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Abstract

Using the numerical diagonalization method, we investigate the ferromagnetism and the superconductivity in the multi-orbital
Hubbard model in one-dimension. To examine the superconductivity, we calculate the critical exponent Kρ based on the Luttinger
liquid theory and the anomalous flux quantization in the superconducting region. Analyzing the value of Kρ, we obtain the phase
diagram on the U ′ − J parameter plane including the superconducting phase and the fully polarized ferromagnetic phase.
c⃝ 2006 Elsevier B.V. All rights reserved.
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Multi-orbital Hubbard models have attracted much in-
terest due to various interesting phenomena such as ferro-
magnetism and superconductivity. Many works [1–4] have
studied the model in the case of the crystal-field splitting
∆ = 0. They revealed that Hund’s rule coupling J plays a
crucial role in ferromagnetism. In the previous work[5], we
studied this model at finite ∆. We found that the fully po-
larized ferromagnetism becomes unstable when J is smaller
than a certain critical value of order of ∆. Further, we
obtained the superconducting (SC) phase for the singlet
ground state in the vicinity of the partially polarized ferro-
magnetism. However, the superconductivity in the case of
∆ = 0 has not been sufficiently considered in these studies.
In the present work, we investigate the one-dimensional

multi-orbital Hubbard model, paying attention to relation-
ship between the superconductivity and the Hund’s rule
coupling J using the numerical diagonalizationmethod.We
consider the following Hamiltonian:

H =−t
∑
i,m,σ

(c†i,m,σci+1,m,σ + h.c.) + U
∑
i,m

ni,m,↑ni,m,↓

+U ′
∑
i,σ

ni,a,σni,b,−σ + (U ′ − J)
∑
i,σ

ni,a,σni,b,σ

− J
∑
i,m

(c†i,a,↑ci,a,↓c
†
i,b,↓ci,b,↑ + h.c.)
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− J ′
∑
i,m

(c†i,a,↑c
†
i,a,↓ci,b,↑ci,b,↓ + h.c.), (1)

where c†i,m,σ is the creation operator of an electron with
spin σ in the orbital m (= a, b) at site i. The interaction
parameters U , U ′, J and J ′ stand the intra- and inter-
orbital direct Coulomb interactions, the exchange (Hund’s
rule) coupling and the pair-transfer, respectively. We set
U = U ′ + 2J and J ′ = J , hereafter.
We numerically diagonalize the Hamiltonian eq. (1) up

to 6 sites (12 orbitals) using the standard Lanczos algo-
rithm. To reduce the finite size effect, we use the Moebius
boundary condition, which is known to work well for sys-
tems with doubly degenerate conduction bands such as the
t-J ladder model [6].
Figure 1 shows the value of Kρ as a function of U ′ for

J = 0 at the electron density n = 1 (4 electrons/4 sites).We
also plot the results from the Green’s function Monte Carlo
(GFMC) method [7] and a weak coupling estimation forKρ

[5]. These results are in good agreement with each other.
As U ′ increases, Kρ decreases from unity for U ′ = 0 to
∼ 0.42 for U ′ = 4. In the case with J = 0, the Hamiltonian
eq.(1) is equivalent to the SU(4) Hubbard model which
shows the metal-insulator transition (MIT) at a critical
interaction where Kρ=0.5 [7,8]. In the present model, the
critical interaction is U ′

c ∼ 3 as shown in Fig. 1.
In Fig. 2, Kρ is plotted as a function of U ′ in the cases

with J = U ′/2, J = U ′ and J = 2U ′ at n = 1 (4 elec-
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Fig. 1. Kρ as a function of U ′ for J = 0 at n = 1. The dashed line

represents a weak coupling estimation for Kρ. The open circles are
the GFMC results obtained by Assaraf et al. [7].
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Fig. 2. Kρ as a function of U ′ in the cases with J = U ′/2, J = U ′ and
J = 2U ′ at n = 1. Inset shows the energy difference E0(ϕ)− E0(0)

as a function of an external flux ϕ at n = 1.

trons/4 sites). In the region Kρ > 0.5, the SC correlation
is expected to be the most dominant as compared with the
CDW and SDW correlations [9]. To confirm the SC state,
we calculate the lowest energy of the singlet state E0(ϕ)
as a function of an external flux ϕ at n = 1 (6 electrons/6
sites). As shown in the inset of Fig.2, the anomalous flux
quantization occurs in the region Kρ > 0.5. Within the
bosonization method [8], this SC state with Kρ > 0.5 is
identified as the triplet SC with spin gap, while the state
with Kρ < 0.5 is the spin gapped insulator. These results
are consistent with the recent DMRG results for the MIT
[3] and for the SC state [10].
In Fig. 3, we show the phase diagram on the U ′ − J pa-

rameter plane at n = 1 (4 electrons/4 sites). In the param-
agnetic state (S=0), we plot the phase boundary separat-
ing the SC region with Kρ > 0.5 and the insulating region
with Kρ < 0.5. This SC phase diagram is again confirmed
by the external flux dependence: the anomalous flux quan-
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Fig. 3. Phase diagram on the U ′ − J parameter plane at n = 1.

The open circles are the DMRG results for the ferromagnetic phase
boundary and the dotted line is the DMRG result for the MIT
boundary in the ferromagnetic state [3].

tization takes place in the SC region as shown in the inset
of Fig.2, while it disappears in the insulating region with
large U ′ (not shown).
We also plot the ferromagnetic phase boundary in Fig. 3.

A complete ferromagnetism with S=max. appears around
J ≃ U ′ in the strong coupling regime. This result is in good
agreement with the DMRG result obtained by Sakamoto
et al. [3] as shown in Fig. 3. In this ferromagnetic region,
Sakamoto et al. also claimed that the system shows the
triplet SC for J > U ′, while it becomes insulator for J <
U ′. The SC phase boundary in the ferromagnetic region is
smoothly connected to that in the paramagnetic region as
shown in Fig. 3. These results tell us that the Hund’s rule
coupling J plays important roles not only for the ferromag-
netism but also for the superconductivity.
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