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Abstract. To investigate the charge states of a silicon vacancy, we introduce a cluster model
which includes both the Coulomb interaction U between electrons in the dangling bond and the
coupling g between the electrons and Jahn-Teller phonons, and solve the model by using the
numerical diagonalization method. It is found that, for U > 0 and g = 0, the ground state of
the neutral charge state V 0 is spin singlet (S = 0) and orbital doublet. When g is varied for
a finite U , the ground state changes to the orbital triplet state with S = 1 at an intermediate
coupling gc1, and finally changes to the orbital triplet state with S = 0 at a strong coupling
gc2. The obtained result for g > gc2 is consistent with the low temperature elastic softening
observed in non-doped crystalline silicon.

1. Introduction
Recent ultrasonic measurements have revealed that the elastic constant of non-doped crystalline
silicon shows an anomalous softening at low temperature below 20K down to 20mK independent
of the external magnetic field up to 16T [1]. It is considered that the vacancy with the neutral
charge state V 0 is responsible for the elastic softening. On the other hand, the softening of
B-doped silicon disappears due to the external magnetic field at 2T or more, and it is considered
that the charge state V + whose valence is +1 with S = 1/2 is consistent with the experimental
results by taking into account of the spin orbit interaction [2]. In early theoretical studies,
Schlüter et al. [3, 4, 5] showed that the 3-fold orbital degeneracy in the ground state of a silicon
vacancy is removed due to the tetragonal (E) mode Jahn-Teller distortion within the adiabatic
approximation. In addition, when the chemical potential µ decreases, the vacancy state changes
from V 0 state to V ++ state whose valence is +2 with S = 0 and then the V + state is unstable.
These results seem to be inconsistent with the newly discovered elastic softening. Therefore, the
nonadiabatic effect of the Jahn-Teller distortions, which was not considered in early theoretical
studies, is thought to play crucial role for the low temperature elastic softening.

In our previous papers [6, 7], we investigated the silicon vacancy state, paying attention
to the effect of the nonadiabatic Jahn-Teller distortions strongly coupled to electrons via
the electron-phonon coupling, together with the correlation effect due to the electron-electron
Coulomb interaction. For this purpose, we introduced a cluster model that takes account of the
breathing, tetragonal and trigonal mode Jahn-Teller phonons (E+B+T) where the parameters
were determined so as to reproduce the previous model derived by Schlüter et al. for a silicon
vacancy on the basis of the first-principle calculation [3, 4]. What we found are; the V + state



becomes stable due to the strong coupling effect with the trigonal mode phonon (T) while
unstable with the tetragonal mode phonon (E). In addition, the V 0 state shows the transition
from S = 0 to S = 1 at a large gT [7]. In this paper, we discuss the ground state of the V 0 in
detail.

2. Model
Our cluster model includes 6 orbitals: 4 orbitals (i = a ∼ d) of dangling bonds in the nearest
neighbor atoms of the vacancy and 2 orbitals from the valence band and the conduction band,
respectively [7]. The model Hamiltonian is given by;

H = H0 + HU + HQ + HCV. (1)

H0 is a one-body term of electrons in the dangling bonds and HU is the Coulomb interaction
term given by,

H0 = ε
d∑

i=a

∑
σ=±1

a†iσaiσ + t
∑
i̸=j

∑
σ=±1

a†iσajσ, (2)

and

HU = U
d∑

i=a
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σ=±1

a†i↑ai↑a
†
i↓ai↓, (3)

where a†iσ and aiσ are the creation and annihilation operators for an electron at site i with spin
σ, respectively. ε is a energy level of the dangling bonds and an electron in a dangling bond
orbital transfers to another orbital via transfer integral t. U is the on-site Coulomb interaction.
HQ in Eq. (1) is an electron-lattice interaction term and is explicitly given as follows,
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∑
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†
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∑
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ν

2Mν
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1
2
KνQ

2
ν

)
− β′QB, (4)

where Qν and Pν are local distortion and the conjugate momentum with the effective mass
Mν together with the spring constant Kν , respectively. β′ shows the effect of pressure from
surrounding atoms. gij

ν is the electron-lattice coupling constant [7]. Subscript ν represents the
mode of the Jahn-Teller distortions: B (B : x2 + y2 + z2), E (E1 : x2 − y2, E2 : 3z2 − r2)
and T (T1 : yz, T2 : zx, T3 : xy) corresponding to the breathing, tetragonal and trigonal
modes, respectively. Here, we replace the Qν and Pν in Eq. (4) by the phonon operators,
Qν =

√
h̄/2Mνων(bν + b†ν) and Pν = i

√
Mν h̄ων/2(bν − b†ν), with ων =

√
Kν/Mν , for each mode

ν, respectively. HCV in Eq. (1) is an effect of the conduction and valence band and is given as
follows,

HCV =
∑

σ=±1

{
εCa†

CσaCσ + εVa†
VσaVσ +

d∑
i=a

(
tCa†iσaCσ + tVa†iσaVσ + h.c.

)}
, (5)

where εC and εV are energy levels of the bottom of the conduction band and the top of the
valence band, respectively. An electron in a dangling bond orbital transfers to the conduction
band via tC and to the valence band via tV , respectively. The parameters of this model are
determined so as to reproduce the Schlüter’s results [3, 4] within the adiabatic approximation
for the distortions together with the mean-field approximation for the Coulomb interaction.



3. Results
First, we examine the effect of the Coulomb interaction in the absence of HQ and HCV in Eq.
(1). As shown in Fig. 1(a), the 4-fold degenerate dangling bond orbitals hybridize with each
other to form the non-degenerate bonding orbital (A1) and the 3-fold degenerate anti-bonding
orbitals (T2). In the case of the neutral charge state V 0 with A2

1T
2
2 (see Fig. 1 (b)), 2 electrons
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Figure 1. Energy level splitting due to the transfer integral t (a) and A2
1T

2
2 configurations of

the neutral charge state V 0 (b).

are occupied in the A1 orbital, and (1) two electrons are in the same T2 orbital with spin singlet
(S = 0) and orbital triplet : |sa

i ⟩, (2) two electrons are in different T2 orbitals with spin singlet
(S = 0) and orbital triplet : |sb

i ⟩, (3) two electrons are in different T2 orbitals with spin triplet
(S = 1) and orbital triplet : |tSz

i ⟩.
HU in Eq. (3) can be rewritten as

HU =
U

4

 ∑
i,j=0,x,y,z

(
c†i↑ci↑c

†
j↓cj↓ + c†i↑cj↑c

†
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†
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)
+

∑
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c†i1↑ci2↑c
†
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 , (6)

where c†iσ and ciσ are the creation and annihilation operators for an electron at A1 orbital (i = 0)
and T2 orbitals (i = x, y, z) with spin σ, respectively. The charge state |sb

i ⟩ is an eigenstate of
HU in Eq. (3) with eigenenergy (5/4)U , and |tSz

i ⟩ is that with (3/4)U . As for the charge states
|sa

i ⟩ (i = 1, 2, 3), HU is written by the following matrix U (1/4)U (1/4)U
(1/4)U U (1/4)U
(1/4)U (1/4)U U

 . (7)

The off diagonal term in the matrix (7) comes from the second term in the right-hand side of Eq.
(6) and represents the transfer of a pair of ↑ and ↓ electrons between T2 orbitals. Diagonalizing
the matrix (7), we obtain the doubly degenerate eigenstates with eigenenergy (3/4)U and non-
degenerate one with (3/2)U , as previously obtained by Lannoo et al. [5] (see Table 1).

For large U , we include the charge states A1
1T

3
2 and A0

1T
4
2 in addition to A2

1T
2
2 and diagonalize

the Hamiltonian by using the Householder method. Figure 2 shows the eigenenergies thus
obtained as functions of U . We find that the ground state of V 0 for U > 0 and g = 0 is spin
singlet (S = 0) and orbital doublet.

Finally, we also consider the effect of the electron-phonon interaction g. We solve the
Hamiltonian Eq. (1) by using the numerical diagonalization with the standard Lanczos



Table 1. Charge states of V 0 for U > 0 and g = 0

Eigenenergy Degeneracy Spin Eigenstate

(3/2)U 1 S = 0 1√
3
(|sa

1 ⟩ + |sa
2 ⟩ + |sa

3 ⟩)
(5/4)U 3 S = 0 |sb

i ⟩ (i = 1, 2, 3)
(3/4)U 3 × 3 S = 1 |tSz

i ⟩ (i = 1, 2, 3; Sz = 1, 0,−1)
(3/4)U 2 S = 0 1√

2
(|sa

1 ⟩ − |sa
2 ⟩) and 1√

6
(−|sa

1 ⟩ − |sa
2 ⟩ + 2|sa

3 ⟩)
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Figure 2. Eigenenergies of V 0

versus Coulomb interaction U for
g = 0.

algorithm, where the cutoff of the phonon number is set to be 5 for breathing mode and 7
for trigonal (or tetragonal) mode. The ground state changes from orbital doublet state with
S = 0 to the orbital triplet state with S = 1 at an intermediate coupling gc1

T
∼ 2.5 [eV/Å], and

finally changes to the orbital triplet state with S = 0 at a strong coupling gc2
T

∼ 8.5 [eV/Å]. The
calculated result for gT > gc2

T
is consistent with the ultrasonic experiments for the non-doped

silicon [1]. We note that, in the strong coupling regime with tetragonal mode phonon instead of
trigonal one, the grand state of V 0 remain orbital doublet with S = 0. Therefore, it is expected
that the charge state at the silicon vacancy is in the strong coupling regime with trigonal mode
phonon. The explicit and detailed results for g > 0 will be shown in a subsequent paper.
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