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Abstract

The metal-insulator transition of the one-dimensional Hubbard model with both on-site U and nearest neighbor V'
interactions is studied by a combination of the numerical diagonalization method and the renormalization (RG) group
method. Substituting the numerical result to the RG equation as the initial condition, we calculate the Luttinger-liquid
parameter K, at quarter filling. Comparing the renormalized K, with the known exact result, we find it to be reliable
in the strong coupling regime. This approach gives an evident critical point of the metal-insulator transition beyond
the usual finite-size scaling for the numerical diagonalization result. The charge gap is also estimated by the numerical

diagonalization method in the insulator region.
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The one-dimensional(1D) correlated electron systems
have been extensively studied as a simple model of quasi-
1D materials. [1,2] In particular, the 1D extended Hub-
bard model with on-site repulsive interaction U and nearest
neighbor repulsive interaction V' is interest for the under-
standing of the physics of the metal-insulator transition.
Here, the Hamiltonian of the 1D extended Hubbard model
is

H=t Z(CLCH_M + h.c.)
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where c;ra stands for creation operators of a electron with

spin o at site i and n;, = cjgcia. t represents the transfer
energy between the nearest neighbor site, which will be set
to unity (¢=1) in the present study.

It is well known that the 1D extended Hubbard model
shows the metal-insulator (M-I) transition at quarter-filling
in the region for large U and V. The weak coupling renor-

malization group method ( known as g-ology) and the nu-
merical diagonalization method have clarified the nature of
the M-I transition. The g-ology yields the phase diagram of
the 1D extended Hubbard model analytically, but this ap-
proach is limited to application in the weak coupling limit.
[1-4] On the other hand, the numerical approach is useful
method to investigate the properties in the strong coupling
region. [5] In particular, the numerical diagonalization of
a finite-size system has supplied us with reliable and im-
portant information. [6-8] However, analysis is difficult for
the numerical approach near the phase boundary of the M-
I transition because the charge gap which determines the
characteristic energy scale of the system becomes exponen-
tially small.

To overcome this difficulty, we consider a combination
of the numerical diagonalization method and the renormal-
ization group (RG) method. [9,10] It will provides us an
approach which give high accuracy beyond usual finite size
scaling of the numerical diagonalization.

At first, we briefly discuss a general argument for 1D elec-
tron systems based on the bosonization theory. In the low
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energy limit, an effective Hamiltonian is given by

H=H,+H,

L
v _ D
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where v, and K, are the charge velocity and coupling pa-
rameter, respectively. The operator ¢, and the dual opera-
tor 6, represent the phase fields of charge part. gz denotes
the amplitude of the umklapp scattering and « is a short-
distance cutoff. Here, H, is an effective Hamiltonian of spin
part and we do not consider it. According to the bosoniza-
tion theory, the effective Hamiltonian can be separated into
the charge and spin parts independently. So, we turn our
attention to only the charge part.

At quarter-filling, the 8%k umklapp scattering is crucial to
understanding the M-I transition. The effect of the Umk-
lapp term is renormalized under the change of the cutoff
a — e'a. Within one-loop order, the renormalization group
(RG) equations are given by

%pl(l) = —8G2()K2(1), (2)
%l(’) — 2 — 8K, (1]G(), (3)

where G(0) = gs1 /2mv, and the scaling quantity [ is related
to the cutoff . These equations determine the RG flow
diagrams and the phase boundary of the system. Roughly
speaking, the insulator region appears for G(I) 2 K,(I) or
K,(1) < 0.25. [3,4]

In the weak-coupling limit, v,, g¢g31 and K,(0) are
evaluated as (2rvp + U +4V)> — (U + 4V)*"?j2m, (U —
4VYU?/(2wvr)? and 1+ (U 4 4V)/(xvr)~"/? respectively
at quarter-filling. Here, vr is given by 2¢sin kr. If we sub-
stitute these values to the RG equations as the initial con-
ditions, we find that the insulator region appears for U 2 7
at V = 0. This wrong result shows that the weak-coupling
approximation breaks down in the strong coupling region.

To use the RG equations beyond the weak-coupling re-
gion, we adopt the numerical diagonalization result as ini-
tial conditions in the RG equations. We diagonalize finite
size systems numerically and calculate K,(L) of the L-sites
system. Using a relation [ ~ In L, we substitute K,(L) to
K,(l) in the RG equations and solve them numerically .
Here, we have to prepare two initial values. We use two
values K,(L1) and K,(L>) because it is easy for the numer-
ical diagonalization method to calculate K,(L) than G(L).
The values G(I) are determined by the solution of the RG
equations.

In Fig.1, we show solutions K,(I) of the RG equations as
a function of 1/L with the numerical diagonalization result
for various V' in the limit U — co. Here, we set L; = 12 and
Ly = 16. The flows of K,(I) seem to connect smoothly with
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Fig. 1. The RG flows of K,(the broken lines) and the
numerical diagonalization results(the sold circles). Al-
though the value K,(o0) at V' = 2.0 seems to be ~ 0.25
in the figure, the RG flow converges to K,(co0) = 0.

the numerical result. It suggests that the RG equations give
reasonable K,(00) from the numerical diagonalization result
in the strong-coupling regime. In the limit U — oo, the 1D
extended Hubbard model is mapped on X X Z spin model
and the Luttinger-liquid parameter K, is exactly obtained
as cos(ﬁ) = —V/2. [11] We compare the values K, from
our approach and a similar approach by Emery and Noguera
with the exact values in Table 1. In our approach, the M-I
transition is found at V' ~ 1.94; this value is slightly smaller
than the exact value V' = 2.0. However, our result shows
good agreement with the exact result as well as the result
of Emery and Noguera. It indicates that the combination of
the numerical diagonalization and the RG equations gives
accurate values of K, near the M-I transition.

Table 1. Luttinger-liquid parameter K, in the limit U —

0.
A% This work Emery and Noguera | Exact |
0.0 0.5022 - 0.5
1.0 0.3765 - 0.375
2/1.75 0.3608 0.3592 0.3604
2/1.5 0.3414 0.3406 0.3414
2/1.25 0.3128 0.3140 0.3144
1.935 0.2566 - 0.2721
2.0 0.0(insulator) 0.262 0.25
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Fig. 2. K,(L = 00) as a function of V at U =5 and 10
with the result of the weak-coupling approximation(the
broken lines). The sold circles represent the result of the
case L1 = 8 and L2 = 12. The open square represent
the result of the case L1 = 12 and Lo = 16.

In Fig.2, we show K,(00) as a function of V with the weak
coupling approximation result at U = 5 and 10. In order to
check the size dependence, we calculate K,(co) by using the
two different initial conditions (L1 = 8, Ly = 12) and (L1 =
12, L, = 16). Figure 2 indicates that the size dependence of
K,(o0) is very small. It also shows that the M-I transition
occurs at V ~ 2.6 for U = 5 and at V ~ 3.7 for U = 10. The
result shows good agreement with the phase boundary of the
M-I transition in the previous work. [10] It suggests that
our approach gives high accurate values of K,(c0) beyond
usual finite size scaling near the M-I transition. On the
other hand, the weak-coupling approximation seems to be
applicable to the case of U = 5, but it is not correct for
U = 10 even if qualitatively except the region 1.5 S V' S 3.5.

Next, we consider the charge gap by the numerical diag-
onalization method. The charge gap is defined by

A (L) = B(LJ2+1) + E(L/2 — 1) — 2B(L/2).  (4)

where E(L/2) is the total ground state energy of a system
with L/2 electrons and E(L/2) is calculated up to 16 sites
systems. Figure 3 shows A,(L) as a function of 1/L for
various V' at U = 10. We assume that the size dependence
of A,(L) is

Ay(L) = Ap(00) +e1/L + e/ L7, (5)
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Fig. 3. The charge gap A,(L)(The sold circles) as a
function of 1/L at U = 10 for various V. The solid
lines represent fitted lines to the data(See the text).

where ¢; and c» are constants. The charge gap seems to be
zero at V = 2 and very small at V' = 3. It suggests that the
M-I transition occurs between V' =2 and V = 3. Although
it is difficult to estimate precisely the charge gap near the
M-I transition, the extrapolated result of the charge gap
may be consistent with the RG analysis.

In Fig.4, we show that A,(c0) as a functionof V at U =5
and U = 10. The charge gap increases with V' and/or U.
When V/t >> 1, the values A,(c0) seem to be saturated
and close to U — 4. This result is interpreted as follows.
[6-8,10] In the limit V/t — oo, the ground state energy
E(L/2) is always zero at quarter-filling. If one electron
is add to this, the energy is given by E(L/2 + 1) = U.
When one electron is removed, two free holes which behave
as spin-less fermions appear and they have a kinetic en-
ergy ~ —4 cos(2m/L). Therefore, the charge gap is given by
A,(L) ~U —4cos(2n/L). It also leads the exact transition
point U, =4 at L — oo.

In summary, we consider the M-I transition of the one-
dimensional extended Hubbard model by the combination
of the numerical diagonalization method and the renormal-
ization (RG) group method at quarter filling. Substituting
the Luttinger-liquid parameter K, obtained by the numer-
ical diagonalization to the RG equation, we can fully uti-
lize the information contained in the RG equations. This
method provides us the reliable result of K, beyond usual
finite size scaling of the numerical diagonalization near the
M-I transition. In the insulator region, the charge gap is
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Fig. 4. The charge gap A,(o0)(The sold circles) as a
function of V' at U =5 and 10.

calculated by the numerical diagonalization method. In the
limit V/t — oo, we discuss the values of the charge gap and
the transition point of the M-I transition analytically.
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