h^{1 / n}\right|<\varepsilon_{j}$ on F_{j} and the interpolating sequence F_{j} has M_{j} as an interpolation constant, there is a function f in H^{∞} such that

$$
\|f\| \leqq M_{j} \varepsilon_{j} \quad \text { and } \quad f\left(z_{j, k}\right)=h^{1 / n}\left(z_{j, k}\right) \text { for every } z_{j, k} \in F_{j} .
$$

Then there is a function g in H^{∞} such that

$$
f-h^{1 / n}=\psi_{j} g
$$

Here we have $\|g\| \leqq 1+M_{j} \varepsilon_{j}$. Consequently we get

$$
\begin{equation*}
\left|h^{1 / n}(z)\right|-M_{j} \varepsilon_{j} \leqq\left|\left(f-h^{1 / n}\right)(z)\right| \leqq\left(1+M_{j} \varepsilon_{j}\right)\left|\psi_{j}(z)\right| \tag{4}
\end{equation*}
$$

for every $z \in D$. Therefore for $\zeta \in E$ we get

$$
\begin{aligned}
r_{j} & <(|h(x)| / 2)^{1 / n} & & \text { by }(3) \\
& <\left|h^{1 / n}(\zeta)\right| & & \text { by }(2) \\
& \leqq\left(1+M_{j} \varepsilon_{j}\right)\left|\psi_{j}(\zeta)\right|+M_{j} \varepsilon_{j} & & \text { by }(4) .
\end{aligned}
$$

Hence

$$
\frac{r_{j}-M_{j} \varepsilon_{j}}{1+M_{j} \varepsilon_{j}}<\left|\psi_{j}(\zeta)\right| \quad \text { for every } \quad \zeta \in E .
$$

Consequently we have

$$
\begin{aligned}
r & <\prod_{j=1}^{\infty} \frac{r_{j}-M_{j} \varepsilon_{j}}{1+M_{j} \varepsilon_{j}} \quad
\end{aligned} \quad \text { by (1) } \quad \text { } r\left|\left(\prod_{j=1}^{\infty} \psi_{j}\right)(\zeta)\right| \quad \text { for every } \quad \zeta \in E .
$$

Since $x \in \operatorname{cl} E$, we get $r<\left|\left(\prod_{j=1}^{\infty} \psi_{j}\right)(x)\right|$.
The following lemma comes from [5, Theorem 5.2].
Lemma 3. Let B be a Blaschke product with zeros $\left\{w_{j}\right\}_{j}$. Then there are subfactors B_{1} and B_{2} of B such that $B=B_{1} B_{2}$ and $B_{1}=B_{2}=0$ on $Z(B) \backslash \operatorname{cl}\left\{w_{j}\right\}_{j}$.

Lemma 4. Let $\left\{x_{j}\right\}_{j}$ be a sequence in G and $\left\{b_{j}\right\}_{j}$ be a sequence of interpolating Blaschke products with $b_{j}\left(x_{j}\right)=0$. Let B be a Blaschke product with zeros $\left\{w_{k}\right\}_{k}$ such that $Z(B) \supset\left\{x_{j}\right\}_{j}$ and $x_{j} \notin \mathrm{cl}\left\{w_{k}\right\}_{k}$ for every j. If x is a point in $M\left(H^{\infty}\right)$ with $B(x) \neq 0$, then for each r with $0<r<1$ there is a Blaschke product $\Pi_{j=1}^{\infty} \psi_{j}$ such that
(i) ψ_{j} is a subproduct of b_{j} with $\psi_{j}\left(x_{j}\right)=0$; and
(ii) $\left|\left(\prod_{j=1}^{\infty} \psi_{j}\right)(x)\right|>r$.

Proof. Take $\left\{z_{j, k}\right\}_{k},\left\{M_{j}\right\}_{j},\left\{r_{j}\right\}_{j}$, and $\left\{\varepsilon_{j}\right\}_{j}$ as in the proof of Lemma 2. Put

$$
E=\{\zeta \in D ;|B(\zeta)|>|B(x)| / 2\}
$$

Then $x \in \operatorname{cl} E$. Fix j arbitrary. There is a positive integer n such that $r_{j}{ }^{n}<$ $|B(x)| / 2$. Applying Lemma 3 succeedingly n-times for B and its subfactors, we get

$$
B=B_{1} B_{2} \cdots B_{n} \text { and } B_{i}=0 \quad \text { on } Z(B) \backslash \operatorname{cl}\left\{w_{k}\right\}_{k}
$$

for every $1 \leqq i \leqq n$. For each $i, 1 \leqq i \leqq n$, let $\psi_{j, i}$ be a subproduct of b_{j} with zeros

$$
F_{j, i}=\left\{z_{j, k} ;\left|B_{i}\left(z_{j, k}\right)\right|<\varepsilon_{j}\right\} .
$$

Since $B_{i}\left(x_{j}\right)=0$ and $x_{j} \in \operatorname{cl}\left\{z_{j, k}\right\}_{k}$, we have

$$
\bigcap_{i=1}^{n} F_{j, i} \neq \phi \quad \text { and } \quad x_{j} \in \operatorname{cl}_{i=1}^{n} F_{j, i} .
$$

Let ψ_{j} be a subproduct of b_{j} with zeros $\bigcap_{i=1}^{n} F_{j, i}$. Then $\psi_{j}\left(x_{j}\right)=0,\left|\psi_{j, i}\right| \leqq\left|\psi_{j}\right|$ on D for every i, and $\left|B_{i}\right|<\varepsilon_{j}$ on $F_{j, i}$. Since the interpolating sequence $F_{j, i}$ has M_{j} as an interpolation constant, there is a function f_{i} in H^{∞} such that

$$
\left\|f_{i}\right\| \leqq M_{j} \varepsilon_{j} \quad \text { and } \quad f_{i}\left(z_{j, k}\right)=B_{i}\left(z_{j, k}\right) \quad \text { for } \quad z_{j, k} \in F_{j, i} .
$$

Then there is a function g_{i} in H° such that

$$
f_{i}-B_{i}=\psi_{j, i} g_{i} .
$$

Since $\left\|g_{i}\right\| \leqq 1+M_{j} \varepsilon_{j}$, we have

$$
\begin{aligned}
\frac{\left|B_{i}(z)\right|-M_{j} \varepsilon_{j}}{1+M_{j} \varepsilon_{j}} & \leqq\left|\psi_{j, i}(z)\right| \quad \text { for } \quad z \in D \quad \text { and } \quad 1 \leqq i \leqq n \\
& \leqq \psi_{j}(z) \mid .
\end{aligned}
$$

Let $\zeta \in E$. Since

$$
\prod_{i=1}^{n}\left|B_{i}(\zeta)\right|=|B(\zeta)|>|B(x)| / 2>r_{j}{ }^{n}
$$

we have $\left|B_{i}(\zeta)\right|>r_{j}$ for some i, where i depends on ζ. Hence

$$
\frac{r_{j}-M_{j} \varepsilon_{j}}{1+M_{j} \varepsilon_{j}} \leqq\left|\psi_{j}(\zeta)\right| \quad \text { for every } \quad \zeta \in E .
$$

Consequently for every $\zeta \in E$ we have

$$
r<\prod_{j=1}^{\infty} \frac{r_{j}-M_{j} \varepsilon_{j}}{1+M_{j} \varepsilon_{j}} \leqq\left|\left(\prod_{j=1}^{\infty} \psi_{j}\right)(\zeta)\right|
$$

Since $x \in \mathrm{cl} E$, we get $r<\left|\left(\prod_{j=1}^{\infty} \psi_{j}\right)(x)\right|$.
Lemma 5. Let $\left\{x_{j}\right\}_{j}$ be a sequence in G such that x_{k} is not contained in $\mathrm{cl}\left\{x_{j}\right\}_{j \neq k}$ for every k. Let $\left\{b_{j}\right\}_{j}$ be a sequence of interpolating Blaschke products with $b_{j}\left(x_{j}\right)=0$. Let B be a Blaschke product with zeros $\left\{w_{k}\right\}_{k}$ such that $\left\{x_{j}\right\}_{j} \subset$ $\mathrm{cl}\left\{w_{k}\right\}_{k}$. If x is a point in $M\left(H^{\circ}\right)$ such that $|B(x)|>\delta$, then there is a Blaschke product $\Pi_{j=1}^{\infty} \psi_{j}$ such that
(i) ψ_{j} is a subproduct of b_{j} with $\psi_{j}\left(x_{j}\right)=0$; and
(ii) $\left|\left(\prod_{j=1}^{\infty} \phi_{j}\right)(x)\right|>\delta$.

Proof. Take $\left\{z_{j, k}\right\}_{k}$ and $\left\{M_{j}\right\}_{j}$ as in Lemma 2. Take σ as $\delta<\sigma<|B(x)|$. Take a sequence $\left\{\varepsilon_{j}\right\}_{j}$ such that $\varepsilon_{j}>0$ and

Put

$$
\begin{equation*}
E=\{\zeta \in D ;|B(\zeta)|>\sigma\} . \tag{6}
\end{equation*}
$$

Then $x \in \mathrm{cl} E$. By our assumption on $\left\{x_{j}\right\}_{j}$, there is a sequence of disjoint open subsets $\left\{U_{j}\right\}_{j}$ of $M\left(H^{\infty}\right)$ such that $x_{j} \in U_{j}$ for every j. Let B_{j} be the Blaschke product with zeros $\left\{w_{k}\right\}_{k} \cap U_{j}$. Then $\Pi_{j=1}^{\infty} B_{j}$ is a subproduct of B and

$$
\begin{equation*}
\left|B_{j}\right|>\sigma \text { on } E . \tag{7}
\end{equation*}
$$

Since $x_{j} \in \mathrm{cl}\left\{w_{k}\right\}_{k}, B_{j}\left(x_{j}\right)=0$.
Fix j arbitrary. Let ψ_{j} be the subproduct of b_{j} with zeros $F_{j}=\left\{z_{j, k}\right.$; $\left.\left|B_{j}\left(z_{j, k}\right)\right|<\varepsilon_{j}\right\}$. Since $x_{j} \in \mathrm{cl}\left\{z_{j, k}\right\}_{k}$ and $B_{j}\left(x_{j}\right)=0$, we have $\psi_{j}\left(x_{j}\right)=0$. By the same way as Lemma 2 (replace $h^{1 / n}$ by B_{j}), we have

$$
\begin{equation*}
\frac{\left|B_{j}(z)\right|-M_{j} \varepsilon_{j}}{1+M_{j} \varepsilon_{j}} \leqq\left|\psi_{j}(z)\right| \quad \text { for every } \quad z \in D \tag{8}
\end{equation*}
$$

Therefore for $\zeta \in E$ we have

$$
\begin{align*}
\left|\left(\prod_{j=1}^{\infty} \psi_{j}\right)(\zeta)\right| & =\prod_{j=1}^{\infty}\left|\psi_{j}(\zeta)\right| & & \\
& \geqq \prod_{j=1}^{\infty}\left|B_{j}(\zeta)\right| \prod_{j=1}^{\infty} \frac{1-M_{j} \varepsilon_{j}\left|B_{j}(\zeta)\right|^{-1}}{1+M_{j} \varepsilon_{j}} & & \text { by } \quad(8) \\
& \geqq|B(\zeta)| \prod_{j=1}^{\infty} \frac{1-M_{j} \varepsilon_{j} \sigma^{-1}}{1+M_{j} \varepsilon_{j}} & & \text { by } \quad(7) \\
& \geqq \sigma \prod_{j=1}^{\infty} \frac{1-M_{j} \varepsilon_{j} \sigma^{-1}}{1+M_{j} \varepsilon_{j}} & & \text { by } \quad(6) \tag{6}\\
& >\delta . & & \text { by } \quad(5) \tag{5}
\end{align*}
$$

Since $x \subseteq \operatorname{cl} E$, we get $\left|\left(\Pi_{j=1}^{\infty} \psi_{j}\right)(x)\right|>\delta$.
The following lemma is a summary of Lemmas 2, 4 and 5.
Lemma 6. Let $\left\{x_{j}\right\}_{j}$ be a sequence in G such that x_{k} is not contained in $\mathrm{cl}\left\{x_{j}\right\}_{j \neq k}$ for every k. Let $\left\{b_{j}\right\}_{j}$ be a sequence of interpolating Blaschke products with $b_{j}\left(x_{j}\right)=0$. Let $x \in M\left(H^{\infty}\right)$. If $|f(x)|>\delta$ for some function f in ball $\left(H^{\infty}\right)$ with $Z(f) \supset\left\{x_{j}\right\}_{j}$, then there is a Blaschke product $\Pi_{j=1}^{\infty} \psi_{j}$ such that
(i) ψ_{j} is a subproduct of b_{j} with $\psi_{j}\left(x_{j}\right)=0$; and
(ii) $\left|\left(\prod_{j=1}^{\infty} \psi_{j}\right)(x)\right|>\delta$.

Proof. Let $f=B h$, where B is a Blaschke factor of f and $Z(h) \cap D=\phi$. Let $\left\{w_{k}\right\}_{k}$ be a zero sequence of B. Put

$$
\begin{aligned}
& \left\{x_{1, j}\right\}_{j}=\left\{x_{i} ; B\left(x_{i}\right)=0 \quad \text { and } \quad x_{i} \in \mathrm{cl}\left\{w_{k}\right\}_{k}\right\} ; \\
& \left\{x_{2, j}\right\}_{j}=\left\{x_{i} ; B\left(x_{i}\right)=0 \quad \text { and } \quad x_{i} \notin \mathrm{cl}\left\{w_{k}\right\}_{k}\right\} ; \text { and } \\
& \left\{x_{3, j}\right\}_{j}=\left\{x_{i}\right\}_{i} \backslash\left(E_{1} \cup E_{2}\right)=\left\{x_{i} ; B\left(x_{i}\right) \neq 0\right\} .
\end{aligned}
$$

Note that $|B(x)|>\delta$ and $h(x) \neq 0$. We devide $\left\{b_{j}\right\}_{j}$ into three parts $\left\{b_{1, j}\right\}_{j}$, $\left\{b_{2, j}\right\}_{j}$ and $\left\{b_{3, j}\right\}_{j}$ such that

$$
b_{k, j}\left(x_{k, j}\right)=0 \quad \text { for } \quad k=1,2,3 \text { and } j=1,2, \cdots
$$

Take δ_{1} such that $\delta<\delta_{1}<|f(x)|$, and take r such that

$$
0<r<1 \text { and } \delta<\delta_{1} r^{2} .
$$

We apply Lemma 5 for $\left\{x_{1, j}\right\}_{j}$ and $\left\{b_{1, j}\right\}_{j}$. Then there is a subproduct $\psi_{1, j}$ of $b_{1, j}$ such that $\psi_{1, j}\left(x_{1, j}\right)=0$ and $\left|\left(\prod_{j=1}^{\infty} \psi_{1, j}\right)(x)\right|>\delta_{1}$. We apply Lemma 4 for $\left\{x_{2, j}\right\}_{j}$ and $\left\{b_{2, j}\right\}_{j}$. Then there is a subproduct $\psi_{2, j}$ of $b_{2, j}$ such that $\psi_{2, j}\left(x_{2, j}\right)$ $=0$ and $\left|\left(\prod_{j=1}^{\infty} \psi_{2, j}\right)(x)\right|>r$. Since $Z(h) \supset\left\{x_{3, j}\right\}_{j}$, we can apply Lemma 2 for $\left\{x_{3, j}\right\}_{j}$ and $\left\{b_{3, j}\right\}_{j}$. Then there is a subproduct $\psi_{3, j}$ of $b_{3, j}$ such that $\psi_{3, j}\left(x_{3, j}\right)$ $=0$ and $\left|\left(\Pi_{j=1}^{\infty} \psi_{3, j}\right)(x)\right|>r$. Consequently, we have a desired Blaschke product $\Pi_{i=1}^{3} \Pi_{j=1}^{\infty} \psi_{i, j}$.

Lemma 7. Let $x \in G$ and let b be an interpolating Blaschke product with $b(x)=0$. If b_{1} and b_{2} are subproducts of b with $b_{1}(x)=b_{2}(x)=0$, then x is contained in the closure of the intersection of zero sequences of b_{1} and b_{2}.

Proof. Suppose not. Let $\left\{z_{j}\right\}_{j}$ and $\left\{w_{j}\right\}_{j}$ be the zero sequences of b_{1} and b_{2} respectively. Put $W=\left\{z_{j}\right\}_{j} \cap\left\{w_{j}\right\}_{j}$. Then $x \notin \mathrm{cl} W$, so that $x \in \operatorname{cl}\left(\left\{z_{j}\right\}_{j} \backslash W\right)$ and $x \in \operatorname{cl}\left(\left\{w_{j}\right\}_{j} \backslash W\right)$. Since disjoint subsets in an interpolating sequence have disjoint closures, we get a contradiction.

Lemma 8. Let $x \in G$ and let E be a closed subset of $M\left(H^{\infty}\right)$ with $P(x) \cap E$ $=\phi$. If b is an interpolating Blaschke product with $b(x)=0$ and $0<r<1$, then there is a subproduct ψ of b such that $\psi(x)=0$ and $|\psi|>r$ on E.

Proof. For each $y \in E$, since $\rho(x, y)=1$ there is a function h_{y} in $\operatorname{ball}\left(H^{\infty}\right)$ such that $h_{y}(x)=0$ and $\left|h_{y}(y)\right|>r$. As a special case of Lemma 6, there is a subproduct b_{y} of b such that $b_{y}(x)=0$ and $\left|b_{y}(y)\right|>r$. Put

$$
U_{y}=\left\{\zeta \in M\left(H^{\infty}\right) ;\left|b_{y}(\zeta)\right|>r\right\}
$$

Then $\cup\left\{U_{y} ; y \in E\right\} \supset E$. Hence there is a finite set $\left\{y_{1}, y_{2}, \cdots, y_{n}\right\}$ in E such that $\cup\left\{U_{y_{i}} ; 1 \leqq i \leqq n\right\} \supset E$. Let ψ be an interpolating Blaschke product with zeros $\cap_{i=1}^{n} Z\left(b_{y_{i}}\right) \cap D$. By Lemma 7 , we have $\psi(x)=0$. Since $|\psi| \geqq\left|b_{y_{i}}\right|$ on D, we have

$$
|\psi(y)| \geqq \max \left\{\left|b_{y_{i}}(y)\right| ; 1 \leqq i \leqq n\right\}>r
$$

for every $y \in E$.

3. Proof of Theorem.

Proof. (i) \Rightarrow (ii) Let b be an interpolating Blaschke product with zeros $\left\{z_{k}\right\}_{k}$ such that $Z(b) \supset\left\{x_{j}\right\}_{j}$. Since $x_{j} \notin \mathrm{cl}\left\{x_{k}\right\}_{k \neq j}$ for every j, there is a sequence of disjoint open subsets $\left\{U_{j}\right\}_{j}$ of $M\left(H^{\infty}\right)$ such that $x_{j} \in U_{j}$. Since x_{j} is a cluster point of $\left\{z_{k}\right\}_{k},\left\{z_{k}\right\}_{k} \cap U_{j}$ is an infinite set for each j. For a bounded sequence $\left\{a_{j}\right\}_{j}$, there is a function h in H^{∞} such that $h\left(z_{i}\right)=a_{j}$ for every $z_{i} \in\left\{z_{k}\right\}_{k} \cap U_{j}$. Since $x_{j} \in \mathrm{cl}\left\{z_{k}\right\}_{k} \cap U_{j}$, we have $h\left(x_{j}\right)=a_{j}$ for every j. Therefore $\left\{x_{j}\right\}_{j}$ is an interpolating sequence.
(ii) \Rightarrow (i) Suppose that $\left\{x_{j}\right\}_{j}$ is an interpolating sequence. Since $x_{j} \in G$, there is an interpolating Blaschke product b_{j} such that $b_{j}\left(x_{j}\right)=0$. By the open mapping theorem, there is a positive number δ such that
(\#) $\inf _{k} \sup \left\{\left|h\left(x_{k}\right)\right| ; h \in \operatorname{ball}\left(H^{\infty}\right), h\left(x_{j}\right)=0\right.$ for $\left.j \neq k\right\}>\delta$.
Let h_{1} be a function in ball $\left(H^{\infty}\right)$ such that $\left|h_{1}\left(x_{1}\right)\right|>\delta$ and $h_{1}\left(x_{j}\right)=0$ for $j \neq 1$. By Lemma 6 (consider as $x=x_{1}$ and $f=h_{1}$), there is a Blaschke product $B_{1}=$ $\prod_{j=2}^{\infty} b_{1, j}$ such that $\left|B_{1}\left(x_{1}\right)\right|>\delta$ and $b_{1, j}$ is a subproduct of b_{j} with $b_{1, j}\left(x_{j}\right)=0$ for $j \geqq 2$.

Let $\left\{r_{j}\right\}_{j}$ be a sequence of numbers such that

$$
0<r_{j}<1 \text { and } \prod_{j=1}^{\infty} r_{j}>\delta
$$

By Lemma 8 (consider as $x=x_{1}, b=b_{1}$ and $E=\mathrm{cl}\left\{x_{i}\right\}_{i \neq 1}$), there is an interpolating Blaschke subproduct ψ_{1} of b_{1} such that $\psi_{1}\left(x_{1}\right)=0$ and $\left|\psi_{1}\left(x_{i}\right)\right|>r_{1}$ for $i \neq 1$. By Lemma 1, we may assume that $\delta\left(\psi_{1}\right)>\delta$. Since $\left|B_{1}\left(x_{1}\right)\right|>\delta$, there is a subsequence $\left\{z_{1, i}\right\}_{i}$ of the zero sequence of ψ_{1} such that $\left|B_{1}\left(z_{1, i}\right)\right|>\delta$ for every i. Then $x_{1} \in \operatorname{cl}\left\{z_{1, i}\right\}_{i}$. Let ϕ_{1} be the interpolating Blaschke product with zeros $\left\{z_{1, i}\right\}_{i}$. Then ϕ_{1} is a subproduct of $b_{1}, \delta\left(\phi_{1}\right)>\delta, \phi_{1}\left(x_{1}\right)=0$, and $\left|\phi_{1}\left(x_{i}\right)\right|>r_{1}$ for $i \neq 1$.

By induction, we shall construct a sequence of Blaschke products $\left\{B_{j}\right\}_{j \geq 2}$ and sequences of interpolating Blaschke products $\left\{\phi_{j}\right\}_{j \geq 2}$ and $\left\{b_{j, t}\right\}_{t>j}$ such that:
(a) $B_{j}=\prod_{t=j+1}^{\infty} b_{j, t}$ is a subproduct of $B_{j-1}=\prod_{t=j}^{\infty} b_{j-1, t}$ such that $\left|B_{j}\left(x_{j}\right)\right|>\delta$;
(b) $b_{j, t}$ is an interpolating Blaschke subproduct of $b_{j-1, t}$ such that $b_{j, t}\left(x_{t}\right)$ $=0$ for $t \geqq j+1$;
(c) ϕ_{j} is a subproduct of $b_{j-1, j}$ with zeros $\left\{z_{j, i}\right\}_{i}$ and $\delta\left(\phi_{j}\right)>\delta$;
(d) $\left|B_{j}\left(z_{j, i}\right)\right|>\delta$ for every i;
(e) $\phi_{j}\left(x_{j}\right)=0$ and $\left|\phi_{j}\left(x_{i}\right)\right|>r_{j}$ for $i \neq j$; and
(f) $\left|\phi_{s}\left(z_{j, i}\right)\right|>r_{s}$ for every $s<j$ and i.

Our induction works on k. If we put $b_{0, t}=b_{t}$, then B_{1}, ϕ_{1} and $\left\{b_{1, t}\right\}_{t>1}$ satisfy all conditions ($a-f$) for $k=1$.

Suppose that $\left\{B_{j}\right\}_{j<k},\left\{\phi_{j}\right\}_{j<k}$ and $\left\{b_{j, t}\right\}_{t>j}(j<k)$ are already chosen. By
(\#) and Lemma 6 (consider as $x=x_{k}$ and $\left\{b_{j}\right\}_{j}=\left\{b_{k-1, t}\right\}_{t \geq k+1}$), there is a subproduct $B_{k}=\Pi_{i=k+1}^{\infty} b_{k, t}$ of B_{k-1} such that $\left|B_{k}\left(x_{k}\right)\right|>\delta$ and $b_{k, t}$ is an interpolating Blaschke subproduct of $b_{k-1, t}$ such that $b_{k, t}\left(x_{t}\right)=0$ for $t \geqq k+1$. Thus we get (a) and (b).

By Lemma 8 (consider as $x=x_{k}, b=b_{k-1, k}$ and $E=\mathrm{cl}\left\{x_{j}\right\}_{j \neq k}$), there is an interpolating Blaschke subproduct ψ_{k} of $b_{k-1, k}$ such that $\psi_{k}\left(x_{k}\right)=0$ and $\left|\psi_{k}\left(x_{i}\right)\right|$ $>r_{k}$ for $i \neq k$. By Lemma 1, we may assume that $\delta\left(\psi_{k}\right)>\delta$. Since $\left|B_{k}\left(x_{k}\right)\right|>\delta$, there is a subsequence $\left\{z_{k, i}\right\}_{i}$ of the zero sequence of ψ_{k} such that $\left|B_{k}\left(z_{k, i}\right)\right|>\delta$ for every i. Then we get (d) and $x_{k} \in \operatorname{cl}\left\{z_{k, i}\right\}_{i}$.

Let ϕ_{k} be the interpolating Blaschke product with zeros $\left\{z_{k, i}\right\}_{i}$. Then $\phi_{k}\left(x_{k}\right)=0$. Since ϕ_{k} is a subproduct of ψ_{k}, we get (c) and (e).

Since $\left|\phi_{s}\left(x_{k}\right)\right|>r_{s}$ for $s<k$ by (e), moreover we may assume that $\left\{z_{k, i}\right\}_{i}$ satisfies $\left|\phi_{s}\left(z_{k, i}\right)\right|>r_{s}$ for every $s<k$ and i. Thus we get (f). This completes the induction.

Put $b=\prod_{k=1}^{\infty} \phi_{k}$. By (e), we have $Z(b) \supset\left\{x_{j}\right\}_{j}$. We shall prove that b is an interpolating Blaschke product. We note that $\left\{z_{k, j}\right\}_{k, j}$ is the zero sequence of b. We have

$$
\begin{aligned}
& \inf _{(k, i)} \prod_{(t, s) \neq(k, i)} \rho\left(z_{t, s}, z_{k, i}\right) \\
& =\inf _{(k, i)}\left[\prod_{t \neq k} \prod_{s=1}^{\infty} \rho\left(z_{t, s}, z_{k, i}\right)\right]\left[\prod_{s \neq i} \rho\left(z_{k, s}, z_{k, i}\right)\right] \\
& \geqq \inf _{(k, i)}\left[\prod_{t \neq k}\left|\dot{\phi}_{t}\left(z_{k, i}\right)\right|\right] \delta\left(\boldsymbol{\phi}_{k}\right) \quad \text { by (c) } \\
& \geqq \delta \inf _{(k, i)}\left[\prod_{t<k}\left|\phi_{t}\left(z_{k, i}\right)\right|\right]\left[\prod_{t>k}\left|\phi_{t}\left(z_{k, i}\right)\right|\right] \quad \text { by (c) } \\
& \geqq \delta \inf _{(k, i)}\left[\prod_{t<k} r_{t}\right]\left|B_{k}\left(z_{k, i}\right)\right| \quad \text { by (a), (b), (c), (f) } \\
& \geqq \delta^{2} \prod_{t=1}^{\infty} r_{t} \quad \text { by (d) } \\
& \geqq \delta^{3} \text {. }
\end{aligned}
$$

Hence b is an interpolating Blaschke product. This completes the proof.
Remark. By the proof of (i) \Rightarrow (ii), for a sequence $\left\{x_{k}\right\}_{k}$ such that $Z(b) \supset$ $\left\{x_{k}\right\}_{k}$ for some interpolating Blaschke product $b,\left\{x_{k}\right\}_{k}$ is interpolating if and only if $x_{j} \notin \mathrm{cl}\left\{x_{k}\right\}_{k \neq j}$ for every j.

4. Comments.

A closed subset E of $M\left(H^{\infty}\right)$ is called an interpolation set for H^{∞} if for every continuous function f on E there is a function g in H^{∞} such that $\left.g\right|_{E}=f$. In [7], Lingenberg proved that if E is an interpolation set such that $E \subset G$ then there is an interpolating Blaschke product b such that $Z(b) \supset E$. If E is
an interpolation set, then E is ρ-separating, that is,

$$
\inf \{\rho(x, y) ; x, y \in E, x \neq y\}>0
$$

Recently Lingenberg and the author showed that if E is a closed ρ-separating subset of $M\left(H^{\infty}\right)$ with $E \subset G, E$ is an interpolation set. Since every closed subset of $Z(b)$, where b is an interpolating Blaschke product, is ρ-separating, the following conditions for closed subsets E of $M\left(H^{\infty}\right)$ are equivalent:
(i) E is an interpolation set and $E \subset G$;
(ii) E is ρ-separating and $E \subset G$; and
(iii) there is an interpolating Blaschke product b such that $Z(b) \supset E$. The closedness of E is an unremovable condition in the above assertion.

Now let $\left\{x_{n}\right\}_{n}$ be an interpolating sequence in $M\left(H^{\infty}\right)$. If $\left\{x_{n}\right\}_{n}$ is contained in D, then $\mathrm{cl}\left\{x_{n}\right\}_{n} \subset G$ by [5]. We have a following conjecture.

Conjecture. If $\left\{x_{n}\right\}_{n}$ is an interpolating sequence in G, then $\mathrm{cl}\left\{x_{n}\right\}_{n} \subset G$. If this conjecture is affirmative, we may discuss as follows. Let $\left\{y_{n}\right\}_{n}$ be a sequence in $M\left(H^{\infty}\right)$. We put

$$
\begin{aligned}
& \left\{y_{1, n}\right\}_{n}=\left\{y_{n}\right\}_{n} \cap M\left(L^{\infty}\right) ; \\
& \left\{y_{2, n}\right\}_{n}=\left\{y_{n}\right\}_{n} \cap\left[M\left(H^{\infty}\right) \backslash\left(M\left(L^{\infty}\right) \cup G\right)\right] ; \text { and } \\
& \left\{y_{3, n}\right\}_{n}=\left\{y_{n}\right\}_{n} \cap G .
\end{aligned}
$$

If $\left\{y_{n}\right\}_{n}$ is interpolating, then each $\left\{y_{k, n}\right\}_{n}$ is interpolating. We see the converse assertion is also true. Since $M\left(L^{\infty}\right)$ is closed, cl $\left\{y_{1, n}\right\}_{n} \subset M\left(L^{\infty}\right)$. Since $\left\{y_{2, n}, y_{3, n}\right\}_{n}$ is a countable subset of $M\left(H^{\infty}\right) \backslash M\left(L^{\infty}\right)$, by [8] we have cl $\left\{y_{2, n}\right.$, $\left.y_{3, n}\right\}_{n} \cap M\left(L^{\infty}\right)=\phi . \quad$ Since G is an open subset of $M\left(H^{\infty}\right)$ [5], cl $\left\{y_{2, n}\right\}_{n} \subset$ $M\left(H^{\infty}\right) \backslash G$. Suppose that each $\left\{y_{k, n}\right\}_{n}$ is interpolating. Then $\mathrm{cl}\left\{y_{3, n}\right\}_{n} \subset G$ (if our conjecture is true), and $\operatorname{cl}\left\{y_{k, n}\right\}_{n}, k=1,2,3$, become mutually disjoint interpolation sets. Moreover

$$
\rho\left(\operatorname{cl}\left\{y_{k, n}\right\}_{n}, \operatorname{cl}\left\{y_{j, n}\right\}_{n}\right)=1 \quad \text { for } \quad k \neq j .
$$

Hence by [9], $\bigcup_{k=1}^{3} \mathrm{cl}\left\{y_{k, n}\right\}_{n}$ is an interpolation set. Then $\left\{y_{n}\right\}_{n}=\bigcup_{k=1}^{3}\left\{y_{k, n}\right\}_{n}$ becomes an interpolating sequence.

Hence to determine whether $\left\{y_{n}\right\}_{n}$ is interpolating or not it is sufficient to study three sequences independently. Hoffman (unpublished note) proved that $\left\{y_{1, n}\right\}_{n}$ is interpolating if and only if $y_{j} \notin \mathrm{cl}\left\{y_{1, n}\right\}_{n \neq j}$ for every j. If $\left\{y_{3, n}\right\}_{n}$ is interpolating, then $\mathrm{cl}\left\{y_{3, n}\right\}_{n}$ is an interpolation set with $\mathrm{cl}\left\{y_{3, n}\right\}_{n} \subset G$ (if our conjecture is true) and $y_{j} \notin \mathrm{cl}\left\{y_{3, n}\right\}_{n \neq j}$ for every j. The converse is also true. For, by the first paragraph, there is an interpolating Blaschke product b such that $Z(b) \supset\left\{y_{3, n}\right\}_{n}$. By the remark in Section $3,\left\{y_{3, n}\right\}_{n}$ is interpolating.

But we do not know anything when $\left\{y_{2, n}\right\}_{n}$ is interpolating.

References

[1] S. Axler and P. Gorkin, Sequences in the maximal ideal space of H^{∞}, Proc. Amer. Math. Soc., 108 (1990), 731-740.
[2] J. Garnett, Bounded analytic functions, Academic Press, New York-London, 1981.
[3] P. Gorkin, H.-M. Lingenberg and R. Mortini, Homeomorphic disks in the spectrum of H^{∞}, Indiana Univ. Math. J., 39 (1990), 961-983.
[4] K. Hoffman, Banach spaces of analytic functions, Prentice Hall, Englewood Cliffs, New Jersey, 1962.
[5] K. Hoffman, Bounded analytic functions and Gleason parts, Ann. of Math., 86 (1967), 74-111.
[6] K. Izuchi, Interpolating sequences in a homeomorphic part of H^{∞}, Proc. Amer. Math. Soc., 111 (1991), 1057-1065.
[7] H.-M. Lingenberg, Interpolationsmengen im raum der maximalen ideale der algebra H^{∞}, Thesis, Univ. Karlsruhe, 1989.
[8] C. Sundberg, A note on algebras between L^{∞} and H^{∞}, Rocky Mountain J. Math., 11 (1981), 333-336.
[9] N. Th. Varopoulos, Sur la reunion de deux ensembles d'interpolation d'une algèbre uniforme, C. R. Acad. Sci. Paris, Sér. A, 272 (1971), 950-952.

Keiji IzUCHI
Department of Mathematics
Kanagawa University
Rokkakubashi, Yokohama 221
Japan

