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aDepartment of Physics, Niigata University, Ikarashi, Nishi-ku, Niigata 950-2181, Japan
bCenter for Transdisciplinary Research, Niigata University, Ikarashi, Nishi-ku, Niigata 950-2181, Japan

Abstract

Electronic states of the CoO2 plane in NaxCoO2 are investigated on the basis of the triangular lattice 11-band d-p
model by using the second order perturbation (SOP) and the random phase approximation (RPA). Due to the effect
of the in-plane ferromagnetic fluctuations enhanced for 0.6 <

∼ x <
∼ 0.75, the quasiparticle dispersion near the Γ-point

is strongly reduced to yield an almost flat dispersion just above the fermi level. With increasing x, the electronic
specific heat coefficient γ increases towards the critical doping xc ∼ 0.75 above which the in-plane ferromagnetism
takes place. We also find that the six small hole pockets near the K-point are stabilized due to the electron correlation
effect within both the SOP and the RPA.
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Recently, the layered cobalt oxides NaxCoO2 have
been attracted much attention because of rich phys-
ical properties. The compound exhibits large ther-
mopower S in the region x >∼ 0.7 [1,2] and an un-
expected metal-insulator transition at x = 0.5 [3,4].
The superconductivity with Tc ∼ 5K was discovered
in the H2O intercalated compound NaxCoO2 ·yH2O
for x ∼ 0.35 and y ∼ 1.3 [5]. Moreover, for x >∼ 0.75,
NaxCoO2 shows a weak magnetic order below Tm ∼
22K, where the ferromagnetic orderd CoO2 planes
couple antiferromagnetically with each other [6]. An
anomalous metallic state is observed for 0.6 <∼ x <∼
0.75: the temperature dependence of the magnetic
susceptibility is Currie-Weiss-like, and both of the
electronic specific heat coefficient γ and the ther-
mopower S increase with increasing x towards the
magnetic ordered region [4].

Theoretical studies have been extensively per-
formed for the electronic properties for both the
normal and superconducting states in Na-poor re-

gion (i.e., x ∼ 0.35). However, only a few works
have been performed for the electronic states in
Na-rich region (i.e. x ∼ 0.7) where both of γ and S

are largely enhanced. Koshibae et al. discussed the
thermopower using Heikes formula [7] to include
the spin-orbital degeneracy of the Co3+ and Co4+

together with the strong correlation effects. The
band structure, however, was not considered there.
Recently, Kuroki et al. proposed a peculiar shape
of the band structure called “Pudding mold” band
which yields a large thermopower based on the
Boltzmann’s equation [8]. The electron correlation
effect, however, was not explicitly included there.

In this work, we study the electronic states of the
CoO2 plane in NaxCoO2 on the basis of the trian-
gular lattice 11-band d-p model, where the tight-
binding parameters are determined so as to fit the
LDA band structure. The electron correlation effect
is considered within the random phase approxima-
tion (RPA) to elucidate the effect of in-plane fer-
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romagnetic fluctuations on the quasiparticle disper-
sion and the electronic specific heat. We also apply
the second order perturbation (SOP) for compari-
son with RPA. The self-energy is calculated within
the RPA and the SOP to obtain the quasiparticle
dispersion, the mass enhancement factor and the
damping rate.

We consider the two-dimensional triangular lat-
tice d-p model which includes 11 orbitals: dxy, dyz,
dzx, dx2−y2 , d3z2−r2 of Co and p1x, p1y, p1z (p2x, p2y,
p2z) of O in the upper (lower) side of a Co plane.
The Hamiltonian is given by

H = H0 + H ′, (1)

H0 =
∑

i,j,`,`′,σ

(t``
′

ij c
†
i`σcj`′σ + h.c.), (2)

H ′ = HU + HU ′ + HJ + HJ′ , (3)

where c
†
i`σ(ci`σ) is a creation (annihilation) opera-

tor for an electron with orbital ` (=dxy, dyz, dzx,
dx2−y2 , d3z2−r2 , p1x, p1y, p1z, p2x, p2y, p2z) and spin

σ (=↑, ↓) at site i. In eq. (3), t``
′

ij , which can be writ-
ten by the Slater-Koster parameters, is determined
so as to fit the tight-binding energy bands to the
LDA band structure [9]. H ′ is the on-site Coulomb
interaction between d-electrons of Co, where HU and
HU ′ are the intra- and inter-orbital direct terms and
HJ and HJ′ are the Hund’s rule coupling and the
pair-transfer term, respectively. These interactions
are expressed by using Kanamori parameters, U , U ′,
J and J ′. We set the energy unit to be electron volt.

In the RPA, the spin and charge susceptibilities
have 9× 9-matrix forms as [10,11]

χ̂s(q) = (1̂− χ̂(0)(q)Ŝ(0))−1χ̂(0)(q), (4)

χ̂c(q) = (1̂ + χ̂(0)(q)Ĉ(0))−1χ̂(0)(q), (5)

where q = (q, ω` = 2`πT ) and the matrix elements

S
(0)
`1`2`3`4

(C
(0)
`1`2`3`4

) are U (U) for `1 = `2 = `3 = `4,
U ′ (−U ′+2J) for `1 = `3 6= `2 = `4, J (2U ′−J) for
`1 = `4 6= `2 = `3, J ′ (J ′) for `1 = `2 6= `3 = `4, and
0 for the others. Bare susceptibility χ̂(0)(q) is given
by

χ
(0)
`1`2`3`4

(q) = −
T

N

∑

k

G
(0)
`2`3

(k + q)G
(0)
`4`1

(k), (6)

where k = (k, εn = (2n + 1)πT ), N is the total
number of lattice points and Ĝ(0) is the unperturbed
Green’s function. The self-energy is given by

Σ``′(k) =
T

N

∑

q

∑

`1`2

G
(0)
`1`2

(k − q)V eff
``2`′`1

(q), (7)

V̂ eff (q) =
3

2
V̂ s(q) +

1

2
V c(q), (8)

V̂ s(q) = Ŝ(0)χ̂s(q)Ŝ(0) −
1

2
Ŝ(0)χ̂(0)(q)Ŝ(0), (9)

V̂ c(q) = Ĉ(0)χ̂c(q)Ĉ(0) −
1

2
Ĉ(0)χ̂(0)(q)Ĉ(0), (10)

In order to obtain dynamical quantities in the
RPA, the analytic continuation from the imaginary
Matsubara frequency to the real frequency is usu-
ally performed by using Padé approximation or the
maximum entropy method. However, it is known
that this procedure sometimes encounters numerical
difficulties. To avoid the difficulties, we analytically
carry out the summation over Matsubara frequen-
cies and directly calculate the retarded self-energy
in a real frequency formulation without numerical
analytic continuation.

In the numerical calculations, we use 64 × 64 k-
meshes and 512 frequencies for |ω| < ωc = 3. We
set the interaction parameters: U = U ′ + 2J , J =
J ′, U ′ = 1.3, J = 0.13, which result in the in-plane
ferromagnetism for x ≥ xc ∼ 0.75 within the RPA,
so as to reproduce the experimental result [6]. For
simplicity, we exclusively consider the band nearest
to the fermi level in the calculation of Ĝ(0).

Fig. 1 shows the retarded self-energy ΣR(k, ω) as
a function of frequency ω for x = 0.7 at the Γ-point
(k = (0, 0)) and the M -point (k = (0, 2π√

3
)). We

can see usual fermi liquid properties: ReΣR(k, ω) ∼
aω, and ImΣR(k, ω) ∼ bω2, with a, b < 0 at low
energy (ω ∼ 0). We find that the imaginary part
of the retarded self-energy at the Γ point has the
sharp peak around ω ∼ 0.05 due to the effect of the
in-plane ferromagnetic fluctuations which becomes
crucial near the critical doping x ∼ 0.75 above which
the in-plane ferromagnetism takes place.

The renormalized dispersion εk is defined by the
solution of the following secular equation:

εk − ε
(0)
k

+ µ− ReΣR(k, εk) = 0, (11)

where ε
(0)
k

is the bare dispersion and µ is the chem-
ical potential. Fig. 2(a) shows the renormalized dis-
persion εk nearest to the fermi level together with

the bare dispersion ε
(0)
k

for x = 0.7 along the Γ −
K−M −Γ line, where the K-point is k = (2π

3 , 2π√
3
).

We find that the six small hole pockets near the K-
point are stabilized due to the electron correlation
effect within the RPA, which is consistent with the
previous result obtained from the slave-boson ap-
proach for the similar d-p model [12]. We have also
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Fig. 1. The real part (solid line) and the imaginary part
(dotted line) of the retarded self-energy ΣR(k, ω) obtained
from the RPA as functions of ω for x = 0.7 at the Γ-point
(a) and at the M -point (b).

confirmed that the similar tendency is obtained from
the SOP as shown in Fig. 3(a).

Remarkably, the quasiparticle dispersion near the
Γ-point is strongly reduced to yield an almost flat
dispersion just above the fermi level as shown in
Fig. 2(a). This is due to the effect of the in-plane
ferromagnetic fluctuations as mentioned before. In
addition, we find another branch of the dispersion
which corresponds to the upper Hubbard band. In
general, the self-energy corrections lead to two types
of solution of the secular equation (11): the low en-
ergy solution defines quasiparticle excitations and
the high-energy solution defines the excitations in
the Hubbard bands [13].

In Fig. 2(b), the mass enhancement factor,

z−1
k

= 1−
∂ReΣR(k, ω)

∂ω

∣

∣

∣

∣

ω=0

, (12)

together with the quasiparticle damping rate,
−ImΣR(k, εk), is plotted along the Γ−K −M − Γ
line for x = 0.7. We can see that z−1

k
has a max-

imum value at the Γ-point. With increasing the
doping x, z−1

k
near the Γ-point increases towards
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Fig. 2. The RPA results for the renormalized dispersion εk
(open circles and squares) together with the bare dispersion

ε
(0)
k

(solid line) (a), and those for the mass enhancement

factor z
−1
k

(closed circles) together with the quasiparticle
damping rate −ImΣR(k, εk) (open circles and squares) (b),
along the Γ−K −M − Γ line for x = 0.7.

the critical doping xc ∼ 0.75 above which the in-
plane ferromagnetism takes place. We note that, in
the case with the SOP, z−1

k
has a maximum at the

same Γ-point, but the value of z−1
k

is smaller than
that from the RPA as shown in Fig. 3(b).

Finally, we calculate the electronic specific heat
coefficient γ given by

γ =
2π2k2

B

3

1

N

∑

k

z−1
k

[

−
1

π
ImGR(k, 0)

]

, (13)

where GR(k, ω) = [ω − ε
(0)
k

+ µ − ΣR(k, ω)]−1 is
the renormalized retarded Green’s function and kB

is the Boltzmann’s constant. In Fig. 4, we plot the
electronic specific heat coefficient obtained from the
RPA γRPA and that from the SOP γSOP with that
in the noninteracting system γ0 together with the
magnetic susceptibility χs(q = 0, ω = 0) obtained
from the RPA as functions of the doping x. We see
that γRPA is largely enhanced for 0.6 <∼ x <∼ 0.75
where χs, i.e., the in-plane ferromagnetic fluctua-
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Fig. 3. The SOP results for the same quantities in Fig. 2.

tion becomes large. γRPA increases with increasing
x towards the ferromagnetic critical point xc ∼ 0.75
where χs diverges.

In summary, we have investigated the triangu-
lar lattice d-p model simulating the CoO2 plane of
NaxCoO2, and found that the in-plane ferromag-
netic fluctuations play crucial roles for the electronic
states for 0.6 <∼ x <∼ 0.75, where γ increases with
increasing x towards the critical doping xc ∼ 0.75
above which the in-plane ferromagnetism takes
place. This behavior seams to be consistent with the
experimental results for γ in the anomalous metal-
lic region with 0.6 <∼ x <∼ 0.75 [4]. In this region, the
thermopower S is also enhanced and increases with
increasing x as mentioned before. Therefore, we
expect that the in-plane ferromagnetic fluctuations
is important also for S. The explicit calculation for
the transport properties including S is now under
the way.
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