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Complements of plane curves with logarithmic Kodaira dimension zero
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Abstract. We prove that logarithmic geometric genus of a complement of plane

curve with logarithmic Kodaira dimension zero is equal to one.

1. Introduction.

Let BHP2 be a reduced projective plane curve de®ned over the complex number

®eld C . To study the curve B, the logarithmic Kodaira dimension k�P2 ÿ B� of P2 ÿ B

plays an important role. There are some results for the calculation of k�P2 ÿ B� (see

[18] and [20], etc.). In [12], Miyanishi and Sugie studied the structure of P2 ÿ B when

k�P2 ÿ B� � ÿy by using the A1-ruling theorem (cf. [11, Chapter I]). In [16 ] (or [15]),

Tsunoda classi®ed rational cuspidal curves (i.e., rational curves with only cusps as

singularities) B of k�P2 ÿ B� � 1 with unique singular points by using the structure

theorem of non-complete algebraic surfaces with k � 1 due to Kawamata [6 ] (see also

[11, Chapter II]). Recently, in [8], Kishimoto studied rational cuspidal curves B of

k�P2 ÿ B� � 1 with two singular points.

In the present article, we shall study the case k�P2 ÿ B� � 0, mainly using the

classi®cation theory of a½ne surfaces with k � 0 in [9]. The main result is the following

theorem.

Theorem 1.1. Let BHP2 be a reduced projective plane curve whose complement

has logarithmic Kodaira dimension zero. Then the following assertions hold true:

(1) pg�P2 ÿ B� � 1, where pg�P2 ÿ B� denotes the logarithmic geometric genus of

P2 ÿ B.

(2) If B is not an irreducible nonsingular cubic curve then each irreducible com-

ponent of B is a rational curve.

(3) ]�B� (� the number of irreducible components of B)U 3 and the equality holds if

and only if P2 ÿ BGC � � C �, where C � � C ÿ f0g.
(4) If B is an irreducible rational curve then B has unique singular point and the

number of analytic branches of B at the singular point is equal to two.

In [15], Tsunoda obtained the same result as Theorem 1.1 when B is irreducible.

As applications of Theorem 1.1, we study the fundamental groups and the to-

pological Euler characteristics of the surfaces P2 ÿ B with k�P2 ÿ B� � 0 in §5.

2000 Mathematical Subject Classi®cation. Primary 14J26, Secondary 14H20.

Key Words and Phrases. Plane curves, logarithmic Kodaira dimension, logarithmic geometric genus.

The author is partially supported by JSPS Research Fellowships for Young Scientists and Grant-in-Aid for

Scienti®c Research, the Ministry of Education, Science and Culture.



By a �ÿn�-curve (nV 1) we mean a nonsingular complete rational curve with self-

intersection number �ÿn�. A reduced e¨ective divisor D is called an SNC-divisor (resp.

an NC-divisor) if D has only simple normal crossings (resp. normal crossings). Let

f : X1 ! X2 be a birational morphism between smooth surfaces X1 and X2 and let

Di �i � 1; 2� be a divisor on Xi. We denote the direct image of D1 on X2 (resp. the

total transform of D2 on X1, the proper transform of D2 on X1) by f��D1� (resp. f ��D2�,
f 0�D2�). We refer to [5] for the de®nitions of the logarithmic Kodaira dimension k, the

logarithmic geometric genus pg, the logarithmic n-genus Pn �nV 1� and the logarithmic

irregularity q, etc.

The author would like to express his gratitude to Professor Masayoshi Miyanishi

who gave the author valuable advice and encouragement during the preparation of the

present article.

2. Preliminaries.

We recall some basic notions in the theory of peeling (cf. [13] and [1]). Let �X ;B�
be a pair of a nonsingular projective surface X and an SNC-divisor B on X . We

call such a pair �X ;B� an SNC-pair. A connected curve T consisting of irreducible

components of B (a connected curve in B, for short) is a twig if the dual graph of T is a

linear chain and T meets Bÿ T in a single point at one of the end components of T , the

other end of T is called the tip of T . A connected curve R (resp. F ) in B is a rod (resp.

fork) if R (resp. F ) is a connected component of B and the dual graph of R (resp. F ) is a

linear chain (resp. the dual graph of the exceptional curves of a minimal resolution of a

non-cyclic quotient singularity). A connected curve E in B is rational (resp. admissible)

if each irreducible component of E is rational (resp. if there are no �ÿ1�-curves in

Supp�E� and the intersection matrix of E is negative de®nite). An admissible rational

twig T in B is maximal if T is not extended to an admissible rational twig with more

irreducible components of B.

Let fTlg (resp. fRmg, fFng) be the set of all admissible rational maximal twigs

(resp. all admissible rational rods, all admissible rational forks), where no irreducible

components of Tl's belong to Rm's or Fn's. Then there exists a unique decomposition of

B as a sum of e¨ective Q-divisors B � B] � Bk�B� such that

i) Supp�Bk�B�� � �6
l

Tl�U �6m
Rm�U �6n

Fn�,
ii) �B] � KX � Z� � 0 for every irreducible component Z of Supp�Bk�B��.

We call the divisor Bk�B� the bark of B and say that B] � KX is produced by the peeling

of B.

Definition 2.1 (cf. [13, 1.11]). An SNC-pair �X ;B� is almost minimal if, for

every irreducible curve C on X , either �B] � KX � C�V 0 or the intersection matrix of

C � Bk�B� is not negative de®nite.

We have the following result due to Miyanishi and Tsunoda [13].

Lemma 2.2 (cf. [13, Theorem 1.11]). Let �X ;B� be an SNC-pair. Then there exists

a birational morphism m : X !W onto a nonsingular projective surface W such that the

following four conditions (i)@ (iv) are satis®ed:
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(i) C :� m��B� is an SNC-divisor.

(ii) m� Bk�B�UBk�C� and m��B] � KX �VC] � KW .

(iii) Pn�X ÿ B� � Pn�W ÿ C� for every integer nV 1. In particular, k�X ÿ B� �
k�W ÿ C�.

(iv) The pair �W;C� is almost minimal.

We call the pair �W;C� as in Lemma 2.2 an almost minimal model of �X ;B�.
The following result follows from [1, Lemma 6.20] and [13, Theorem 2.11 (1)].

Note that a rod (resp. a fork) is called a club (resp. an abnormal club) in [1].

Lemma 2.3. Let �X ;B� be an SNC-pair with k�X ÿ B�V 0. Assume that any

rational twig of B is admissible. If �X ;B� is not almost minimal then there exists a

�ÿ1�-curve E, not contained in B, such that one of the following holds:

(i) E VB �q.

(ii) �E � B� � 1 and E meets an irreducible component of Supp�Bk�B��.
(iii) �E � B� � 2 and E meets two di¨erent connected components of B such that one

of the connected components is a rational rod Rn of B and E meets a tip of Rn.

Further, Pn�X ÿ �B� E�� � Pn�X ÿ B� for any nV 1 and hence k�X ÿ �B� E�� �
k�X ÿ B�.

Lemma 2.4. Let �X ;B� be an almost minimal SNC-pair with k�X ÿ B� � 0 and

pg�X ÿ B� � 1. Assume that X is rational and B is connected. Then B� KX @ 0 and

B is a nonsingular elliptic curve or a loop of nonsingular rational curves.

Proof. See [9, Proposition 1.5 (1)] or [21, Reduction theorem]. r

Now we recall the construction of a strongly minimal model of a nonsingular a½ne

surface with k � 0 (cf. [9, §2]). Let S � Spec�A� be a nonsingular a½ne surface with

k�S� � 0 and let �X ;B� be an SNC-pair with X ÿ B � S. We call such a pair �X ;B�
an SNC-completion of S. Note that S is rational by [9, Theorem 1.6]. Let �W ;C� be

an almost minimal model of �X ;B�. By contracting �ÿ1�-curves E with �E � C�U 1

successively, we obtain a birational morphism n : W ! V such that �F � n��C�� > 1 for

any �ÿ1�-curve F on V. Put D :� n��C� and S 0 :� V ÿD. We call the surface S 0 a

strongly minimal model of S. By [9, Lemmas 2.3 and 2.4 and Corollary 2.5], we have

the following result.

Lemma 2.5. With the same notation and the assumptions as above, the following

assertions hold:

(1) S 0 is an a½ne open subset of S and S ÿ S 0 is an empty set or a disjoint union of

the a½ne lines A1.

(2) D is an NC-divisor. Furthermore, if pg�S� � 0 then D becomes an SNC-divisor

and the pair �V ;D� is almost minimal.

(3) Pn�S 0� � Pn�S� for any nV 1. In particular, k�S 0� � k�S� � 0.

Definition 2.6. Let S � Spec�A� be a nonsingular a½ne surface with k�S� � 0

and let �X ;B� be an SNC-completion of S. We call the pair �X ;B� (resp. the surface

S) to be strongly minimal if �X ;B� is almost minimal and �E � B� > 1 for any �ÿ1�-curve

E on X (resp. if there exists a strongly minimal model S 0 of S such that S � S 0). Note
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that if S is strongly minimal and pg�S� � 0 then S has a strongly minimal SNC-

completion by Lemma 2.5 (2).

Lemma 2.7. Let S � Spec�A� be a nonsingular a½ne surface with k�S� � 0 and let

�X ;B� be an SNC-completion of S such that �Bi � Bÿ Bi�V 3 for any �ÿ1�-curve Bi HB.

If �X ;B� is not strongly minimal then there exists a �ÿ1�-curve E, not contained in B, such

that �E � B� � 1 and Pn�X ÿ �B� E�� � Pn�X ÿ B� for any nV 1.

Proof. If �X ;B� is almost minimal then the assertion is clear by the de®nition of

strongly minimality and Lemma 2.5 (3). Suppose that �X ;B� is not almost minimal.

Since k�X ÿ B� � 0 and �Bi � Bÿ Bi�V 3 for any �ÿ1�-curve Bi HB, we know that any

rational twig of B is admissible by virtue of [17, Step (3) in the proof of Theorem 1.3].

Further, B is connected and S contains no complete curves since S is a½ne. Hence the

assertion follows from Lemma 2.3. r

We state the classi®cation of strongly minimal a½ne surfaces with k � 0. For

more details, see [9].

Lemma 2.8 (cf. [9, Theorems 0.1, 4.5 and 5.4]). Let S be a strongly minimal

nonsingular a½ne surface with k�S� � 0. Then we have:

(1) S is one of the surfaces in Table 1, where m�S�, e�S� and p1�S� are respectively

Table 1

Type m�S� q�S� e�S� p1�S�
��9� 1 0 3 Z=�3�
��8� 1 0 4 Z=�2�
O�8� 1 0 3 Z=�2�
O�k � 4;ÿk� �k V 0� 1 0 2 Z=�k � 2�
O�4; 1� 1 1 1 Z

O�2; 2� 1 1 2 Z

O�1; 1; 1� (GC � � C �) 1 2 0 Z 2

X �2� 2 0 2 Z=�4�
H�ÿ1; 0;ÿ1� 2 1 0 hy; ti=�ytyÿ1t�
H�0; 0� 2 1 1 Z

H�k;ÿk� �k V 1� 2 0 1 Z=�4k�
Yf3; 3; 3g 3 0 1 Z=�9�
Yf2; 4; 4g 4 0 1 Z=�8�
Yf2; 3; 6g 6 0 1 Z=�6�
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the least positive integer such that Pm�S��S� > 0, the topological Euler characteristic of S

and the fundamental group of S.

(2) Assume further that pg�S� � 0 and e�S�U 1. Let �V;D� be a strongly minimal

SNC-completion of S. Then the con®guration of D is one of (a)@ (e) in Figure 1, where

each line represents a nonsingular rational curve and each number indicates the self-

intersection number of the corresponding curve.

Corollary 2.9. Let S be a nonsingular a½ne surface with k�S� � 0. Then the

following assertions hold:

(1) e�S�V 0 and the equality holds if and only if S is strongly minimal and of type

O�1; 1; 1� or H�ÿ1; 0;ÿ1�.
(2) Assume that e�S� � pg�S� � 0, i.e., S is of type H�ÿ1; 0;ÿ1�. Let �V ;D� be

an SNC-completion of S such that �Di �DÿDi�V 3 for any �ÿ1�-curve Di HD. Then

�V;D� is strongly minimal and the con®guration of D is given as (b) in Figure 1.

Proof. By Lemmas 2.5 (1), 2.7 and 2.8, the assertions are clear. r

3. Proof of Theorem 1.1, part I.

In this section, we prove Theorem 1.1 when the curve B is reducible. We prove

some lemmas to be used later.

Lemma 3.1. Let V be a nonsingular projective surface with q�V� :� h1�V ;OV � � 0

and let D be a non-zero reduced e¨ective divisor on V. Then

q�V ÿD�V ]�D� ÿ r�V�;

Figure 1
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where r�V� is the Picard number of V. Furthermore, the equality holds provided

r�V� � 1.

Proof. Let D �Pi Di be the irreducible decomposition of D. Since q�V� � 0,

we get

q�V ÿD� � dimQ Ker 0
i

Q�Di� ! Pic�V�nQ

� �
by [2, Lemma 2]. Hence

q�V ÿD�V ]�D� ÿ r�V�:
If r�V� � 1 then the natural map 0

i
Q�Di� ! Pic�V�nQ is surjective. So q�V ÿD� �

]�D� ÿ 1. r

Lemma 3.2. Let S be a nonsingular a½ne surface with k�S� � 0. Then q�S�U 2.

Moreover, q�S� � 2 if and only if S GC � � C �.

Proof. By [3, Theorem II], the assertions are clear. See also [7, Theorem 2.8 and

Corollary 2.9]. r

Now we shall prove Theorem 1.1 when B is reducible.

Lemma 3.3. With the same notation as in Theorem 1.1, ]�B�U 3 and the equality

holds if and only if P2 ÿ BGC � � C �. In particular, if ]�B� � 3 then pg�P2 ÿ B� � 1.

Proof. We note that pg�C � � C �� � 1. Lemma 3.1 implies that q�P2 ÿ B� �
]�B� ÿ 1. So, by Lemma 3.2, we know that ]�B�U 3 and the equality holds if and only

if P2 ÿ BGC � � C �. r

Among the assertions of Theorem 1.1, (3) and (1) in the case ]�B�V 3 are veri®ed.

Next we consider the case ]�B� � 2.

Lemma 3.4. With the same notation as in Theorem 1.1, assume that ]�B� � 2.

Then pg�P2 ÿ B� � 1.

Proof. Put S :� P2 ÿ B. Note that pg�S�U 1 because k�S� � 0. Suppose to the

contrary that pg�S� � 0. Let B � B1 � B2 be the irreducible decomposition of B. Let

m : W ! P2 be a composite of blowing-ups such that C :� mÿ1�B� becomes an SNC-

divisor and that m is the shortest among such birational morphisms. From now on, we

call such a morphism m a minimal SNC-map for the pair �P2;B�. Note that W ÿ C �
S. Since pg�W ÿ C� � pg�S� � 0, each irreducible component of C is a nonsingular

rational curve and the dual graph of C is a tree by [11, Lemma I.2.1.3]. So B1 and

B2 are rational cuspidal curves and meet in only one point P. Hence e�S� � e�P2�ÿ
e�B1� ÿ e�B2 ÿ fPg� � 3ÿ 2ÿ 1 � 0. By Corollary 2.9 (1), S is of type H�ÿ1; 0;ÿ1�.

Let Ci �i � 1; 2� be the proper transform of Bi on W . Assume that �Cj � C ÿ Cj�
V 3 for any �ÿ1�-curve Cj HC. Then, by Corollary 2.9 (2), the con®guration of C is

given as (b) in Figure 1. Since each component of C ÿ �C1 � C2� has negative self-

intersection number, D4 is one of fC1;C2g and either fC1;C2gV fD1;D2;D3g �q or

fC1;C2gV fD5;D6;D7g �q. Then there exists P1 A P2 such that Di �Di�1 �Di�2 �
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mÿ1�P1�, where i � 1 or 5. This is a contradiction. So there exists a �ÿ1�-curve H in

Supp�C� such that �H � C ÿH�U 2. By the minimality of m, we know that H � C1 or

C2. Assume that H � C1. We claim that:

Claim. �C1 � C ÿ C1� � 2.

Proof. If �C1 � C ÿ C1� � 1 then k�W ÿ C� � k�W ÿ �C ÿ C1�� � 0. Since W ÿ
�C ÿ C1� � P2 ÿ B2, we have k�P2 ÿ B2� � 0. In the next section, we prove that if

DHP2 be an irreducible rational cuspidal curve then k�P2 ÿD�0 0 (cf. Lemmas 4.1

and 4.2). So we have a contradiction.

The above claim implies that there exists a unique singular point Q A B1 other than

P. Then, since Q is a cusp of B1, there exists a unique decomposition of mÿ1�Q� as a

sum of non-zero reduced e¨ective divisors mÿ1�Q� � E � F � G such that the following

three conditions are satis®ed:

(i) F and G are connected.

(ii) E is a unique �ÿ1�-curve in mÿ1�Q� and hence each component of F � G has

self-intersection numberUÿ2.

(iii) �E � F� � �E � G� � �E � C1� � 1.

The dual graph of C is given as in Figure 2, where we put ~C :� C ÿ �C1 � E � F � G�.
We have �C1 � ~C� � 1.

Let n : W !W 0 be a sequence of contractions of �ÿ1�-curves and subsequently

contractible curves in C, starting with the contraction of C1, such that C 0 :� n��C� is

an SNC-divisor and that the contraction of any �ÿ1�-curve in C 0 makes the image of

D 0 lose the simple normal crossing property (the SNC-property, for short). Then

�n��E�2�V 0 and the weighted dual graphs of n��F � and n��G� are the same as those

of F and G. Further, �C 0i � C 0 ÿ C 0i �V 3 for any �ÿ1�-curve C 0i HC 0 because the dual

graph of C is a tree. Since W 0 ÿ C 0 � S is of type H�ÿ1; 0;ÿ1�, the con®guration of

C 0 is given as (b) in Figure 1 by Corollary 2.9 (2). Since �n��E�2�V 0, n��E� � D4 or

D5. If n��E� � D4 then n��C1 � ~C� � 0 and D5 �D6 �D7 � n��F� or n��G�. This is

a contradiction because n��F � and n��G� contain no irreducible curves with self-

intersection numberVÿ1. If n��E� � D5 then n�� ~C� � D1 � � � � �D4 and F and G are

irreducible �ÿ2�-curves. This is also a contradiction because the intersection matrix of

E � F � G is then not negative de®nite. r

The assertion (2) of Theorem 1.1 follows from Lemma 3.5 below.

Lemma 3.5 (cf. [10, Lemma 4]). Let BHP2 be a reduced curve. Assume that

k�P2 ÿ B�U 1 and B contains a non-rational curve. Then B is an irreducible nonsingular

cubic curve.

Figure 2
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Proof. Since B contains a non-rational curve, deg BV 3. By virtue of [4,

Theorem 4], we have k�P2 ÿ B� � k�B� KP2 ;P2� � k��deg Bÿ 3�l;P2�, where l is a

line on P2 and k�B� KP2 ;P2� denotes the �B� KP2�-dimension of P2 (cf. [5]). If

deg BV 4 then k��deg Bÿ 3�l;P2� � 2. So deg B � 3 and hence B is an irreducible

nonsingular cubic curve. r

4. Proof of Theorem 1.1, part II.

In this section, we treat the case where B is irreducible. All results in this section

except for Lemma 4.3 are stated in [15], where their proofs however are not given. For

the sake of completeness, we give the proofs which use the classi®cation theory of the

a½ne surfaces with k � 0 (cf. §2). In [14], Orevkov independently gave the proofs of

Lemmas 4.1 and 4.2. Our proofs are almost the same as Orevkov's.

Assume that pg�P2 ÿ B� � 0 and B is irreducible. Then, by using the same

argument as in the proof of Lemma 3.4, we know that B is a rational cuspidal curve.

If B is nonsingular, B is a line or a conic and k�P2 ÿ B� � ÿy. So ]Sing�B�V 1.

By [18, Theorem (II)], ]Sing�B�U 2. Here we note that e�P2 ÿ B� � e�P2� ÿ e�B� �
3ÿ 2 � 1.

We shall consider the cases ]Sing�B� � 1 and ]Sing�B� � 2 separately.

Lemma 4.1. If BHP2 is a rational cuspidal curve with ]Sing�B� � 1. Then

k�P2 ÿ B�0 0.

Proof. Suppose that k�P2 ÿ B� � 0. Let m : W ! P2 be a minimal SNC-map for

�P2;B� (cf. the proof of Lemma 3.4) and let C1 be the proper transform of B on W .

Let P be the unique singular point of B. Then there exists a unique decomposition of

mÿ1�P� as a sum of nonzero reduced e¨ective divisors mÿ1�P� � E � F � G such that the

conditions (i)@ (iii) for mÿ1�Q� as in the proof of Lemma 3.4 hold. The dual graph of

C :� mÿ1�B� � C1 � E � F � G is given as in Figure 3.

Since �C1 � C � KW � � ÿ1 < 0 and k�W ÿ C� � 0, we know that �C1�2 < 0 by the

theory of Zariski decomposition (cf. [17, the proof of Theorem 1.3]). If �C1�2 � ÿ1

then k�W ÿ C� � k�W ÿ �C ÿ C1�� � 0 because �C1 � C ÿ C1� � 1. Since C ÿ C1 �
mÿ1�P� can be contracted to a smooth point, we have k�W ÿ �C ÿ C1�� � ÿy, which is

a contradiction. So �C1�2 Uÿ2.

Suppose that �W ;C� is strongly minimal (cf. De®nition 2.6). Then, in view of

e�W ÿ C� � 1, we know that the con®guration of C is given as one of (a), (c), (d) and

(e) in Figure 1. Since C contains a unique �ÿ1�-curve E, the con®guration of C is

either (a) or (e). If the case (a) occurs then C contains a curve with non-negative self-

intersection number, which is a contradiction. If the case (e) occurs then E � F � G �
D1 �D3 �D4 � � � � �D9 since C1 is irreducible. This is also a contradiction because

Figure 3
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the intersection matrix of D1 �D3 �D4 � � � � �D9 is then not negative de®nite. Hence

there exists a �ÿ1�-curve H, not contained in C, such that �H � C� � 1 by Lemma 2.7.

Let n : W !W 0 be a sequence of contractions of �ÿ1�-curves and subsequently

contractible curves in C �H, starting with the contraction of H, such that C 0 :� n��C�
is an SNC-divisor and that the contraction of any �ÿ1�-curve in Supp�C 0� makes the

image of C 0 lose the SNC-property. Then �C 0i � C 0 ÿ C 0i �V 3 for any �ÿ1�-curve C 0i H
C 0 because the dual graph of C �H is a tree. Since e�W 0 ÿ C 0� � e�W ÿ C� ÿ 1 � 0

and pg�W 0 ÿ C 0� � 0 by Lemma 2.7, W 0 ÿ C 0 is of type H�ÿ1; 0;ÿ1� and �W 0;C 0� is

strongly minimal by Corollary 2.9 (2). The con®guration of C 0 is then given as (b)

in Figure 1. We note that Q :� n�H� is a unique fundamental point of n. Since

each component of C has negative self-intersection number, Q A D4. Then either

n 0�D1 �D2 �D3� or n 0�D5 �D6 �D7� is contained in F or G. We consider the case

n 0�D1 �D2 �D3�HF or G. The case n 0�D5 �D6 �D7�HF or G can be treated

similarly. Since Q A D4, n 0�Di� �i � 1; 2� is a �ÿ2�-curve and a terminal component of

C. We can factor the map m � m1 � m2 : W ! P2 so that m2��n 0�D3�� is a unique �ÿ1�-
curve in Supp m2��E � F � G�. Then, since n 0�Di� �i � 1; 2� is a �ÿ2�-curve and a

terminal component of C, m2��n 0�Di�� �i � 1; 2� remains as a �ÿ2�-curve. This is a

contradiction because the intersection matrix of m2��n 0�D1 �D2 �D3��H mÿ1
1 �P� is then

not negative de®nite. r

Lemma 4.2. If BHP2 be a rational cuspidal curve with ]Sing�B� � 2 then

k�P2 ÿ B�V 1.

Proof. By [18, Theorem (IV)], k�P2 ÿ B�V 0. Suppose that k�P2 ÿ B� � 0. Let

P1 and P2 be two singular points of B. Let m : W ! P2 be a minimal SNC-map for

�P2;B�. Then there exists a unique decomposition of mÿ1�Pi� �i � 1; 2� as a sum of

non-zero reduced e¨ective divisors mÿ1�Pi� � Ei � Fi � Gi such that the conditions

(i)@ (iii) for mÿ1�Q� as in the proof of Lemma 3.4 hold, where we consider respectively

E, F and G as Ei, Fi and Gi. Let C1 be the proper transform of B on W and C :�
mÿ1�B� � C1 �

P2
i�1�Ei � Fi � Gi�. The dual graph of C is given as in Figure 4.

We consider the following two cases separately.

Case 1: �C1�2 0ÿ1. Then all �ÿ1�-curves in C are exhausted by E1 and E2

and �Ei � C ÿ Ei� � 3 �i � 1; 2�. If �W ;C� is strongly minimal then it follows from

e�W ÿ C� � 1 that the con®guration of C is given as one of (a), (c), (d) and (e) in

Figure 4
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Figure 1. This is, however, a contradiction. So there exists a �ÿ1�-curve H, not

contained in C, such that �H � C� � 1 by Lemma 2.7. Let n : W !W 0 be a sequence

of contractions of �ÿ1�-curves and subsequently contractible curves in C �H, starting

with the contraction of H, such that C 0 :� n��C� is an SNC-divisor and that the

contraction of any �ÿ1�-curve in Supp�C 0� makes the image of C 0 lose the SNC-

property. We know that Q :� n�H� is a unique fundamental point of n and the

con®guration of C 0 is given as (b) in Figure 1 by the same argument as in the proof of

Lemma 4.1.

Since �H � C� � 1, we may assume that �H � E1 � F1 � G1� � 0. Then n��E1�2 V
ÿ1 and the dual graphs of n��F1� and n��G1� are the same as those of F1 and G1. So

n��E1� � D4 or D5. Since each component of n��F1� and n��G1� has self-intersection

numberUÿ2, n��E1� � D5. Hence F1 and G1 are �ÿ2�-curves. This contradicts that

the intersection matrix of E1 � F1 � G1 is negative de®nite.

Case 2: �C1�2 � ÿ1. Let f : W !W 0 be the contraction of C1 and put C 0 :�
f��C�. The dual graph of C 0 is given as in Figure 5, where the dual graphs of F 0i :�
f��Fi� and G 0i :� f��Gi� �i � 1; 2� are the same as those of Fi and Gi.

The divisor C 0 contains no �ÿ1�-curves. If �W 0;C 0� is strongly minimal then the

con®guration of C 0 must be (a) in Figure 1. Then k � 0 in Figure 1 (a) and F1, F2,

G1 and G2 are �ÿ2�-curves. This is a contradiction because the intersection matrix of

Ei � Fi � Gi �i � 1; 2� is then not negative de®nite. So there exists a �ÿ1�-curve H 0,
not contained in C 0, such that �H 0 � C 0� � 1 by Lemma 2.7. Let n : W 0 !W 00 be a

sequence of contractions of �ÿ1�-curves and subsequently contractible curves in C 0 �H 0,
starting with the contraction of H 0, such that C 00 :� n��C 0� is an SNC-divisor and that

the contraction of any �ÿ1�-curve in Supp�C 00� makes the image of C 00 lose the SNC-

property. By the same argument as in the proof of Lemma 4.1, we know that Q :�
n�H 0� is a unique fundamental point of n and the con®guration of C 00 is given as (b) in

Figure 1.

We may assume that �H 0 � C 0� � �H 0 � E 02 � G 02� � 1. Then n��E 02�2 V 0, �n��E 01� �
C 00 ÿ n��E 01�� � 3 and the dual graphs of n��F 01� and n��G 01� are the same as those of

F1 and G1. So n��E 01� � D5 and F1 and G1 are �ÿ2�-curves. This is a contra-

diction. r

The proof of (1) of Theorem 1.1 is thus completed by Lemmas 3.3, 3.4, 4.1 and 4.2.

Proof of (4) of Theorem 1.1. Let BHP2 be an irreducible rational curve with

k�P2 ÿ B� � 0. Then, by Lemmas 4.1 and 4.2 and [18, Theorems (II) and (III)], B has

a unique singular point, say P, and P is not a cusp. We denote the number of analytic

branches of B at P by rP�B�. Then rP�B� � 2 follows from Lemma 4.3 below.

Figure 5
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Lemma 4.3. Let D be an irreducible rational curve on a nonsingular projective

rational surface V with k�V ÿD� � 0. Let s�D� be the number of singular points on D

which are not cusps. Then s�D�U 1 and if s�D� � 1 then rP�D� � 2, where P is the

singular point on D which is not a cusp.

Proof. Assume that s�D�V 1. Let f : ~V ! V be a minimal SNC-map for �V;D�
and let ~D :� f ÿ1�D�. Then ~D contains loops of nonsingular rational curves. So

pg� ~V ÿ ~D� � pg�V ÿD� � 1. Let �W ;C� be an almost minimal model of � ~V ; ~D�.
Lemma 2.4 implies that C is a loop of nonsingular rational curves. The dual graph of
~D then contains only one loop by the construction of almost minimal models (cf. [13],

etc.). Hence the assertions hold. r

The proof of Theorem 1.1 is thus completed.

5. p1�P2 ÿ B� and e�P2 ÿ B�.
In this section, we study the fundamental groups p1�P2 ÿ B� and the topological

Euler characteristics e�P2 ÿ B� of the surfaces P2 ÿ B with k�P2 ÿ B� � 0 by using

Theorem 1.1.

Proposition 5.1. Let BHP2 be a reduced curve with k�P2 ÿ B� � 0. Then

p1�P2 ÿ B� is abelian. In particular, if B is irreducible then p1�P2 ÿ B� � Z=�deg B�Z.

Proof. Put S :� P2 ÿ B. Let S 0 be a strongly minimal model of S. Then, by

Theorem 1.1 (1) and Lemma 2.8 (1), p1�S 0� is an abelian group. So p1�S� is abelian

since S 0 is a Zariski open subset of S. If B is irreducible then H1�S; Z�GZ=�deg B�Z
by the duality. r

Proposition 5.2. Let BHP2 be a reduced curve with k�P2 ÿ B� � 0. Then

e�P2 ÿ B� � 3; if B is a nonsingular cubic curve

3ÿ ]�B�; otherwise:

�
Proof. By Theorem 1.1, the assertion holds unless ]�B� � 2. So we consider the

case ]�B� � 2. Put S :� P2 ÿ B.

Assume that S is strongly minimal. Since q�S� � ]�B� ÿ 1 � 1 by Lemma 3.1, S is

of type O�4; 1� or O�2; 2� (cf. Table 1). If the latter case occurs then S GP1 � P1ÿ
�C1 � C2�, where Ci �i � 1; 2� is a curve of bidegree �1; 1� and C1 � C2 is an SNC-

divisor (cf. [9, Theorem 3.1]). This is a contradiction because Pic�S� is then not a ®nite

group. Hence we know that e�S� � 1. Assume that S is not strongly minimal. Let

S 0 be a strongly minimal model of S. Since S ÿ S 0 consists of disjoint r a½ne lines

A1 �rV 1� by Lemma 2.5 (1), we have e�S� � e�S 0� � r. Put B 0 :� P2 ÿ S 0. Then B 0

is purely of codimension one. Since ]�B 0� � ]�B� � r � 2� r, we have S 0GC � � C �

and r � 1 by Theorem 1.1 (3). Hence e�S� � e�S 0� � r � 1. r

6. The case B is irreducible.

Let BHP2 be an irreducible curve with k�P2 ÿ B� � 0. Throughout this section,

we assume that B is not a nonsingular cubic curve. Theorem 1.1 (4) implies that B is
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a rational curve with unique singular point P and rP�B� � 2. Let B1 and B2 be two

analytic branches of B at P. Then we have the following three cases:

Case (I): P is a smooth point of B1 and B2.

Case (II): P is a smooth point of either B1 or B2, but not for both.

Case (III): P is a singular point of B1 and B2.

We call the curve B to be of type (I) (resp. (II), (III)) if the case (I) (resp. (II),

(III)) occurs.

We consider the case (I).

Proposition 6.1. Suppose that B is of type (I). Then B is projectively equivalent to

one of the curves de®ned by the following polynomials, where �X ;Y ;Z� denotes the system

of homogeneous coordinates in P2 and d � deg B.

d de®ning equation

3 XYZ ÿ X 3 ÿ Y 3

4 �YZ ÿ X 2�2 � tX 2Y 2 � XY 3, t A C ÿ f0g
5 �YZ ÿ X 2��YZ2 ÿ X 2Z � tY 2Z ÿ tX 2Y � 2XY 2� � Y 5, t A C ÿ f0g

Conversely, if Ct is a curve whose de®ning equation is one of the above list with

deg Ct � 4 or 5 then k�P2 ÿ Ct� � 0. Moreover, Ct and Cs are projectively equivalent if

and only if t3 � s3, i.e., t3 is the projective invariant.

Proof. Since B1 and B2 are smooth at P, the multiplicity of B at P is equal to

two. So the assertions follow from [20, Propositions 1 and 3] (or [19]). r

We give examples of the cases (II) and (III). We denote by Fa, Ma and l a

Hirzebruch surface of degree a, the minimal section of Fa and a general ®ber of the

ruling on Fa, respectively.

Example 1. Let C0, C1 and C2 be three irreducible curves on Fa �aV 3� such that

C0 @Ma � �a� 1�l (the relation@ represents the linear equivalence of divisors), C1 �
Ma, C2 @ l and C0 � C1 � C2 is an SNC-divisor. See Figure 6-(i). Let m : V ! Fa be

the composite of �aÿ 1�-times blowing-ups such that the con®guration of C 0 :�
mÿ1�C0 � C1 � C2� is shown as in Figure 6-(ii), where C 0i �i � 0; 1; 2� is the proper

Figure 6
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transform of Ci. Then we obtain the birational morphism n : V ! P2 which is the

contraction of the curve C 0 ÿ �C 00 � Ea�1� in the order C 02;E3; . . . ;Ea;C
0
1. Put B :�

n�C 00�. We know that deg B � a� 1V 4. We have k�V ÿ C 0� � k�Fa ÿ �C0 � C1�
C2�� � 0 because C0 � C1 � C2 � KFa

@ 0. Since Ea�1 is a �ÿ1�-curve and �Ea�1 � C 0 ÿ
Ea�1� � 1, k�V ÿ �C 0 ÿ Ea�1�� � k�V ÿ C 0�. So k�P2 ÿ B� � k�V 0 ÿ �C 0 ÿ Ea�1�� � 0.

The curve B is of type (II).

Example 2. Let b, s and t be three integers such that bV 5, s; tV 2 and s� t �
bÿ 1. Let C0; . . . ;C3 be four irreducible curves on Fb such that C0 @Mb � bl, C1 @
C2 @ l, C3 �Mb and C0 � � � � � C3 is an SNC-divisor. See Figure 7-(i). Let m : V !
Fb be the composite of �s� t�-times blowing-ups such that the con®guration of C 0 :�
mÿ1�C0 � � � � � C3� is shown as in Figure 7-(ii), where C 0i �i � 0; . . . ; 3� is the proper

transform of Ci. Then we obtain the birational morphism n : V ! P2 which is the

contraction of the curve C 0 ÿ �C 00 � Es � Ft� in the order C 01;E1; . . . ;Esÿ1;C
0
2;F1; . . . ;

Ftÿ1;C
0
3. Put B :� n�C 00�. We know that deg B � bV 5. Since C0 � � � � � C3 � KFb

@
0, k�P2 ÿ B� � 0 (cf. Example 1). The curve B is of type (III).

By the above examples, we have the following result.

Proposition 6.2. For any integer nV 4 (resp. V5), there exists an irreducible

rational curve BHP2 of degree n such that k�P2 ÿ B� � 0 and B is of type (II) (resp.

(III)).
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