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Abstract. The Cherenkov instability used in slow-wave devices has been well studied
in the literature. However, in previous analyses, the beammotion is restricted to the
longitudinal direction assuming an infinitely strong magnetic field. For the finite
strength magnetic field, the transverse beam perturbation cannot be ignored and
leads to the slow cyclotron instability. Recently, a new version of self-consistent
field theory considering three-dimensional perturbation has been developed based
on a solid beam, in which the effect of the transverse perturbation appears as a
surface charge at a fixed boundary. In the case of a thin annular beam, the boundary
is modulated and is essentially different from the solid beam case. We propose a
self-consistent field theory considering the moving modified boundary surface. The
slow cyclotron instability due to the modulation of an infinitesimally thin annular
electron beam is presented.

1. Introduction
For an electron beam propagating along the direction of an axial magnetic field,
there exist four beam modes: slow and fast space charge modes and slow and fast
cyclotron modes. The microwave radiation can occur at frequencies approximately
given by intersections between the slow beammodes and slow electromagnetic (EM)
modes in slow-wave structures (SWSs) such as a dielectric loaded waveguide or a
periodically modulated waveguide. In this paper, we refer to the instability at the
intersection of slow space charge mode as the ‘Cherenkov instability’ and that at
the intersection of the slow cyclotron mode as the ‘slow cyclotron instability’. The
latter occurs at the anomalous Doppler-shifted cyclotron frequency.
Slow-wave devices such as backward wave oscillators and traveling wave tubes

have been well studied as a family of powerful slow-wave microwave devices [1].
In previous studies, only the Cherenkov instability due to the longitudinal electron
motion has been considered with an assumption of infinitely strong magnetic field.
For a finite strength magnetic field, not only the Cherenkov instability but also
the slow cyclotron instability can be driven by a linearly streaming electron beam
without initial perpendicular velocity [2–4]. Although the slow cyclotron instability
is attributed to the transverse perturbation of beam, it is essentially different from
the fast cyclotron instability due to the normal Doppler effect, which needs an initial
perpendicular beam velocity. In [3], a new self-consistent field theory considering
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three-dimensional beam perturbations was developed based on a solid beam and the
Cherenkov instability was analyzed. The effect of the transverse beam perturbation
appears as a surface charge at a fixed beam surface. However, in the case of an
infinitesimally thin annular beam, the boundary surface is modulated (modified and
moving) due to the transverse perturbation. The treatment of the beam boundary
is essentially different from the solid beam. A pioneering work can be seen in [5].
This is a classical linear theory based on distributed circuit elements. The transverse
perturbation was taken into account as a change of beam coupling to the circuit.
Since the EM mode should be given beforehand, normal modes of the system and
their instabilities cannot be analyzed. Any self-consistent field theory considering
the modulated boundary has not been presented, to the authors’ knowledge.
In this work, we propose a new linear self-consistent field theory considering

the modulated beam surface. A dielectric loaded cylindrical waveguide is used
as the SWS. Normal modes of the system and their instabilities are numerically
analyzed. The slow cyclotron instability driven by a thin annular electron beam is
demonstrated and is studied.

2. Numerical Formula
We consider a dielectric SWS system composed of a metric cylinder with radius
RW, which is partially loaded by a dielectric (εr) from Rd to RW. The cylindrical
coordinate system (r, θ, z) is used. A magnetic field B0 is applied uniformly in the
positive z-direction. An infinitesimally thin annular electron beam with a radius
Rb(0< Rb <Rd) is streaming axially. The beam has DC velocity v0 = (0, 0, v0), a
DC surface density σ0 and a DC current I0 = (0, 0, 2πRbσ0v0). The temporal and
spatial phase factor of all perturbed quantities is assumed to be exp[i(kz+mθ−ωt)],
where m is azimuthal mode number.
From the linearized relativistic equation of electron motion under small signal

conditions and Maxwell’s equations, the first-order velocity v1 = (v1r, v1θ, v1z) of an
electron can be obtained. The radial velocity v1r causes the radial displacement of
the annular. The azimuthal and axial velocities (v1θ and v1z) cause the perturbed
surface current density K1 and charge σ1, which are correlated by the continuity
equation on the surface.
At the annular surface, discontinuity conditions for the normal components of

electric E and magnetic B fields are obtained by applying Gauss’s laws and are
given by

ε0(Eout − Ein) · n = σ and (Bout − Bin) · n = 0. (2.1)

Here, n is the unit normal vector on the surface and suffix ‘in(out)’ means the
inside(outside) of the beam. The surface is modified from Rb to Rb + r1(Rb � r1)
and, hence, n inclines from (1, 0, 0) to (1, δθ, δz), to the first order. Here, δθ and δz

are the first-order inclination angles in the r–θ and r–z planes. For the tangential
components, Faraday’s and Ampere’s laws are applied to the small rectangular
closed path C (Stokesian loop) around the boundary surface. The boundary condi-
tions for a constant speed v of boundary surface and an arbitrary surface current
density K were discussed and were given by [6]:

n× (Eout − Ein + v× (Bout − Bin)) = 0 (2.2)

n×
(
Bout − Bin − 1

c2
v× (Eout − Ein)

)
= µ0K (2.3)
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Figure 1. Dispersion curves of axisymmetric mode for the dielectric SWS system with
RW =1.445 cm, Rd =0.855 cm, Rb = 0.8 cm, εr =4, B0 =0.8T, Vb = 660 kV and Ib =2.3kA.

We consider a linearized case. It can be proved that these relationships are valid
for the non-constant boundary velocity v1 = (v1r, v1θ, v1z) which depends on time
and space. Although six equations are obtained for six components of E and B from
the boundary conditions (2.1), (2.2) and (2.3), there are four independent equations.
For example, the equation for Br can be derived from Eθ and Ez, and the equation
for Bθ from Er and Bz.
The EM fields inside (r <Rb) and outside (Rb < r < Rd) the beam are correlated

by the boundary conditions at the annular surface. The vacuum and dielectric
regions are correlated by the boundary conditions at the vacuum–dielectric bound-
ary, which does not move. The dispersion relation is obtained using these boundary
conditions and the conditions at the waveguide wall (r =Rw), i.e. two electric field
components tangential to the wall (E1z and E1θ) should be zero.

3. Numerical results
The dispersion characteristics of the dielectric loaded SWS driven by an annular
beam are analyzed numerically using the proposed field theory. The normal modes
of the system are hybrids of the transverse magnetic (TM) and transverse electric
(TE) modes even for the axisymmetric case. To designate the hybrid modes, two
letters of EH and HE in the field of plasma physics are used. Qualitatively, TM is
dominant in EH mode and TE is dominant in HE mode. In Fig. 1, axisymmetric
hybrid EH0n and HE0n modes are shown. Here, n is any positive integer. The slow
space charge (SPM) and slow cyclotron (SCM) modes can excite both EH0n and
HE0n modes, resulting in the Cherenkov and slow cyclotron instabilities. Compared
with the solid beam case with the same parameters, the growth rate is about 1.2
times that for the Cherenkov instability and is about twice that of the slow cyclotron
instability. The fast cyclotron mode (FCM) due to the normal Doppler effect cannot
cause any instability, since there is no initial perpendicular velocity of beam.
Non-axisymmetric slow cyclotron instabilities are also excited by the modulated

annular beam. Figure 2 shows the growth rate of the slow cyclotron instability for
m = ±1. Since the perturbations are assumed to be exp[i(kz + mθ − ωt)], EM fields
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Figure 2. The temporal growth rates of nonaxisymmetric slow cyclotron instability with
RW =1.445 cm, Rd =0.855 cm, Rb =0.8 cm, εr =4, B0 =0.8T, Vb =660kV and Ib =2.3kA.

withm = 1(m = −1) rotate clockwise (anticlockwise) in the laboratory frame of ref-
erence. However, the electron passes the EM wave at the slow cyclotron interaction.
In the beam frame of reference, the rotational direction of the perturbed cyclotron
motion is the same as EM wave with m = −1, and the growth rate of the slow
cyclotron instability becomes larger than that for the m = 1 case. The instability is
influenced by the rotational direction of perturbed cyclotron montion and EM field
polarization, i.e. the sign of m.

4. Summary
A self-consistent field theory considering the modulated (modified and moving)
boundary of an annular beam has been proposed based on the dielectric loaded
SWS system. By using the proposed field theory, the slow cyclotron instabilities
driven by a modulated annular beam have been analyzed. Normal EM modes
are hybrid modes having all field components, even in the axisymmetric cases.
The slow cyclotron mode is able to couple with both modes, resulting in the slow
cyclotron instability. With the same parameters, instabilities for the annular beam
are stronger than those for a solid beam. For non-axisymmetric cases, the instability
is influenced by the rotational direction of perturbed cyclotronmotion and EM field.
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