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ABSTRACT. In this paper, we propose an algorithm to calculate an improvement target for
each inefficient DMU in the CCR model by calculating all equations forming the facets of
the efficient frontier. By introducing a parameter into the algorithm, we calculate a minimal
distance point or a Pareto-efficient point on the efficient frontier as an improvement target.
All improvement targets are obtained by solving quadratic mathematical problems.
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1. Introduction

DEA(Data Envelopment Analysis) is a non-parametric analytical methodology
used for efficiency analysis of a DMU(Decision Making Unit) that consumes inputs
to produce outputs. Each DMU is classified as either inefficient or efficient unit ac-
cording to the optimal value of the CCR model defined in [3]. Moreover, the efficient
DMUs are split between Pareto-efficient and Pareto-inefficient units depending on
the positive optimal slackness of the CCR model. In the radial measure models, an
improvement target can be obtained simply by using the optimal value. However,
it is often diffcult to improve the values of inputs and outputs according to the
improvement, because the improvements obtained by the radial measure models
improve the only input (or output) values at the same rate. Therefore, Frei and
Harker have proposed the minimal distance projection to the efficient frontier by
using the Euclidean norm in [5]. Takeda and Nishino have proposed minimal norm
problem to the efficient frontier from an inefficient DMU in [8]. Recently, improve-
ment of efficiency for each inefficient DMU is one of the important subjects in DEA.
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Aparicio, Ruiz and Sirvent have formulated several mixed integer linear programs
for typical norms to obtain a closest target on the efficient frontier in [1]. Further,
Lozano and Villa have proposed a gradual efficiency improvement strategy in [7].

In this paper, we propose three kinds of improvement targets for each inefficient
DMU in the CCR model. In order to calculate the targets, we use all equations
forming the facets of the efficient frontier. The first and second targets are obtained
by an algorithm with a parameter. By considering the convex combination of their
targets and its projection to the efficient frontier, we suggest the third target as
more flexible improvement.

The constitution of this paper is as follows. In Section 2, we introduce the CCR
model and some definitions. In Section 3, we propose an algorithm to calculate
a improvement target by introducing a parameter and a symmetric positive semi-
definite matrix. In order to obtain improvements of DMUs, we use all equations
forming the facets of the efficient frontiers. In Section 4, we show a numerical
experiment.

Throughout this paper, we use the following notation: Let Rn be an n-dimensional
Euclidean space. For a nutural number m, Rm

+ := {x ∈ Rm : xi > 0, i = 1, . . . ,m}
and Rm

− := {x ∈ Rm : xi 6 0, i = 1, . . . ,m}. For a vector a ∈ Rn, a> denotes the
transposed vector of a. Let In be the unit matrix on Rn. For a subset S ⊂ Rn,
dim S denotes the dimension of S. For a subset S ⊂ Rn, intS and bd S de-
note the interior and boundary of S, respectively. For subsets S1 and S2 ⊂ Rn,
S1 + S2 := {a + b : a ∈ S1, b ∈ S2}.

2. CCR model

In this section, we introduce the basic DEA model proposed by Charns, Cooper
and Rhodes [3]. Through this paper, n denotes the number of DMUs. Each
DMU consumes m different inputs to produce s different outputs. For each j ∈
{1, . . . , n}, DMU(j) has an input vector x(j) := (x(j)1, . . . , x(j)m)> and an output
vector y(j) := (y(j)1, . . . , y(j)s)>. Moreover, we assume the following conditions.

(A1): x(j) > 0, y(j) > 0 for each j ∈ {1, . . . , n}.
(A2): (x(j1)>, y(j1)>)> 6= (x(j2)>, y(j2)>)> for each

j1, j2 ∈ {1, . . . , n} (j1 6= j2).
(A3): n > m + s.
(A4): dim({x(1), . . . , x(n)} × {y(1), . . . , y(n)}) = m + s.

Almost DEA models have Assumption (A1). Assumptions (A2), (A3) and (A4) are
necessary to execute an algorithm to calculate all facets forming the efficient fron-
tier. However, they are satisfied for almost practical problems. Assumption (A4)
means that the convex hull of all DMUs has an interior point.

The CCR model formulated by Charnes, Cooper and Rhodes [3] evaluates the
ratio between weighted sums of inputs and outputs. The CCR model provides for
constant returns to scale(CRS). Therefore, some researchers call the CCR model
the CRS model. In order to calculate an efficiency of DMU(k)(1 ≤ k ≤ n), the CCR
model is formulated as follows:

(CCR(k))



maximize
u>y(k)
v>x(k)

subject to
u>y(j)
v>x(j)

≤ 1, j = 1, ..., n,

ur ≥ 0, r = 1, ..., s,
vi ≥ 0, i = 1, ...,m.
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Since Problem (CCR(k)) is a fractional programming problem, we can not solve
it easily. Therefore, we transform Problem (CCR(k)) into the linear programming
problem by setting the denominator of the objective function equals to 1:

(CCRLP(k))


maximize u>y(k)
subject to v>x(k) = 1,

u>y(j)− v>x(j) ≤ 0, j = 1, . . . , n,
ur ≥ 0, r = 1, ..., s,
vi ≥ 0, i = 1, ...,m.

Then, the dual problem of Problem (CCR(k)) is defined as a linear programming
problem as follows:

(CCRD(k))



minimize θ

subject to θx(k)i −
n∑

j=1

λjx(j)i ≥ 0, i = 1, . . . ,m, (1)

n∑
j=1

λjy(j)r − y(k)r ≥ 0, r = 1, . . . , s, (2)

λj ≥ 0, j = 1, . . . , n, (3)
θ ∈ R.

Let θ∗CCR(k) denote the optimal value of (CCRD(k)). By conditions (2) and (3),
we have that (λ1, . . . , λn) 6= (0, . . . , 0) and hence λĵ > 0 for some ĵ ∈ {1, . . . , n}.
Then, it follows from (2) that θ∗CCRx(k)i−

∑n
j=1 λjx(j)i ≥ θ∗CCRx(k)i−λĵx(ĵ)i ≥ 0.

This implies that θ∗CCR(k) > 0. Moreover, we note that (λ
′
, θ

′
) is a feasible solution

of (CCRD(k )) if θ
′

= 1, λ
′

k = 1 and λ
′

j = 0 for each j ∈ {1, . . . , n}\{k}. Therefore,
0 < θ∗CCR(k) ≤ 1. By using the optimal value θ∗CCR(k) of (CCRD(k )), the efficiency
of DMU(k) for the CCR model is defined as follows:

Definition 2.1. If θ∗CCR(k) = 1 then DMU(k) is said to be CCR-efficient. Otherwise,
DMU(k) is said to be CCR-inefficient.

Sometimes, there exists i (or r) such that vi = 0 (or ur = 0). This means the
i (or r)th input(output) is not completely used to evaluate DMU(k). In order to
resolve this shortage, Charns, Cooper and Rhodes have modified the CCR model
by introducing a positive lower limit (ε > 0) in [4]. Then the constraint conditions
of Problems (CCR(k)) and (CCRLP(k)) are replaced as follows:

vi ≥ 0, i = 1, . . . ,m,
ur ≥ 0, r = 1, . . . , s.

⇒ vi ≥ ε, i = 1, . . . ,m,
ur ≥ ε, r = 1, . . . , s.

Then, Problem (CCRD(k)) can be reformulated as follows:

(CCRDε(k))



minimize θ − ε

(
m∑

i=1

six +
s∑

r=1

sry

)
subject to θx(k)i −

n∑
j=1

λjx(j)i − six = 0, i = 1, . . . ,m,

n∑
j=1

λjy(j)r − y(k)r − sry = 0, r = 1, . . . , s,

λj ≥ 0, j = 1, . . . , n,
six ≥ 0, i = 1, . . . ,m,
sry ≥ 0, r = 1, . . . , s,
θ ∈ R.
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By using an optimal solution (θ∗CCR(k), s∗x, s∗y) of Problem (CCRDε(k )), the efficiency
of DMU(k) for the CCR model is more strictly evaluated.

Definition 2.2. If θ∗CCR(k) = 1 and (s∗x, s∗y) = (0, 0) then DMU(k) is said to be
CCR-Pareto-efficient. If θ∗CCR(k) = 1 and (s∗x, s∗y) 6= (0, 0) then DMU(k) is said to
be CCR-Pareto-inefficient. Otherwise, DMU(k) is said to be CCR-inefficient.

Let TCCR be the production possibility set(PPS) of the CCR model defined in [3]
as follows:

TCCR :=

(x, y) : x ≥
n∑

j=1

λjx(j), 0 ≤ y ≤
n∑

j=1

λjy(j) for some λ ≥ 0

 .

Definition 2.3. (Conical hull) Let E be a nonempty subset in Rn. Then, conic E is
called the conical hull of E if it is defined as follows.

conic E :=

x ∈ Rn : x =
n∑

j=1

λjx(j), x(j) ∈ E, λj > 0, j = 1, . . . , n

 .

By the definitions of TCCR and conical hull, TCCR is represented as follows:

TCCR = (conic {(x(1), y(1)), . . . , (x(n), y(n))}+ (Rm
+ × Rs

−)) ∩ (Rm × Rs
+).

Hence, TCCR is a closed convex set. We define the efficient frontier of the CCR
model as follows:

FCCR = bd(TCCR + (Rm
+ × Rs

−)) ∩ (Rm × Rs
+).

Figure 1. CCR-Pareto-efficiency

We explain the efficiency of the CCR model by using Figure 1. There are six
DMUs and each DMU have two inputs (x1, x2) and one output (y). By Definition 2.1,
B,C,D and F are evaluated as CCR-efficient DMUs. Next, we consider a cone (R2

−×
R1

+)+DMU(k) for each CCR-efficient DMU(k). For example, for C, we consider
CC := (R2

−×R1
+)+(x(C), y(C)). Then, (CC∩TCCR)\C = φ, hence C is CCR-Pareto-

efficient DMU. Similarly, D and F are evaluated as CCR-Pareto-efficient DMUs. In
contrast, let CB := (R2

−×R1
+) + (x(B), y(B)) then (CB ∩TCCR)\B 6= φ, hence B is

CCR-Pareto-inefficient DMU.
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3. Improvements for inefficient DMUs

In this section, we propose three types of improvements for making inefficient
DMUs efficient in the CCR model with the minimal change of input and output val-
ues. The first improvement is unrestricted, that is, we consider only the minimal
change of input and output values. The inefficient DMUs can become efficient units
by the smallest change under the condition which the improvement target is feasi-
ble. However, the improvement is sometimes Pareto-inefficient in the CCR model.
Therefore, we propose the second improvement by forcing the Pareto-efficiency of
the CCR model. Moreover, we calculate the third improvement intermediate be-
tween the first and second improvements by considering the convex combination
and a projection.

First, we define the norm depending on a symmetric positive semidefinite matrix
A ∈ R(m+s)×(m+s) as follows.

||Z||A :=
√

Z>AZ, Z ∈ Rm+s.

Under this norm, we consider the minimal change of input and output values for
each inefficient DMUs.

Example 3.1. In the case of A = Im+s, || · ||A corresponds to the Euclidean norm.
If A is defined by

A = Mk :=



(
1

P (k)1

)2

0
¯

. . .

0
¯

(
1

P (k)m+s

)2

 ,

then || · ||A means the norm which considered the ratio of input and output values.

Let Nc be the number of facets forming the efficient frontier of the CCR model and
let Sc be the index set of all facets. Then, we note that Nc <∞ and we can calculate
the coefficients of equations forming the facets(see [9]). Let Wj := (−p>j , q>j )> for
each j ∈ Sc, where, pj , qj ≥ 0, pj ∈ Rm and qj ∈ Rs. By using Wj , we represent
TCCR and FCCR as follows.

Theorem 3.2. TCCR =
⋂

j∈Sc

{Z : W>
j Z ≤ 0}.

Proof. Firstly, we shall show that TCCR ⊂
⋂

j∈Sc
{Z : W>

j Z ≤ 0}. For each Z :=
(x>, y>)> ∈ TCCR, there exists λ

′ ≥ 0 such that x ≥
∑n

i=1 λ
′

ix(i), y ≤
∑n

i=1 λ
′

iy(i).
Since Wj = (−p>j , q>j )>, then W>

j Z = −p>j x+q>j y ≤ −p>j
∑n

i=1 λ
′

ix(i)+q>j
∑n

i=1 λ
′

iy(i).
By the definition of FCCR, −p>j x(i) + q>j y(i) ≤ 0 for each i ∈ {1, . . . , n}. Hence,
W>

j Z ≤ 0 and (x>, y>)> ∈
⋂

j∈Sc
{Z : W>

j Z ≤ 0}. Therefore, TCCR ⊂
⋂

j∈Sc
{Z :

W>
j Z ≤ 0}. Secondly, we shall show that TCCR ⊃

⋂
j∈Sc
{Z : W>

j Z ≤ 0}. For each
Z ∈

⋂
j∈Sc
{Z : W>

j Z ≤ 0}, the following two cases occur.

(i): There exists j ∈ Sc such that W>
j Z = 0.

(ii): There exist no j ∈ Sc such that W>
j Z = 0.

In Case (i), by the definition of Wj , there exists λ ≥ 0 such that x =
∑n

i=1 λix(i), y =∑n
i=1 λiy(i). Hence, Z ∈ TCCR. In Case (ii), there exist δ > 0 and j ∈ Sc such that

W>
j (Z + δWj) = 0 and W>

k (Z + δWk) ≤ 0 for each k ∈ Sc. Let Z
′

:= Z + δWj .
Then, x ≥ x

′
and y ≤ y

′
. By definition of Wj , there exists λ ≥ 0 such that
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x
′
=
∑n

i=1 λix(i), y
′
=
∑n

i=1 λiy(i). Hence, Z
′ ∈ TCCR and Z ∈ TCCR. Therefore,

TCCR ⊃
⋂

j∈Sc
{Z : W>

j Z ≤ 0}. Consequently, TCCR =
⋂

j∈Sc
{Z : W>

j Z ≤ 0}. �

Theorem 3.3. FCCR =
( ⋃

j∈Sc

{Z : W>
j Z = 0}

)
∩ TCCR.

Proof. Firstly, we shall show that FCCR ⊂
(⋃

j∈Sc
{Z : W>

j Z = 0}
)
∩ TCCR. For

each Z
′
:= (x

′>, y
′>)> ∈ FCCR, (x

′>, y
′>)> ∈ TCCR. Let (θ∗CCR(Z

′
), λ∗1, . . . , λ

∗
n) be

an optimal solution of the CCR model for Z
′
, that is θ∗CCR(Z

′
) solves the following

problem.

(CCR(Z
′
))



minimize θ

subject to θx
′

i −
n∑

j=1

λjx(j)i ≥ 0 i = 1, . . . ,m,

n∑
j=1

λjy(j)r − y
′

r ≥ 0 r = 1, . . . , s,

λj ≥ 0 j = 1, . . . , n,
θ ∈ R.

Since θ∗CCR(Z
′
) = 1, there exists i such that x

′

i =
∑n

j=1 λ∗jx(j)i. Hence, (x
′>, y

′>)>

∈ bd(TCCR). By Theorem 3.2, there exists j ∈ Sc such that W>
j Z

′
= 0. Hence,

Z
′ ∈

⋃
j∈Sc
{Z : W>

j Z = 0}. Therefore, FCCR ⊂
(⋃

j∈Sc
{Z : W>

j Z = 0}
)
∩ TCCR.

Secondly, we shall show that FCCR ⊃
(⋃

j∈Sc
{Z : W>

j Z = 0}
)
∩ TCCR. For

each Z
′ ∈

(⋃
j∈Sc
{Z : W>

j Z = 0}
)
∩ TCCR, by Theorem 3.2, Z

′ ∈ bd(TCCR).

By definition of FCCR, Z
′ ∈ FCCR. Therefore, FCCR ⊃

(⋃
j∈Sc
{Z : W>

j Z =

0}
)
∩ TCCR. Consequently, FCCR =

(⋃
j∈Sc
{Z : W>

j Z = 0}
)
∩ TCCR. �

We propose the following algorithm for obtaining the improvements dα(k), where
α ∈ {0, 1}. Improvements for DMU(k) are obtained by the following algorithm:

Algorithm GIT:
Step 0: @

Select α ∈ {0, 1} (Choose the type of the improvment). Set j := 1 and go to
Step 1.

Step 1: @
If α = 1, then set

S
′

c := {l ∈ Sc : Wli 6= 0 i ∈ {1, . . . ,m + s}} and S := S
′

c.

If α = 0, then set
S := Sc.

Let N be the number of elements of S. Go to Step 2.
Step 2: @

Let dα
j (k) be an optimal solution of Problem (MITα

j (k)) defined as follows:

(MITα
j (k))


minimize ||Z||A
subject to (Z + P (k))>Wj = 0,

α(Z + P (k))>Wo ≤ 0 for each o ∈ S,

where, j denote the jth element of S. If j = N , then go to Step 3. Other-
wise, set j ← j + 1 and go to Step 2.
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Step 3: @
Select j

′ ∈ arg min{||dα
j (k)||A : j ∈ S} and set dα(k) := dα

j′
(k). This

algorithm terminates.
We can execute Algorithm GIT using the existing nonlinear optimization tech-

niques (e.g. [2]). The existence and properties of an optimal solution are proved by
the following theorems.

Theorem 3.4. For each α ∈ {0, 1}, Problem (MITα
j (k)) has an optimal solution.

Proof. Let Bα
j (k) be the feasible sets of Problem (MITα

j (k)) (α ∈ {0, 1}). We show
the case of α = 0. For the case of α = 1, we can complete the proof in a way
similar to the case of α = 0. By the definition of TCCR, 0 ∈ TCCR. Since TCCR

is closed, by Theorem 3.3, FCCR is closed and 0 ∈ FCCR. Hence, Z = −P (k) is
a feasible solution and {Z : (Z + P (k))>Wj = 0} is closed. Therefore, B0

j (k) is
nonempty and closed. Since B0

j (k) is nonempty, for each (x
′
, y

′
) ∈ B0

j (k), B̄0
j (k) :=

B0
j (k) ∩ {(x>, y>)> : ||(x>, y>)>||A ≤ ||(x

′>, y
′>)>||A} is compact. Therefore, we

note that Problem (MIT0
j (k)) is equivalent to the following problem.

(MIT
0

j (k))
{

minimize ||Z||A
subject to Z ∈ B̄0

j (k).

Since B̄0
j (k) is compact, by the continuity of the objective function, Problem (MIT

0

j (k))
has an optimal solution. By the definition of B̄0

j (k), an optimal solution of Prob-

lem (MIT
0

j (k)) is also an optimal solution of Problem (MIT0
j (k)). Therefore, Prob-

lem (MIT0
j (k)) has an optimal solution. �

Theorem 3.5. For each CCR-inefficient DMU(k), let dα(k) (α ∈ {0, 1}) be an optimal
solution calculated by Algorithm GIT. Then, P (k) + dα(k) ∈ FCCR.

Proof. We prove the case of α = 0. In order to obtain a contradiction, we sup-
pose that P (k) + d0(k) 6∈ FCCR. By Theorem 3.3, P (k) + d0(k) 6∈ TCCR, and
by Theorem 3.2, there exists j ∈ Sc such that (P (k) + d0(k))>Wj > 0. Since
DMU(k) is a CCR-inefficient DMU, P (k) ∈ intTCCR. Hence, from Theorem 3.2,
P (k)>Wj < 0 and (γ(P (k)+d0(k))+(1−γ)P (k))>Wj = (P (k)+γd0(k))>Wj = 0,
where γ := − P (k)>Wj

d0(k)>Wj
. Since (P (k) + d0(k))>Wj > 0, we obtain 0 < γ < 1. There-

fore, γd0(k) is a feasible solution of Problem (MIT0
j (k)). By the definition of d0

j (k),
we have the following inequality: ||d0

j (k)||A ≤ ||γd0(k)||A < ||d0(k)||A. This contra-
dicts the optimality of d0(k) for Algorithm GIT. Consequently, P (k)+d0(k) ∈ FCCR.
For the case of α = 1, we replace Sc by S

′

c and can complete the proof in a way
similar to the case of α = 0. �

By Theorem 3.5, we note that P (k) + d0(k) is a CCR-efficient point for each
CCR-inefficient DMU(k). Moreover, we obtain a Pareto-efficient point based on
parameter α = 1 as indicated by the following theorem.

Theorem 3.6. For each CCR-inefficient DMU(k), let d1(k) be an optimal solution
calculated by modified Algorithm GIT(α = 1). Then, P (k) + d1(k) ∈ FCCR is a
CCR-Pareto-efficient point.

Proof. By Theorems 3.4 and 3.5, the existence of an optimal solution and P (k) +
d1(k) ∈ FCCR are proved. In order to obtain a contradiction, we suppose that
P (k) + d1(k) has positive slack, that is, there exist slack vectors sx ≥ 0 ∈ Rm and
sy ≥ 0 ∈ Rs satisfying (sx>, sy>) 6= (0, 0), and P (k)+d1(k)+(−sx>, sy>)> ∈ FCCR.
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Since d1(k) is an optimal solution of Problem (MIT1
j (k)) for some j ∈ {1, . . . , N},

there exists j ∈ S such that (d1(k) + P (k))>Wj = 0. Then (d1(k) + P (k) +
(−sx>, sy>)>)>Wj = (−sx>, sy>)Wj > 0. By Theorems 3.2 and 3.3, this contra-
dicts P (k)+d1(k)+(−sx>, sy>)> ∈ FCCR. Therefore, P (k)+d1(k) is a CCR-Pareto-
efficient point. �

By Theorems 3.3 and 3.5, P (k)+d0(k) and P (k)+d1(k) are contained in TCCR.
Since TCCR is a closed convex set, dλ(k) := λ(P (k)+d0(k))+(1−λ)(P (k)+d1(k)) ∈
TCCR for each λ ∈ (0, 1), where d0(k) and d1(k) are optimal solutions calculated
by modified Algorithm GIT(α = 0) and (α = 1), respectively. However, we note
that dλ(k) is not always contained in FCCR, since FCCR is not convex set. In
order to calculate a point on FCCR based on dλ(k), we consider a projection. Let
β̄ := min{β : (P (k) + β(dλ(k) − P (k)))>Wj = 0 for some j ∈ Sc}. Then, by
Theorems 3.2 and 3.3, P (k)+β̄(dλ(k)−P (k)) ∈ FCCR. We propose this point P (k)+
β̄(dλ(k)−P (k)) as improvement intermediate between the two improvements which
are obtained based on d0(k) and d1(k).

We explain the improvements proposed in this paper by using Figure 2. Now, we
consider the improvements for E which is CCR-inefficient DMU. By using the opti-
mal value of Problem (CCRD(k )), we obtain a traditional improvement target dCCR.
This improvement improves the only input values at the same rate, that is the
output value is fixed. In contrast, we calculate three kinds of improvements which
improve the input and output values. If the decision makers of E want to calculate
a minimal distance target, then they select α = 0 and obtain d0(E). If they want to
calculate a Pareto-efficien target, then they select α = 1 and obtain d1(E). In order
to calculate a intermediate target, we consider a convex combination and project
the point on FCCR as shown in Figure 2.

Figure 2. Improvement targets

4. Example

In this section, we perform a numerical analysis for 10 Japanese banks by
utilizing algorithms provided in this paper. As shown in Table 1, each bank has
the ordinary profit as the single output. The number of employees and total assets
are the two inputs used to generate the output.
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Table 1. Inputs and Output values for 10 Japanese banks, 2008

Bank Input1 Input2 Output
(persons) (one hundred million (one hundred million

Japanese yen) Japanese yen)
B1 3701 119895 3179
B2 3675 98359 2688
B3 3659 80955 2180
B4 3004 59600 1563
B5 2887 66373 1477
B6 2872 90984 2450
B7 2752 60770 1852
B8 2506 49008 1137
B9 2268 41151 1148
B10 2148 41158 1124

In this example, we obtain four hyperplanes forming FCCR by using Algorithm FFC
as follows.

H1 := {(x1, x2, y) : −71.9x1 − x2 + 121.4y = 0},
H2 := {(x1, x2, y) : −13.8x1 − x2 + 53.3y = 0},
H3 := {(x1, x2, y) : −x1 + 1.2y = 0},
H4 := {(x1, x2, y) : −x2 + 32.8y = 0}.

By using the coefficients of the equations forming the hyperplanes, we can
calculate CCR-efficiency scores without solving linear programming problem for
each DMU(see [6, 9]). The CCR-efficiency scores are shown in the Table 2. Three
banks (B1, B6 and B7) are evaluated as CCR-efficient DMUs and they do not have
positive slack, hence, they do not have to think the improvement. The other bank’s
improvements are given by Tables 3 and 4. The minimal distance improvement
target of each CCR-inefficient DMU is given in Table 3. The improvement shown
in Table 4 is CCR-Pareto improvement. The two improvements for B2 coincide
and the other DMUs have different two improvements. The improvements over the
efficient frontier of the CCR model think decreasing inputs values and increasing
output value.

Table 2. DEA analysis for 10 Japanese banks, 2008

Bank CCR
B1 1.000000
B2 0.961359
B3 0.884268
B4 0.860520
B5 0.741447
B6 1.000000
B7 1.000000
B8 0.761275
B9 0.915398
B10 0.896108
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Table 3. Minimal distance improvement (A = Mk)

Bank Input1 Input2 Output
B1 - - -
B2 -32 -900 83
B3 0.00 -5290 126
B4 0.00 -4770 108
B5 0.00 -11665 190
B6 - - -
B7 - - -
B8 0.00 -7415 131
B9 0.00 -1896 48
B10 0.00 -2368 58

Table 4. Pareto-efficient improvement (A = Mk)

Bank Input1 Input2 Output
B1 - - -
B2 -32 -900 83
B3 -215 -1529 201
B4 -324 -412 241
B5 -208 -7193 326
B6 - - -
B7 - - -
B8 -521 -3567 229
B9 -466 -1119 69
B10 -346 -1136 93

5. Conclusions

In this paper, we have proposed Algorithm GIT for calculating three kinds of
improvements for CCR-inefficient DMUs. In order to calculate the improvements,
all equations forming FCCR have been used. By using a property of the coefficients
of them, we have calculated three kinds of improvements.

The first improvement turns to the closest point over FCCR. Sometimes, the im-
provement have a positive slack, that is, it may be a CCR-Pareto-inefficient point.
In order to calculate CCR-Pareto-efficient point on FCCR, we have proposed the
second improvement. The decision makers can select either a minimal distance
improvement or Pareto-efficient improvement by choosing a parameter in Algo-
rithm GIT. Moreover, to calculate more flexible improvements, we have suggested a
method using the convex combination and a projection. In the convex combination,
the decision makers can adjust which they emphasize, feasibility or efficiency.
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