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Abstract

The metal-insulator transition of the one-dimensional extended Hubbard model

with both on-site U and nearest neighbor V interactions is studied by a combina-

tion of the numerical diagonalization and the renormalization group (RG) method.

We diagonalize finite size systems numerically and calculate the Luttinger-liquid

parameter Kρ. Substituting the numerical result to the RG equations as the initial

condition, we explicitly calculate the renormalized Kρ and the renormalized umk-

lapp scattering parameter G. This approach gives the critical properties of the Kρ

and the charge gap near the metal-insulator transition beyond the usual finite-size

scaling for the numerical diagonalization result. We also obtain a contour map of

the charge gap by the numerical diagonalization method on the U -V plain.
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The extended Hubbard model with on-site repulsive interaction U and nearest neigh-

bor repulsive interaction V has been extensively studied as a simple model of quasi-1D

materials[1, 2, 3]. In particular, the insulator transition caused interactions not only U

but V at quarter filling, is interesting for the physics of one-dimensional(1D) strongly

correlated electron systems[4, 5, 6]. The weak coupling renormalization group method

( known as g-ology) and the numerical methods have clarified the nature of the metal-

insulator (M-I) transition. The g-ology yields the phase diagram of the 1D extended

Hubbard model analytically, but this approach is limited to application in the weak cou-

pling limit[1, 2, 4, 5]. On the other hand, the numerical approach is useful method to

investigate the properties in the strong coupling region[3, 6]. In particular, the numerical

diagonalization of a finite-size system has supplied us with reliable and important infor-

mation of the M-I transition[7, 8, 9]. However, it is difficult for the numerical approach to

analyze the critical properties near the M-I transition because the characteristic energy

scale of the system becomes exponentially small. To overcome this difficulty, we com-

bine the numerical diagonalization method with the renormalization group (RG) method

[10, 11, 12]. It will provide us an approach which gives high accuracy beyond usual finite

size scaling of the numerical diagonalization method.

We consider the Hamiltonian of the 1D extended Hubbard model

H = t
∑
i,σ

(c†iσci+1σ + h.c.)

+ U
∑
i

ni↑ni↓ + V
∑
i,σσ′

niσndi+1σ′ ,

where c†iσ stands for creation operators of an electron with spin σ at site i and niσ = c†iσciσ.

t represents the transfer energy between the nearest neighbor site, which will be set to

unity (t=1) in the present study. In the low energy limit, an effective Hamiltonian of a

charge part is given by

H =
vρ
2π

∫ L

0
dx

[
Kρ(∂xθρ)

2 +K−1
ρ (∂xϕρ)

2
]
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+
2g3⊥
(2πα)2

∫ L

0
dx cos[

√
8ϕρ(x)] (1)

where vρ and Kρ are the charge velocity and coupling parameter, respectively. The op-

erator ϕρ and the dual operator θρ represent the phase fields of charge part. g3⊥ denotes

the amplitude of the umklapp scattering and α is a short-distance cutoff. According to

the bosonization theory, the effective Hamiltonian can be separated into the charge and

spin parts independently. So, we turn our attention to only the charge part and do not

consider the effective Hamiltonian of spin part.

At quarter-filling, the 8kF umklapp scattering is crucial to understanding the M-I

transition. The effect of the Umklapp term is renormalized under the change of the cutoff

α → elα. Within one-loop order, the renormalization group (RG) equations are given by

dKρ(l)

dl
= −8G2(l)K2

ρ(l), (2)

dG(l)

dl
= [2− 8Kρ(l)]G(l), (3)

where G(0) = g3⊥/2πvρ and the scaling quantity l is related to the cutoff α[4, 5].

These equations determine the RG flow diagrams and the phase boundary of the sys-

tem. Roughly speaking, the insulator region appears for G(l) >∼ Kρ(l) or Kρ(l) < 0.25. In

the previous work[12], we have shown that the numerical diagonalization method provides

a good initial condition and the one-loop order RG equations yield correct results of the

renormalized Kρ even for large U and/or V .

In this work, we also consider the RG equations introduced by Kehrein[13, 14],

dKρ(l)

dl
= −8

G2(l)K2
ρ(l)

Γ(8Kρ(l)− 1)
, (4)

dG(l)

dl
= [2− 8Kρ(l)]G(l), (5)

where Γ(x) is Γ-function. This formulation is an extension of the perturbative RG

equations and allows us to analyze properties of the system in the strong coupling re-

gion. At first, we examine the Kehrein’s RG equations by comparison with the one-

loop RG equations. In the weak-coupling limit, vρ, g3⊥ and Kρ(0) are evaluated as
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{(2πvF +U+4V )2−(U+4V )2}1/2/2π, (U−4V )U2/(2πvF )
2 and {1+(U+4V )/(πvF )}−1/2

respectively at quarter-filling[5]. Here, vF is given by 2t sin kF . We substitute the above

initial condition to the one-loop RG and Kehrein’s RG equations and compare these so-

lutions. We expect that there are few differences for the solutions between the one-loop

RG and the Kehrein’s RG equations in the weak coupling region.

In Figs.1, we show the RG flows obtained by the both RG equations with the analytical

initial condition on the Kρ(l)-G(l) plane. In the weak coupling region(U <∼ 3), these RG

flows almost agree with each other and the values of the renormalized Kρ(∞) consist with

the Bethe ansatz results. However, Kρ(∞) is not consistent with the exact results away

from the weak coupling region. Furthermore, we find that the insulator region appears

for U >∼ 7 at V = 0 in the strong coupling region(U >∼ 7). This wrong result suggests

that if the initial condition is far away from the fixed point or improper, the solution of

the RG equations would be meaningless and the above analytical initial condition is not

applicable in the strong coupling region.

Next, we examine the initial condition obtained by the numerical diagonalization

method. We numerically calculate Kρ(L) of the L-sites system[17]. Using a relation

l ≃ lnL, we substitute Kρ(L) to Kρ(l) in the RG equations and numerically solve them.

Here, we have to prepare two initial values. We use two values Kρ(L1) and Kρ(L2) be-

cause it is easy for the numerical diagonalization method to calculate Kρ(L) than G(L).

The value G(l) is determined by the solution of the RG equations. In Fig.2, we show the

RG flows obtained by the one-loop RG equations and the Kehrein’s RG equations with

the numerical initial condition on the Kρ(l)-G(l) plane. Here, we set L1 = 8 and L2 = 12.

Figure 2 indicates that the RG flows of both RG equations are very close each other

for various U . It also shows that Kρ(∞) well agrees with the exact result even in the

limit of U → ∞. This result suggests that our approach gives good initial conditions for

both RG equations far away from the weak coupling region.
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In Fig.3, we show Kρ(∞) as a function of V at U = 5 and ∞. In the limit U → ∞,

the 1D extended Hubbard model is mapped on XXZ spin model and the Luttinger-liquid

parameter Kρ is exactly obtained as cos( π
4Kρ

) = −V/2[15]. The difference of Kρ(∞) for

both RG equations is very small and cannot be distinguished in the figure. Figure 3 also

indicates that our result is consistent with the exact result at U = ∞. When the initial

condition is given in the proximity of the fixed point, even the one-loop RG equations

can lead accurate Kρ(∞) for large U and/or V . It suggests that our approach gives high

accurate value of Kρ(∞) beyond usual finite size scaling near the M-I transition. On the

other hand, the analytical initial condition seems to be applicable to the case of U = 5,

but it is not correct for U >∼ 8 even if qualitatively.

Next, we consider the phase boundary of the M-I transition and the charge gap in the

insulator region. In the numerical diagonalization method, the charge gap is defined by

∆ρ(L) = E(L/2 + 1) + E(L/2 − 1) − 2E(L/2), where E(L/2) is the total ground state

energy of the system with L/2 electrons. We assume that the size dependence of ∆ρ(L)

is ∆ρ(L) = ∆ρ(∞)+ c1/L+ c2/L
2, where c1 and c2 are constants and ∆ρ(L) is calculated

up to 16 sites systems[16]. It is difficult to estimate the charge gap numerically near the

M-I transition. However, it is easy for the RG method to determine the phase boundary.

At the critical point, Kρ(∞) is renormalized to 1/4.

In Fig.4, we show contour lines of the charge gap and the phase boundary of the

M-I transition on the U -V plain. The charge gap increases with V and/or U . When

V >> 1, U -dependence of ∆ρ(∞) seems to be saturated and close to U −4. This result is

interpreted as follows[7, 8, 9, 11]. In the limit V/t → ∞, the ground state energy E(L/2)

is always zero at quarter-filling. If one electron is add to this, the energy is given by

E(L/2 + 1) = U . When one electron is removed, two free holes which behave as spin-less

fermions appear and they have a kinetic energy ≃ −4 cos(2π/L). Therefore, the charge

gap is given by ∆ρ(L) ≃ U − 4 cos(2π/L). It also leads the exact M-I transition point
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Uc = 4 at L → ∞.

The boundary of the M-I transition obtained by the analytical initial condition roughly

consists with the result of numerical one except the wrong insulator region on the U -axis.

In order to check the size dependence, we calculate the phase boundary by using the three

different initial conditions (L1 = 4, L2 = 8),(L1 = 8, L2 = 12) and (L1 = 12, L2 = 16). It

suggests that the finite size effect is sufficiently small except the (L1 = 4, L2 = 8) case.

The result is consistent with the result of the level crossing method[11].

Finally, we discuss the charge gap obtained by the combination of the numerical

diagonalization and the Kehrein’s RG method near the M-I transition. When only the

renormalized Kρ is considered, there are few advantages of the Kehrein’s RG method.

However, the Kehrein’s RG approach can lead the excitation gap in the strong coupling

region such as insulator region. The perturbative RG approach leads to divergence in

the running coupling constants G(l) and/or Kρ(l) and becomes invalid in the strong

coupling region. The Kehrein’s RG method introduces a renormalized coupling constant

G̃(l) constructed by the product of G(l) and the effective energy scale exp(−l(2− 8Kρ)).

Although G(l) diverges in the strong coupling limit, G̃(l) remains a finite value and leads

to the charge gap. The value of G(l) is calculated in the same way of the weak coupling

problem. Roughly speaking, G(l) diverges as exp(l) with an increase in l, but the effective

energy scale exp(−l(2 − 8Kρ)) is renormalized to exp(−l). Therefore, G̃(l) converges in

the limit of l → ∞. The charge gap is given as ∆ = cG̃(∞), where c is a factor of the

charge gap and the order of the charge velocity vρ. Unfortunately, the RG method can

not give c directly. It may be determined to fit the extrapolated value from the charge

gap of the finite systems.

In Fig.5, we show the charge gap ∆ as a function of V at U = ∞ obtained by the

combination of the numerical diagonalization and the Kehrein’s RG method. Here, c

is determined to fit the exact result. It indicates that the V dependence of ∆ shows

6



good agreement with the exact result near the M-I transition[18]. Then our approach

can estimate the charge gap which has very small energy scale precisely near the M-I

transition. Detail analysis is now in progress and it will be reported elsewhere.

In summary, we consider the M-I transition of the one-dimensional extended Hubbard

model by the combination of the numerical diagonalization method and the RG method at

quarter filling. Substituting the Luttinger-liquid parameter Kρ obtained by the numerical

diagonalization to the RG equation, we can fully utilize the information contained in the

RG equations. This method provides us the reliable result of Kρ and the estimation of the

charge gap beyond usual finite-size scaling of the numerical diagonalization near the M-I

transition. In the insulator region, the contour map of the charge gap is also calculated

by the numerical diagonalization method.
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Figurecaptions

Figure 1;

The RG flows by the analytical initial condition on the Kρ(l)-G(l) plane. The solid lines

stand the flows from the Kehrein’s RG equations and the dashed lines stand the flows

from the one-loop RG equations. Open squares represent the exact result of Kρ(∞) at

U = ∞,8,6.5,5,3 respectively.

Figure 2;

The RG flows by the initial condition based on the numerical diagonalization method on

the Kρ(l)-G(l) plane. The solid lines stand the flows from the Kehrein’s RG equations and

the broken lines stand the flows from the one-loop RG equations. Sold circles and open

circles denote the initial values calculated by the RG equations. Open squares represent

the exact results of Kρ(∞) at U = ∞,8,7.5,6.5,5,3 respectively.

Figure 3;

Kρ(∞) as a function of V at U = 5 and ∞ based on the numerical diagonalization method

with the exact result (the solid line). The sold circles and open circles represent the results

of the Kehrein’s RG and the one-loop RG equations respectively. The dashed and broken

lines stand the results of the analytic initial condition from the Kehrein’s RG equation

and from the one-loop RG equations respectively.

Figure 4;

The contour lines of the charge gap with the phase boundary of the M-I transition

on the U -V plain. The values of the charge gap represented by each contour line are

0.25,0.5,1,1.5,2,2.5,3,3.5,4,4.5,5, and 5.5 respectively. The sold circles, the crosses and
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open squares represent the phase boundary from the initial condition of the numerical di-

agonalization method. The dashed lines and broken lines stand the results of the analytic

initial condition from the Kehrein’s RG equations and from the one-loop RG equations

respectively.

Figure 5;

The charge gap ∆ as a function of V −Vc at U = ∞ by the combination of the numerical

diagonalization and the Kehrein’s RG method with the exact result (the solid line).
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