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An LMI-based method for the integrated system identification and controller design is proposed
in the paper. We use the fact that a class of a system identification problem results in an LMI
optimization problem. By combining LMIs for the system identification and those to obtain a
discrete time controller we propose a framework to integrate two steps for the model-based control
system design, that is, the system identification and the controller synthesis. The framework
enables us to obtain a good model for control and a model-based feedback controller simultaneously
in the sense of the closed-loop performance. An iterative design algorithm similar to so-called
Windsurfer Approach is presented.

1. Introduction

In conventional control system design modeling of a control object and a controller synthesis
have been dealt with separately, that is, those are divided into two independent steps,
although those two processes are inseparably related [1]. Since the early 1990s so-called
“iterative system identification and controller design” scheme has been actively studied to
achieve the higher closed-loop performance ([2–4], etc.). The iterative manner is required
because of the fact that we cannot determine the optimal nominal model (obtained from
I/O data of the true plant) and the optimal controller (obtained from the nominal model)
simultaneously in the sense of the performance of the closed-loop system with the true plant
and the designed controller.

Several methodologies have been proposed on the iterative system identification and
controller design and those can be classified as follows.
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(1) Triangular inequality based method [5, 6]: an iterative frequency weighted system
identification and a model-based controller synthesis based on the triangular
inequality that shows an upper bound of the closed-loop H2 norm with the true
plant and the model-based controller.

(2) Windsurfer Approach [7–10]: expanding the closed-loop bandwidth gradually by the
iterative system identification and controller design.

(3) Frequency weighted LQG control based method [11]: an iterative update of the
frequency weighting used in the quadratic performance index of the frequency
weighted LQG control.

In some studies of approaches 1 and 2 the so-called “Hansen scheme” [12] is adopted
as a method for the system identification in the closed-loop. With the Hansen scheme the
closed-loop identification problem can be transformed into an open-loop one. By combining
the Hansen scheme and the controller synthesis methodology based on Youla parameteri-
zation we can construct an iterative identification/control algorithm that aims at a (local)
convergence of an upper bound of the closed-loop norm. However, in the algorithm the order
of the model and the controller tends to be extremely high with the progress of the algorithm.

As another direction in the field of system identification, methodologies based on
stochastic gradient have been actively studied for various types of systems, including multi-
variable systems, the Hammerstein systems, and systems with scarce measurement [13–19].

The objective of above iterative methodologies is essentially to obtain a good plant
model that results in the good performance of the closed-loop system with the true plant and
the controller. However, in the above methods the system identification and the controller
synthesis are still carried out in independent two steps, respectively, that is, the least square
method with an appropriate frequency weighting and the model-based controller design.
For the model obtained with the above iterative methods we can explain the validity of
the obtained plant model with qualitative knowledge about control relevant modeling, for
example, the importance of the model accuracy around the closed-loop bandwidth, and so
forth [2]. However, we do not have a method to get a quantitatively good model for control,
in other words, good parameters of the plant model that directly leads to the improvement
of a performance index for evaluating the closed-loop system, for example, closed-loop H2

or H∞ norm although the optimal H2 or H∞ controller design methods have been well
established for a given plant model. In general iterative system identification and controller
design methods we cannot guarantee the convergence of the closed-loop H2 or H∞ norm.
This is because we cannot consider the change of the closed-loop performance coming from
the model update in the system identification step (usually conducted in the closed-loop
setting) in standard iterative system identification and controller design algorithms. In [9] the
amount of the safe controller update for the closed-loop stability and the safe performance
improvement in the iterative identification and control are studied with the ν-gapmetric [20].
However, the closed-loop performance is measured with the ν-gap only and the control law
is confined to the IMC based method.

In this paper a new method for the iterative identification and controller design is
proposed aiming to integrate the system identification and the controller design steps under
an LMI framework. We assume that the ARX model is the model of the true plant and the
H2 norm of the closed-loop system is the performance index. In the proposed approach
the model update is iteratively obtained using the closed-loop I/O data from the closed-
loop experiment with a constraint on the norm of the closed-loop system with the updated
plant model and the feedback controller. This method is based on the fact that a system
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identification problem for ARX models can be formulated as an LMI optimization problem.
By combining LMIs to obtain the plant model with the LMI-based method to obtain the
discrete time H2 controller [21] the adjustment existing both in the plant model parameter
and the parameters related to the feedback controller can be obtained simultaneously by
solving a set of LMIs. The LMI condition is an approximated version of a BMI condition that
represents specifications on the closed-loop system identification and the controller update
so that the H2 norm of the closed-loop system with the updated model and controller does
not exceed a specified value. In the closed-loop system identification the two-stage method
[22] is adopted to minimize the effect of the bias coming from the correlation between the
measurement noise and the plant input signal.

In the conventional least square approach for system identification, such simultaneous
adjustment of parameters both in the plant model and the feedback controller is not possible.
Furthermore there does not occur a problem about the “order explosion” of the plant model
and the feedback controller in the proposed method; in contrast to the fact such problem
is inevitable in the strategy based on the Hansen scheme. A design algorithm similar to
Windsurfer Approach [7, 8], which gradually expands the control authority, while keeping
the closed-loop H2 norm less than a specified value, is presented.

The rest of the paper is organized as follows. In Section 2 the iterative system
identification and controller design problem which is addressed in the present study is
formulated. An LMI-based system identification method for an SISOARXmodel is presented
in Section 3. In Section 4 the iterative method for the system identification and the controller
design based on the LMI framework is proposed. A design example is presented in Section 5
and the conclusion is given in Section 6.

Notations are as follows: k: sample number, z−1: the shift operator in discrete time
systems, that is, z−1a(k) = a(k − 1), I, 0: an identity and zero matrices having the appropriate
dimension, respectively, Rm×n: the set of m × n real matrices, Sm: the set of m-dimensional
symmetric matrices, trace(A): trace of a square matrix A, σ(B): the maximum singular value
of a matrix B ∈ Rm×n, CT : the transpose of a matrix C, ‖D(z)‖2: the H2 norm of a stable
transfer function D(z).

2. Problem Formulation

Let us consider an SISO linear time invariant discrete time system given as follows:

y(k) = yp(k) + v(k) = P(z)u(k) + v(k), (2.1)

where u(k), yp(k), y(k), and v(k) are the input and output of the plant, the measurement
signal, and the noise, respectively. The true plant is defined as the discrete time transfer
function P(z).

In the present paper the ARX discrete time system is considered to model the true I/O
relationship of the plant in (2.1). The ARX model is parameterized as

yARX(k) = PARX(z)u(k) + vARX(k),

PARX(z) =
NARX(z)
DARX(z)

, vARX(k) = HARX(z)s(k), HARX(z) =
1

DARX(z)
,
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NARX(z) = bnz
−1 + bn−1z−2 + · · · + b2z

−(n+1) + b1z
−n,

DARX(z) = 1 + anz
−1 + an−1z−2 + · · · + a2z

−(n+1) + a1z
−n,

(2.2)

where PARX(z), yARX(k), and s(k) are the ARX model, that is, the nth order linear time
invariant discrete transfer function, the output of the ARX model, and the zero-mean white
noise, respectively. In the ARX model, model parameters to be identified are ai, bi ∈ R, i =
1, . . . , n.

Let K(z) be a linear time invariant feedback controller connected to the plant P(z) as
shown in Figure 1. The I/O relationship of the controller K(z) is given as follows:

uk(k) = K(z)y(k). (2.3)

The controllerK(z) in (2.3) is obtained from the model PARX(z) and the order is n, that is, the
controllerK(z) is assumed to be a model-based full-order controller. Note that we cannot get
the exact expression of the true plant P(z) in general and the model PARX(z) is only available
as a model for the controller design.

A state-state realization of the model PARX(z) is defined as the following control
canonical form:

PARX(z) :

⎧
⎨

⎩

xARX(k + 1) = AARXxARX(k) + BARXu(k)

yARX(k) = CARXxARX(k) + vARX(k),

AARX =

[
0(n−1)×1 In−1

−a1 −a2 · · · − an

]

, BARX =
[
01×(n−1) 1

]T
, CARX =

[
b1 · · · bn

]
.

(2.4)

By assuming an input disturbance d(k) as shown in Figure 1 we define a generalized
plant G(z) as

G(z) :

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

x(k + 1) = Ax(k) + B1w(k) + B2uk(k)

z(k) = C1x(k) +D12u(k)

y(k) = C2x(k) +D21w(k),

x(k) = xARX(k), w(k) :=

[
d(k)

vARX(k)

]

, z(k) :=

[
z1(k)

z2(k)

]

:=

[
ρyp(k)

u(k)

]

, ρ > 0,

A := AARX, B1 :=
[
BARX 0

]
, B2 := BARX, C1 :=

[
ρCARX

0

]

,

C2 = CARX, D12 :=
[
0
1

]

, D21 :=
[
0 1

]
,

(2.5)
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Figure 1: Closed-loop system with the true plant P(z) and the model-based controllerK(z).

where ρ > 0 is a weighting factor that is adjusted by the control designer. We can change the
control authority by changing the value of ρ > 0;

K(z) :

⎧
⎨

⎩

xK(k + 1) = AKxK(k) + BKy(k)

uk(k) = CKxK(k).
(2.6)

Assume that the input disturbance d(k) and the input and the output signals u(k) and
y(k) are always available. In this paper a control system design problem is formulated as
follows.

Simultaneous Modeling and Controller Design Problem

Find the feedback controller K(z) in (2.6) and the ARX model PARX(z) in (2.2) so that the
closed-loop system with P(z) and K(z) is stable and a performance index given by

Jy :=
Nf∑

k=0

y2(k) (2.7)

is minimized for a user-specified disturbance subject to the H2 norm of the closed-loop
system with G(z) and K(z) is less than μ > 0 and

|u(k)| ≤ u, ∀k = 0, . . . ,Nf , (2.8)

where u > 0 is the allowed maximum value of |u(k)|, k = 0, . . . ,Nf .
Note that in the above problem formulation the closed-loop systemwith the unknown

true plant P(z) in (2.1) and the model-based controller K(z) in (2.6), which is obtained with
the ARX model PARX(z), is not necessarily stable even if the closed-loop system with PARX(z)
and K(z) is stable. The feature is always true also in general model-based control system
design problems.
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3. LMI-Based System Identification and Controller Design

3.1. LMI-Based System Identification

Assume that we have N + 1 samples of input and output data of the plant P(z) in (2.1),
denoted by u(k) and y(k), k = 0, . . . ,N, from a single identification experiment. In the ARX
model in (2.2) the prediction error e(k, θ) is given by

e(k, θ) := DARX(z)y(k) −NARX(z)u(k) = y(k) −DIO(k)θ,

DIO(k) :=
[−DO(k) DI(k)

]
,

DO(k) :=
[
y(k − n) · · · y(k − 1)

]
, DI(k) :=

[
u(k − n) · · · u(k − 1)

]
,

θ :=
[
a1 · · · an b1 · · · bn

]T
, u

(
k − j

)
= y

(
k − j

)
= 0, ∀k − j < 0, j = 1, . . . , n.

(3.1)

The objective function for the system identification, the sum of the squared prediction
error e(k, θ), is given as

Jp :=
N∑

k=1

e2(k, θ) =
N∑

k=1

(
y(k) −DIO(k)θ

)2
. (3.2)

Using the Schur complement lemmawe can easily see that the square of the prediction
error at each kth sample is less than α(k) > 0, k = 1, . . . ,N, that is, e2(k) = (y(k)−DIO(k)θ)

2 <
α(k), k = 1, . . . ,N if and only if the following matrix inequalities are satisfied:

[
α(k) y(k) −DIO(k)θ

y(k) −DIO(k)θ 1

]

> 0, k = 1, . . . ,N. (3.3)

Note that conditions in (3.3) are N LMI constraints on the parameter vector θ and α(k),
k = 1, . . . ,N. With (3.3) the optimal solution to the least square problem can also be obtained
as the solution vector θopt that solves the following LMI optimization problem:

Minimize f(α(k)) :=
N∑

k=1

α(k) subject to (3.3) and α(k) > 0, ∀k = 1, . . . ,N. (3.4)

Note that we can obtain the unique and globally optimal solution vector θopt because of the
LMI nature of the optimization problem (3.4).

3.2. Controller Design

To solve the control system design problem formulated in Section 2 the feedback controller
K(z) in (2.6) is designed so that the H2 norm of the closed-loop system is less than μ > 0.
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We employ the LMI-based discrete time controller design method proposed in [21]. The LMI
conditions for the controller design are given as follows:

trace(W) < μ2, (3.5)

⎡

⎢
⎢
⎣

W C1X +D12L C1

∗ X +XT − P I + ST − J

∗ ∗ Y + YT −H

⎤

⎥
⎥
⎦ > 0, (3.6)

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

P J AX + B2L A B1

∗ H Q YA + FC2 YB1 + FD21

∗ ∗ X +XT − P I + ST − J 0

∗ ∗ ∗ Y + YT −H 0

∗ ∗ ∗ ∗ I

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

> 0, (3.7)

where J, Q, S, X, Y ∈ Rn×n, F, LT ∈ Rn×1, H,P ∈ Sn, and W ∈ S2. Note that blocks whose
descriptions are easily inferred from the symmetric property of LMIs are denoted by “∗”.
Coefficient matrices of the controller K(z) in (2.6) can be obtained as follows:

AK = V −1(Q − YAX − YB2L − FC2X)U−1, BK = V −1F, CK = (L − C2X)U−1, (3.8)

where matrices U,V ∈ Rn×n are chosen arbitrarily if they satisfy VU = S − YX.

4. Windsurfer-Like Approach with an LMI-Based Method

4.1. Design Algorithm

For the control design problem in Section 2 a method for the iterative system identification
and controller design under an LMI framework is proposed by combining the LMI-based
system identification and the discrete time controller design [21] in the previous section into a
single system of LMIs. With the generalized plant G(z) in (2.5) a following design algorithm,
similar to Windsurfer Approach [7, 8], is proposed in the present paper.

4.1.1. Windsurfer-Like Approach with an LMI-Based Method

Step 1. Let id = 1 as the iterative number of the algorithm. If the plant P(z) is stable collect the
input and output data of P(z) in the open-loop setting (K(z) = 0) and obtain the initial ARX
model P 1

ARX(z) in (2.2) by the LMI-based method in Section 3 or the standard least square
method so that the objective function Jp (3.2) (f(α(k)) in (3.4)) is minimized. If the plant P(z)
is unstable, the initial model P 1

ARX(z) is obtained with a method based on the first principle
modeling. Set the weighting factor ρid > 0 and the closed-loop H2 norm constraint μ > 0
in (3.5). Note that the weighting factor ρ1 > 0 (the weighting factor in id = 1) is set to be
sufficiently small so that the initial controller K1(z) that will be obtained in the next step has
a mild control authority.
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Step 2. With the LMI-based method shown in the previous section [21], obtain a feedback
controller Kid(z) satisfying the closed-loop H2 norm constraint. If id = 1, go to Step 5. Else
if such controller Kid(z) cannot be obtained or the constraint (2.8) is violated, go to Step 7.
Otherwise go to Step 3.

Step 3. Obtain the performance index Jidy in (2.7) for the closed-loop system with the true
plant and the controller Kid(z).

Step 4. Let im = 1 as the iterative number of the minor loop. Inject the disturbance d(k) for
the closed-loop identification and collect the input u(k) and the output y(k), k = 0, . . . ,Nf

for another system identification in the closed-loop setting.

Step 5. Set the weighting factor ρid as ρid+1 = rimρid (rim > 1) to increase the control authority.
Obtain the new model of the plant Pid+1

ARX(z) and an (approximated) update of the controller
corresponding to the plant model Pid+1

ARX(z) with the closed-loop H2 norm constraint.

Step 6. ObtainKid+1(z) satisfying the closed-loopH2 norm constraint for the newly identified
model Pid+1

ARX(z). Compute Jid+1y with the true plant and the controllerKid+1(z). If Jidy −Jid+1y ≤ ε,
0 < ε � 1, set id = id + 1 and go to Step 7. Else if Jid+1y > Jidy , set rim+1 < rim , where rim+1 ≥ 1. Set
im = im + 1 and go to Step 5. Otherwise (Jid+1y < Jidy and Jidy − Jid+1y > ε) set id = id + 1 and go to
Step 2.

Step 7. Set the previously obtained controller Kid−1(z) as the optimal one and stop.

The proposed algorithm can be applied also to unstable plant if the initially designed
controller K1(z) stabilizes the true plant P(z).

Because of checking processes on the value of the performance index Jidy , id = 1, . . ., in
Steps 2 and 6 the performance index Jidy (id = 1, . . .) that is obtained by the above algorithm
is at least nonincreasing for the iteration number id = 1, . . .. In other words we can always get
at least a locally optimal pair of the ARX model PARX(z) and the feedback controller K(z).

On the other hand the result of the proposed algorithm clearly depends on the initially
obtained model because of the local convergence property of the algorithm. As a method to
avoid the effect of the local optima some models other than the initial model in Step 1, the
model obtained with the standard system identification method or the first principle based
method, are obtained firstly. Then the algorithm is carried out for those models and the best
result is selected. For example such models are able to be obtained by introducing small
perturbations into coefficients of the initial model obtained in Step 1.

The simultaneous update of the plant model and the controller in Step 5 of the
algorithm is carried out with an LMI-based method, that is, the main idea of the present
paper. The detail of the LMI-based method will be described in the next subsection.

4.2. Simultaneous Tuning of the Plant Model and the Controller:
LMI-Based Method

The LMI-based simultaneous update method of the model and the controller in Step 5 of
the algorithm is described. The objective of the present closed-loop identification is to get
adjustments not only for the model Pid

ARX(z) but also for matrices related to the controller Kid(z)
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so that the given closed-loopH2 norm constraint is not violated even for the increased control
authority represented as the increase of the weighting factor ρid+1 = rρid (r > 1). Assume that
the plant model derived in the idth closed-loop identification is given as follows:

Pid
ARX(z) =

Nid
ARX(z)

Did
ARX(z)

,

Nid
ARX(z) = bidn z

−1 + bidn−1z
−2 + · · · + bid2 z

−(n+1) + bid1 z
−n,

Did
ARX(z) = 1 + aid

n z
−1 + aid

n−1z
−2 + · · · + aid

2 z
−(n+1) + aid

1 z
−n.

(4.1)

Except for the initial system identification (id = 1) of the proposed design algorithm
the system identification is carried out in the closed-loop, that is, the disturbance signal d(k)
is injected and the plant input uid+1(k) and the output yid+1(k), k = 0, . . . ,N are collected
in the closed-loop system with P(z) and Kid(z). To minimize the bias effect coming from
the correlation between u(k) and v(k) in (2.1) in the closed-loop identification the two-stage
method [22] is adopted. In the two-stage method we firstly obtain the model of the sensitivity
function Sid

r (z) given by

Sid
r (z) =

1
1 − P(z)Kid(z)

, (4.2)

with the disturbance d(k) and the plant input u(k). Define the model of the sensitivity
function Sid

r (z) in (4.2) as the Nsth order FIR model given as

Sid
FIR(z) = sid0 + sid1 z

−1 + · · · + sidNs
z−Ns. (4.3)

With the model of the sensitivity function Sid
FIR(z) a filtered plant input uid

f (k) is given as

uid
f (k) = Sid

FIR(z)d(k), k = 0, . . . ,N. (4.4)

The new model Pid+1
ARX(z) is obtained with the input uid

f
(k) and the output yid(k). Because the

synthesized plant input uid
f
(k) is uncorrelated with the noise v(k), the bias effect caused by

the correlation between v(k) and u(k) is suppressed.
The newly identified model Pid+1

ARX(z) is defined as follows:

Pid+1
ARX(z) =

Nid+1
ARX(z)

Did+1
ARX(z)

=
Nid

ARX(z) +N
id
ARX(z)

Did
ARX(z) +D

id
ARX(z)

,

N
id
ARX(z) = Δbnz

−1 + · · · + Δb1z
−n := R(z)ΔNid

ARX,

D
id
ARX(z) = Δanz

−1 + · · · + Δa1z
−n := R(z)ΔDid

ARX,

ΔNid
ARX :=

[
Δb1 Δb2 · · · Δbn−1 Δbn

]T
,
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ΔDid
ARX :=

[
Δa1 Δa2 · · · Δan−1 Δan

]T
,

R(z) :=
[
z−n z−(n−1) · · · z−2 z−1

]
,

(4.5)

where vectors ΔNid
ARX and ΔDid

ARX are adjustments for coefficients of the numerator and
denominator polynomials of the idth ARX model Pid

ARX(z), respectively.
To get the new model Pid+1

ARX(z)we obtain those adjustment vectors ΔNid
ARX and ΔDid

ARX

using the I/O data uid
f (k) and yid(k)with the fixed Pid

ARX(z). Similar to the LMI-based system

identification in the previous section the problem to obtain adjustment vectors ΔNid
ARX and

ΔDid
ARX results in the following LMI optimization problem:

Minimize fid+1(α) :=
N∑

k=1

α(k), α(k) > 0,

subject to

[
α(k) ∗

yid+1(k) −Did+1
IO

(
θid + Δθid

)
1

]

> 0, k = 1, . . . ,N,

(4.6)

where

Did+1
IO (k) :=

[
−Did+1

O (k) Did+1
I (k)

]
,

Did+1
O (k) =

[
yid+1(k − n) · · · yid+1(k − 1)

]
, Did+1

I (k) =
[
uid+1
f (k − n) · · · uid+1

f (k − 1)
]
,

θid :=
[

aid
1 · · · aid

n bid1 · · · bidn

]T
,

Δθid :=
[(

ΔDid
ARX

)T (
ΔNid

ARX

)T
]T

=
[
Δa1 · · · Δan Δb1 · · · Δbn

]T
.

(4.7)

In the above LMI-based identification problem the unknown parameters are α(k) > 0, i =
1, . . . ,N and Δθid .

The LMI optimization problem (4.6) to get the new model Pid+1
ARX(z) is solved jointly

with the LMI constraint for the controller synthesis given in (3.5)–(3.7). By the id-th LMI-
based system identification in the above, the transfer function of the ARX model is changed
from Pid

ARX(z) into Pid+1
ARX(z) shown in (4.5). Considering the state-space realization of Pid

ARX(z)
in (2.4) the state-space realization of the newly identified model

Pid+1
ARX(z) :=

⎡

⎣
Aid+1

ARX Bid+1
ARX

Cid+1
ARX 0

⎤

⎦ (4.8)
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is given as

Aid+1
ARX = Aid

ARX −ΔAARX, Bid+1
ARX = Bid

ARX := BARX, Cid+1
ARX = Cid

ARX + ΔCARX,

ΔAARX :=

⎡

⎢
⎢
⎣

0(n−1)×n

(
ΔDid

ARX

)T

⎤

⎥
⎥
⎦, ΔCARX :=

(
ΔNid

ARX

)T
.

(4.9)

The variation of coefficient matrices in the state-state form of Pid
ARX(z) coming from the

id-th closed-loop system identification and the increase of the weighting factor (ρid+1 = rρid ,
r > 1) in Step 5 of the algorithm provides changes of coefficient matrices of the generalized
plant G(z) in (2.5). Those changes of parameters are defined as the symbols with “Δ” like
ΔAARX and ΔCARX in the above. Reflecting those changes, parameter matrices related to the
feedback controller in (3.5)–(3.7), for example, W , P , and H, and so forth, should also be
changed because we cannot expect that the constraint on the closed-loopH2 norm still holds
if those controller related parameters are left as they are.

In the present paper not only the changes of the coefficient matrices of the generalized
plant, including the changes of the plant model and the weighting factor ρ > 0, but also those
of parameter matrices related to the feedback controller are simultaneously obtained in the
process of the closed-loop identification step.

Define the changes of the matrices related to the feedback controller, for example, W ,
X, and L, and so forth in (3.5)–(3.7) as Δ• where • is W , X, and L, and so forth. Then the
condition for the controller synthesis in (3.5)–(3.7) so that the closed-loop H2 norm with the
newly obtained plant model Pid+1

ARX(z) and the feedback controller is less than μ > 0 becomes a
system of BMI given as follows:

trace
(
Wid + ΔW

)
< μ2, (4.10)
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Ξid
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(
Y id + ΔY

)
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(
Fid + ΔF

)
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, ΔC1 =
[
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]

, ΔC2 = ΔCARX.

(4.12)

The update of the plantmodel Pid
ARX(z) and the controllerKid(z) is given as the solution

to the LMI optimization problem in (4.6) with BMI constraints in (4.10)–(4.12). However, it
is difficult to obtain the global optimal solution to the nonconvex problem. To solve the non-
convex optimization problem in an approximated manner a method that iteratively solves an
approximated LMI problem of the original BMI problem. The approximated LMI problem is
derived by neglecting the second or higher order products of parameter matrices (symbols
with Δ) in the BMI problem. The approximation of the BMIs in (4.10)–(4.12) are given as
follows:

trace
(
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)
< μ2, (4.13)
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(4.15)

The above approximation is reasonable only if parameter matrices, symbols with Δ,
are small in some sense. In other words, the approximation becomes more accurate if the
update of the plant model Pid

ARX(z) and the model-based controller Kid(z) are forced to
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u(k) = K(z)y(k) + d(k)
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y(k) = w(xs, k) + v(k)

Figure 2: Cantilevered beam.

be smaller. To confine the size of parameter matrices to be small enough following LMI
constraints on parameter matrices are introduced:

(Δ•)T (Δ•) < (
β(σ(•)))2I ⇐⇒

[
βσ(•)I (Δ•)T
Δ• βσ(•)I

]

> 0, (4.16)

where • represents the parameter matrix of interest and β > 0 is a small positive value, say,
0.1. The LMI (4.16) restricts the maximum singular value of the parameter matrix. Then using
the plant I/O data we can obtain adjustments of the plant model PARX(z) and the feedback
controllerK(z), represented as the symbols withΔ, by solving the LMI optimization problem
(4.6)with LMI constraints (4.13)–(4.15) and (4.16). In other words by solving the above single
constrained LMI optimization problemwe can get the adjustment not only on the plantmodel
but also on the approximated feedback controller with the closed-loop H2 norm.

In the proposed algorithm the weighting factor ρid for the output yp is increased (z1 =
ρidyp) as the iterative number id gets larger. Since the controller Kid(z) is designed so that
the closed-loop H2 norm is less than μ > 0, the controller Kid(z) tends to be more aggressive
according to the increase of the iterative number id and the closed-loop response of the yp

is expected to become more desirable until the constraint on the control effort u(k) (2.8) is
violated. In this sense the present iterative method is similar to Windsurfer Approach [7, 8]
that aims to achieve the wider closed-loop bandwidth with a gradual change of the reference
model in the IMC control framework.

5. Simulation Example

Let us consider an active vibration control of a cantilevered beamwith the length Lb depicted
in Figure 2. At x = xs = 0.3Lb a sensor that measures y(k) = w(xs, k) + v(k) where w(xs, k)
and v(k) are the deflection of the beam at x = xs and the measurement noise, respectively. At
the free end (x = Lb) of the beam an actuator that produces the control force u(k) is installed.
The control and disturbance forces are applied as the form of u(k) = K(z)y(k) + d(k) where
K(z) is the transfer function of the feedback controller and d(k) is the input disturbance.

The true plant P(z) in (2.1) is defined as follows. Firstly a 30th order finite dimensional
continuous time system is analytically derived by approximating the beam system by taking
the lower fifteen modes of vibration with a small modal damping for each mode. Secondly
the discrete time plant P(z) is obtained by discretizing the 30th order continuous time system
with zero-order hold in sampling interval Ts = 0.05 [s]. The plant P(z) is stable and non-
minimum phase because of noncollocation of the sensor and the actuator. In fact the plant
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P(z) has three non-minimum phase zeros at z = 10.163, 1.898, and 1.543. It is well known
such non-minimum phase zeros of the plant generally constrain the achievable performance
of the feedback control system. Moreover the Windsurfer Approach based on IMC method
[7] does not work in the case that the model has non-minimum phase zeros within the control
bandwidth. In the present simulation study the non-collocation of the sensor and the actuator
is assumed to show that the proposed windsurfer-like algorithm works for the plant with
non-minimum phase zeros. We assume that we do not have any structural information of
the true plant P(z) including the order and the location of poles and zeros in the simulation
example. Only the I/O signals of P(z) subject to the disturbance are available throughout the
application of the proposed LMI-based algorithm.

As the model of the true plant P(z), the ARXmodel PARX(z) in (2.2) is assumed. In the
performance index in (2.7) the disturbance to obtain Jy is the impulse function andNf = 104.
The allowed maximum absolute value of the control effort in (2.8) is u = 0.1. The disturbance
signal for the system identification is a zero-mean band limited white noise with 12 variance
and the sensor measurement is contaminated by a zero-mean band-limited white noise s(k)
with 0.012 variance.

In the present example the feedback controller K(z) is obtained so that the closed-
loop H2 norm is less than μ = 1. The model of the sensitivity function Sid

r (z) in (4.2) in
the two-stage approach is defined as 50th order FIR filter in each iteration. The order of the
the ARX model n is set to n = 2, 4, 6, . . . , 20 in the present simulation example. Note that
we cannot avoid a bias error in the simulation example because the order of all the models
considered in the example is lower than that of the true plant. Such undermodeling situation
is assumed because the author would like to show that the proposed LMI-based method
effectivelyworks even in the undermodeling case that often appears in general control system
design problems. Examples that we must accept the undermodeling condition are given as
follows.

(i) In general the order of true plant cannot be determined exactly because all existing
control objects possibly have nonlinearities to some extent. When we obtain a
linear model of the true plant to adopt a linear model-based control law such
nonlinearities are ignored or linearized by assuming the order of the linear model
(not the true plant).

(ii) Even if we could determine the exact order of the true plant it is often the case that
the full order model-based controller cannot be used because the order of the true
plant is too high to implement the full-order controller.

The proposed LMI-based iterative algorithm for the system identification and
controller design is carried out. The achieved value of the performance index Jy in (2.4)with
the LMI-based design algorithm for each order of the model n is summarized in Table 1.

From the result in Table 1 the minimum value of the performance index Jy is achieved
in n = 8. In other words, the best control performance in the sense of the closed-loop system
with the 30th order true plant and the model-based controller is achieved when we take the
8th order ARX model. In n = 8 the algorithm is terminated in id = 4 because the further
performance improvement can no longer be achieved in the sense of Jy in (2.7). Bode plots of
the obtained models Pid

ARX(z) for id = 1 (open-loop identification), . . ., 4 with that of the true
plant and those of corresponding controllersKid(z), id = 1, . . . , 4 are shown in Figures 3 and 4.
We can see that the gain of the feedback controller is getting larger along with the progress
of the algorithm. Closed-loop impulse responses are shown in Figure 5. The closed-loop
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Figure 3: Bode plots of the true plant P(z) and its models Pid
ARX(z)’s (n = 8).
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Figure 4: Bode plots of the the feedback controllers Kid (z)’s (n = 8).
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Table 1: The achieved value of the performance index Jy for each order of the ARXmodel. The best control
performance is achieved in n = 8.

n Achieved Jy n Achieved Jy

2 1010.7 12 121.04
4 180.16 14 152.88
6 102.30 16 121.79
8 53.071 18 950.09
10 122.79 20 564.68
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Figure 5: Impulse responses of the open and closed-loop systems (n = 8).

impulse response y(k) is well controlled and the maximum amplitude of the control effort
u(k) becomes larger with the progress of the algorithm.

The result of the present example indicates that the best fit in the sense of some open-
loop responses does not necessarily generate a good model for the controller design. Furthermore
the open-loop accuracy of the plant model does not necessarily promise the good closed-loop
performance, in other words, there exists the inseparably relationship between the modeling
and controller design processes [1, 2].

Furthermore, for a comparison purpose, we obtain a feedback controller minimizing
Jy with the constraint on the closed-loopH2 norm μ = 1 and that on the control effort u = 0.1
(in (2.8)) when the transfer function of the 30th order true plant is exactly known and is
available for the controller design. By applying theH2 control method in [21]with adjusting
the weighting factor ρ > 0 the achieved minimum value of Jy with μ < 1 and u = 0.1 becomes
Jy = 25.404. The achieved Jy is smaller than the best value (Jy = 53.071) in the proposed
algorithm. However, the author would like to emphasize that the above ideal situation is
possible because the present example is a simulation and such situation can never be realized
in general.

As another comparison let us assume that modal parameters up to lower 4th modes
of vibration correctly, that is, the 8th-order exact reduced-order model of the 30th order true
plant is available. Note that this ideal situation cannot be realized in general. For the 8th
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order plant the 8th order controller is obtained so that the performance index Jy is minimized
with μ < 1 and u = 0.04 by increasing the weighting factor ρ gradually with the method in
[21]. Notice that 0.04 is the almost same peak value as that of the case where the optimal
Jy = 53.071 is obtained in n = 8 with the proposed algorithm. Then the achieved minimum
value of Jy = 65.733 and it is larger than Jy = 53.071 that is obtained with the proposed design
algorithm in n = 8.

With the above discussion the obtained 8th order model in the present simulation
example is a reasonable solution to the formulated simultaneous modeling and control
design problem even if it is a locally optimal solution and the effectiveness of the proposed
integrated system identification and controller update methodology with the LMI-based
framework is shown.

6. Conclusion

An LMI-based methodology for iterative system identification and controller design has
been proposed. With the fact that the standard least-square-based system identification
results in the LMI optimization problem the plant model and the feedback controller are
simultaneously adjusted in a single system of LMI. The iterative design algorithm similar to
Windsurfer Approach is proposed.

The relation between the proposed methodology and the other existing methods for
iterative identification and control, including IFT [23] and VFRT [24], will be considered in
the future study.
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