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Abstract

Electronic states in the two-band Hubbard model in infinite dimensions are investigated by using the exact diagonal-
ization method. In the half-filled case, the phase boundary separating the metallic and insulating regimes is obtained as
a function of the on-site repulsive interaction U and the charge-transfer energy A. The Mott metal-insulator transition
is observed when U is varied for the case with U < A (Mott-Hubbard type), while it is observed when A is varied
for the case with U > A (charge-transfer type). In the doped case, on-site paring susceptibility is calculated at finite
temperature and the critical temperature of the superconductivity is found in a charge-transfer type while not in a

Mott-Hubbard type.
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Since the discovery of the high-temperature superconduc-
tors, a considerable number of theoretical works have been
performed to clarify properties of the strongly correlated
electron systems. In particular, the dynamical mean field
theory (DMFT) in the limit of infinite dimensions d = oo
has received much attention due to a successful description
of electron correlation. [1] In the DMFT, a lattice problem
is reduced to an impurity problem embedded in an effective
medium by neglecting the momentum dependence of the
self-energy. Various methods, which are the exact diagonal-
ization method, quantum Monte Carlo method and pertur-
bation method, allow us to solve the corresponding impurity
problem. The DMFT is exact in the limit of d = oo and
believed to be good approximation in high dimensions.

A detailed analysis of the d = oo single-band Hubbard
model shows that the metal-insulator transition occurs as
the first order phase transition at finite temperatures. [2] A
coexistence region of the metallic and insulating solutions
is observed near the transition point. At zero temperature,
the coexistence region is observed for 1.2 S U/W S 1.5, [3]
where U and W are the on-site repulsive interaction and

the bandwidth respectively. The magnetic phase diagram
is also obtained as a function of doping, temperature and
U. Away from half-filling, the antiferromagnetic transition
temperature decreases with increasing doping. A commen-
surate order changes to an incommensurate state at a value
of the doping which depends on U. [4] The superconducting
phase is absent in this model. [5]

In spite of the well understanding of the single-band
Hubbard model, the electronic states, especially the metal-
insulator transition of the two-band Hubbard model in infi-
nite dimensions is much less known. [6—8] In this work, we
study the electronic states of the model by using the DMFT
with the exact diagonalization method. The phase diagram
of the metal-insulator transition is obtained as a function
of U and the charge-transfer energy A at the half-filling. In
the doped case, we discuss the critical temperature of the
superconductivity by calculating paring susceptibilities.

We consider the two-band Hubbard model on a Bethe
lattice with infinite connectivity z = co. The Hamiltonian
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is given by
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where d;ra and p}a are creation operators for an electron (or
hole) with spin o in the d- orbital at site i and in the p-
orbital at site j, respectively. nﬁa = d};dig. The charge-
transfer energy A is defined by A = ¢, —eq > 0.
tpa/+/7 represents the transfer energy between the nearest
neighbor d and p orbitals and we set t,q = 1 in the present
study. In the limit z — oo, the self-energy becomes purely
site-diagonal and the DMFT becomes exact.

In the DMFT, the effective action of the impurity model
is given by

tij =

B
S = Ud/ drnar (T)nay (1)
0
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where the Weiss function Dg(iw) includes effects of the in-
teraction at all the sites except the impurity site. The lo-
cal Green’s function for the d-electron D(r — 7') = — <
Td(r)d'(7') >s is calculated with this action. In the case
with z = oo Bethe lattice, the self-consistency equations for
the local Green’s functions are given by [6]

Dy (iwn)f 1 =

wn + p—€eq — t2dP(iwn), 3)
P(iw,)™t =

iwn 4+ p— €p — oy D(iwn),

where p is the chemical potential and wy is the Matsubara
frequency, w, = (2n + 1)7/B. P(iw) is the local Green’s
function for the p-electron. To solve the impurity problem
for a given Dy (iw), we use the exact diagonalization method.
The self-consistency equations (3) lead a new Dg (iw) and we
repeat the calculation of the impurity problem. This process
is iterated until the solutions converge.

In the exact diagonalization method, we approximately
solve the impurity Anderson model by the exact diagonal-
ization of a finite-size cluster; [7,8]
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where g¢ is the impurity level and &; (I = 2,3,..., N;) are
levels of the conduction electron hybridized with the im-
purity by V;. We regard the non-interacting Green’s func-
tion GY,,,(iwn) as the Weiss function Dy (iw) in the action
eq.(3). Then, the interacting Green’s function G ang(iwn)
corresponds to the local Green’s function D(iw) in the

original laéttice problem. Here, G%,,,(iwn) = [iwn — g0 —
;\51 inl_E ]7!. For a given Dy (iw), we determine 2N, — 1
= n 15
parameters €o,e;, Vi(l = 2,3, ..., N5) to make G%,,,(iwn) as
close to Dy(iw) as possible. Using these parameters, we di-
agonalize the finite cluster of the impurity Anderson model,
and calculate G nd(iwn) (D(iwy)). At finite temperature,
the Green’s function is calculated from a complete set of
eigenstates |z > with eigenvalues E; according to

]‘ 2

with = = EI e_BEi. Using the Lanczos method with the
continued-fraction expansions, we also calculate the zero
temperature Green’s function. In this case, we replace the
Matsubara frequencies by a fine grid of imaginary frequen-
cies, which correspond to a fictitious inverse temperature /3’
(wn = (2n + 1)x/3). Here, 3 determines a low-frequency
cut-off. 7]

First, we consider the metal-insulator transition at zero
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Fig. 1. The quasiparticle weight Z as a function of Uy

at A =6,n =1 and T = 0 for the system size Ny =
6,8,10. The fictitious inverse temperature is set to be
B = 200.

temperature in the half-filled case with the total number per
unit cell n = ng +np = 1. It is well known that the system
such as two-band Hubbard model indicates a transition from
a metallic to an insulating state. [9] For the case with Uy <
A (Mott-Hubbard type), the metal-insulator transition is
observed when Uy is varied. If we assume t,q < A, d-
electrons exclusively contribute to the bare band near the
fermi level. In this case, the transition occurs when Uy is
comparable to the bare bandwidth as observed in the single-
band Hubbard model.
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In Fig.1, we show the quasiparticle weight Z as a function
of Uj at A = 6 for the stem size Ns; = 6,8,10, where
we define Z7! = 1 — “’")|Wnﬁo ~ 1 — [[mZ(inT) —
ImE(—mT)]/Zﬂ-T The metal insulator transition occurs at
a critical value Uy = 0.96. Taking into account of the bare
bandwidth W = [(A? 4 16t2,)% — A]/2 ~ 0.6, the value of
Uj/W ~ 1.6 is close to that in the single-band Hubbard
model (U./W = 1.47). [3] We also find a coexistence of
metallic (Z # 0) and insulating (Z = 0) solutions for 0.78 <
Ui < 0.96 as observed in the single-band Hubbard model for
1.25 < U/W < 1.47. [3,10]

The size dependence of Z is very small and negligible ex-
cept for the proximity of the transition point. The curve Z
seems to jump at U., but it is related with the value of the
fictitious inverse temperature ﬂ~ In order to check the influ-
ence of 3 on Z, we calculate U; dependence of Z for various
f near the critical point as shown in Fig.2. The magnitude
of the jump decreases with increasing B. Tt suggests that Z
becomes zero smoothly at U = Uy in the limit B — co. The
critical value Uj also depends on B, however, the variance
of Uj is small and about 0.05.
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Fig. 2. The quasiparticle weight Z as a function of Uy
at A=6,n=1,T =0 and Ns = 6_for several values
of the fictitious inverse temperature 3.

For the case with Ug; > A (charge-transfer type), the
metal-insulator transition is observed when A is varied.
When t,q < A < Uy, d-sites are almost singly occupied
and p-sites are nearly empty. The electron transfer be-
tween d- and p-orbitals costs an energy ~ A while the ki-
netic energy gains ~ tzd /A. Therefore, we have a charge-
transfer type insulator for t,q << A. In Fig.3, we show the
quasiparticle weight Z and the number of p-electron n, as
functions of A at U; = 6 for the system size N, = 6,8.
The metal-insulator transition occurs at a critical value

A. = 2.23. A coexistence of metallic and insulating so-
lutions for 1.88 < A < 2.23 is visible in the A-dependence
of n, as shown in Fig.3.
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Fig. 3. The quasiparticle weight Z and the number of
p-electron np as functions of A at Uy = 6, n = 1 and
T = 0 for the system size Ns = 6,8. The fictitious
inverse temperature is set to be g = 200.

Phase diagram of the metallic (Z # 0) and insulating
(Z = 0) regions is shown in Fig.4. Based on the above
argument, the critical value Uj is expected to decrease with
increasing A and Uj ~ t2;/A — 0 in the limit A — oo
in the Mott-Hubbard type. On the other hand, the critical
value A, may be finite and of order of ¢,4 in the limit Uy —
oo in the charge-transfer type. The coexistence of metallic
and insulating solutions observed at the proximity of the
phase boundary. It extends continuously from the Mott-
Hubbard type to the charge-transfer type.

Finally, we discuss the superconductivity away from half-
filling. The on-site paring susceptibility x of the model (1)
is given by [1,6]

N/ dTZ<szT dis(r)d!, (0)d!,(0) >

:TZ[Q*I/?{I—A}*I A-amV?, L, (5)
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where [A]u vl = t4d|P(“/)|[)zloc]V v |P(iv')], and el =
pd|P(w)| 0. Here, Xioc is the local paring susceptibil-
ity on a d-orbital given by

B B B B _
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Xeiu’(‘ra—m) < TdT(Tl)dl(TQ)dI(T?;)Cﬂ(T‘l) > (6)
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Fig. 4. The phase boundary separating the metallic and
insulating regimes (solid line) as a function of Uy and A
at » =1 and T" = 0 for the system size Ns = 6 and the
fictitious inverse temperature 8 = 200. The coexistence
region exists between solid and dashed lines.

To calculate y;o. within the exact diagonalization method,
we use a spectral representation of r.h.s. in eq.(6) by insert-
ing a complete set of eigenstates |i >.

When the largest eigenvalue of A approaches unity, the
paring susceptibility diverges. It signals the transition into
the superconducting state from the normal state. In the
inset in Fig.5, we plot the temperature dependence of the
largest eigenvalue of A, Apmaz, in a case with charge-transfer
type, Us = 8 and A = 4, for the system size N, = 4.
The value of Ap,qz increases with decreasing T and exceeds
unity at a certain critical temperature T, = 0.014 for n =
1.6. Fig.5b shows the critical temperature T, for the singlet
pairing as a function of filling n in the hole doping case (hole
picture). T, increases with increasing n and has a maximum
at n ~ 1.7. On the other hand, in the electron doping case,
T, is considerably suppressed (see for n = 0.8 in the inset in
Fig.5). Furthermore, we can not find a finite Tt in the Mott-
Hubbard type. These results seem to be consistent with
the results of the single-band Hubbard model [5] and of the
high-T,. superconductors except for the doping dependence
of T.
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