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A B S T R A C T   

Background: Growth-associated protein 43 (GAP43), a synaptic protein involved in axonal growth 
and synaptic plasticity, is implicated in the pathophysiology of autism spectrum disorder (ASD) 
and schizophrenia. To examine the role of rare GAP43 variants in the genetic etiology of ASD and 
schizophrenia in a Japanese population, we performed resequencing and association analysis. 
Methods: First, we resequenced the GAP43 coding region in 295 ASD patients, 323 schizophrenia 
patients and 304 controls. Second, we genotyped rs561268447 in 273 ASD patients, 1,150 
schizophrenia patients and 1,022 controls. Third, we performed an association analysis of 
rs561268447 in 568 ASD patients, 1,473 schizophrenia patients and 10,127 controls. 
Results: We identified a rare putatively damaging missense variant (rs561268447) in an ASD 
patient via resequencing. However, we did not detect the variant in 2,445 individuals via gen-
otyping. The variant was not significantly associated with ASD or schizophrenia in the association 
analysis. 
Conclusion: This study does not provide evidence for the contribution of rare GAP43 variants to 
ASD or schizophrenia susceptibility in the Japanese population.   

1. Introduction 

Autism spectrum disorder (ASD) and schizophrenia are neurodevelopmental disorders (Lord et al., 2020; Smeland, Frei, Dale, & 
Andreassen, 2020; Sullivan & Geschwind, 2019). A recent systematic review and meta-analysis of epidemiological studies indicated a 
significant association between ASD and schizophrenia (Zheng, Zheng, & Zou, 2018). ASD and schizophrenia share genetic risk factors, 
including common variants (Cross-Disorder Group of the Psychiatric Genomics Consortium, 2019; Matoba et al., 2020), rare coding 
variants (Satterstrom et al., 2020; Singh et al., 2020) and rare copy number variations (Kushima et al., 2018). 

Growth-associated protein 43 (GAP43; also known as neuromodulin) is an activity-dependent presynaptic phosphoprotein that is 
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involved in developmental neurite outgrowth (Holahan, 2017; Igarashi et al., 2020). GAP43 also regulates memory formation 
involving synaptic plasticity and long-term potentiation (Holahan, 2017). 

Several lines of evidence have suggested that GAP43 is implicated in the pathophysiology of ASD and schizophrenia. In a post 
mortem study of adults with autism, increased GAP43 expression was accompanied with an excessive number of thin axons specifically 
in the superficial white matter below the anterior cingulate cortex (Zikopoulos & Barbas, 2010, 2013). Changes in GAP43 mRNA or 
protein levels have also been reported in the brains of schizophrenia patients (Blennow, Bogdanovic, Gottfries, & Davidsson, 1999; 
Chambers, Thomas, Saland, Neve, & Perrone-Bizzozero, 2005; Eastwood & Harrison, 1998; Fung, Sivagnanasundaram, & Weickert, 
2011; Hakak et al., 2001; Perrone-Bizzozero et al., 1996; Sower, Bird, & Perrone-bizzozero, 1995; Tian, Wang, Bezchlibnyk, & Young, 
2007; Weickert, 2001), although other studies failed to find such changes (Eastwood & Harrison, 2001; Fromer et al., 2016; Halim 
et al., 2003; Honer et al., 1999; Webster, Shannon Weickert, Herman, Hyde, & Kleinman, 2001). Gap43 heterozygous knockout mice 
show autistic-like behaviors, including resistance to change, stress-induced behavioral withdrawal and anxiety, and low social 
interaction (Zaccaria, Lagace, Eisch, & McCasland, 2010). Of nine patients with a 3q13.2-q13.31 deletion encompassing 28 genes 
including GAP43, three had ASD (Shuvarikov et al., 2013). Shen et al. (2012) resequenced the promoter region and exons of GAP43 in 
586 schizophrenia patients and 576 controls of Han Chinese descent. They identified four rare variants exclusively in patients. Taken 
together, these findings indicate GAP43 to be a candidate gene for ASD and schizophrenia. 

To examine the role of rare GAP43 variants in the genetic etiology of ASD and schizophrenia in a Japanese population, we per-
formed resequencing and association analysis. 

2. Methods 

2.1. Participants 

This study was approved by the Ethics Committee on Genetics of Niigata University, and the Ethics Committee of the Nagoya 
University Graduate School of Medicine and was conducted in accordance with the Declaration of Helsinki. Written informed consent 
was obtained from all participants and/or their families. 

All participants were unrelated and of Japanese descent. For resequencing GAP43 coding regions, we included 295 patients with 
ASD, 323 patients with schizophrenia and 304 controls (Table 1). For genotyping of rare non-synonymous variants identified via 
resequencing, we included 273 patients with ASD, 1,150 patients with schizophrenia and 1,022 controls. These individuals did not 
overlap those selected for resequencing. 

Each participant was subjected to psychiatric assessment, as previously described (Kushima et al., 2018). In brief, patients were 
diagnosed in accordance with the Diagnostic and Statistical Manual of Mental Disorders, Fifth Edition criteria for ASD or schizo-
phrenia. Controls had no personal or family history (first-degree relatives) of psychiatric disorders. 

We used the genomes or exomes of 8,801 Japanese individuals as additional controls, including 7,600 from the GEnome Medical 
alliance Japan Whole Genome Aggregation (GEM-J WGA) Panel (https://togovar.biosciencedbc.jp/?) and 1,201 from the Human 
Genetic Variation Database (HGVD) v2.3 (http://www.genome.med.kyoto-u.ac.jp/SnpDB/; Higasa et al., 2016). 

2.2. Resequencing the GAP43 coding region 

We resequenced the coding region of GAP43 isoform 1 and isoform 2 (RefSeq accession number, NM_001130064 and NM_002045, 
respectively) in 922 individuals using Sanger sequencing, as previously described (Nunokawa et al., 2010). Primer sequences used for 
amplification are listed in Supplementary Table 1. We prioritized rare non-synonymous variants with an alternative allele frequency <
0.001 in GEM-J WGA and HGVD v2.3. 

2.3. Genotyping 

We genotyped a rare missense variant (rs561268447), identified via resequencing, in 2,445 individuals using the TaqMan 5′- 
exonuclease assay (Thermo Fisher Scientific, Waltham, MA, USA; Supplementary Table 2), as previously described (Watanabe, 
Muratake, Kaneko, Nunokawa, & Someya, 2006). 

2.4. In silico analysis 

We predicted the functional impact of the variants identified via resequencing using Polymorphism Phenotyping v2 (PolyPhen-2; 

Table 1 
Characteristics of participants.  

Sample Autism spectrum disorder Schizophrenia Control  

n Men (%) Mean age ± SD n Men (%) Mean age ± SD n Men (%) Mean age ± SD 

Resequencing 295 230 (78.0%) 19.8 ± 9.4 323 181 (56.0%) 41.6 ± 13.0 304 111 (36.5%) 37.2 ± 11.1 
Genotyping 273 207 (75.8%) 19.2 ± 10.5 1150 619 (53.8%) 46.3 ± 15.7 1022 607 (59.4%) 40.2 ± 14.7  
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http://genetics.bwh.harvard.edu/pph2/; Adzhubei et al., 2010) and Combined Annotation Dependent Depletion (CADD; https:// 
cadd.gs.washington.edu/; Rentzsch, Witten, Cooper, Shendure, & Kircher, 2019). 

2.5. Statistical analysis 

We assessed the association of rs561268447 with ASD or schizophrenia using Fisher’s exact test. A post-hoc power calculation was 
performed using the Genetic Power Calculator (http://zzz.bwh.harvard.edu/gpc/cc2.html; Purcell, Cherny, & Sham, 2003). We 
estimated the sample size to adequately detect the association of rs561268447 with ASD or schizophrenia with a power of 0.80 and an 
α of 0.05, assuming a disease prevalence of 0.01, a risk allele frequency of 0.000099, and a genotypic relative risk for heterozygous risk 
allele carriers of 8.9 under the dominant model of inheritance. 

3. Results 

Resequencing the GAP43 coding region in 295 ASD patients, 323 schizophrenia patients, and 304 controls identified six variants 
(Table 2; Fig. 1). Of these, rs561268447 was a rare missense variant identified in an ASD patient. This variant was predicted to be 
probably damaging by PolyPhen-2. The CADD score for rs561268447 was 28.1, predicting the variant to be in the 1% most deleterious 
substitutions for the human genome compared with all possible substitutions. Another missense variant (rs369966812), identified in a 
schizophrenia patient, was also predicted to be damaging by in silico analysis. However, we did not prioritize this variant because the 
allele frequency of this variant was greater than 0.001 in GEM-J WGA and HGVD v2.3. 

We then genotyped rs561268447 in 273 ASD patients, 1,150 schizophrenia patients and 1,022 controls (Table 3). However, all 
2,445 individuals were homozygous for the reference allele of the variant. Next, we performed an association analysis of rs561268447 
with ASD and schizophrenia in 568 ASD patients, 1,473 schizophrenia patients and 10,127 controls. Although the rare allele frequency 
was higher in ASD patients than in controls (0.00088 and 0.000099, respectively), the association between rs561268447 and ASD was 
not significant (odds ratio = 8.9, 95% confidence interval = 0.8–98.5, and p = 0.151). 

4. Discussion 

In the present study, we identified a rare, putatively damaging missense variant (rs561268447) in an ASD patient via resequencing 
the GAP43 coding region. However, rs561268447 was not significantly associated with ASD or schizophrenia in 568 ASD patients, 
1,473 schizophrenia patients and 10,127 controls. Our results do not support the contribution of rare GAP43 variants to ASD or 
schizophrenia susceptibility. 

Our findings are in line with those from a large-scale meta-analysis of whole-exome sequencing (WES) data from ASD or schizo-
phrenia patients, which indicated no significant association between rare GAP43 variants and these neurodevelopmental disorders. 
The Autism Sequencing Consortium (https://asc.broadinstitute.org/) found two nonsense GAP43 variants (rs1266389660 and 
rs199629932) in family-based samples (6,430 patients, 2,179 unaffected siblings, and both parents) and case-control samples (5,556 
patients and 8,809 controls). The Schizophrenia Exome Sequencing Meta-analysis consortium (https://schema.broadinstitute.org/) 
observed a splice site GAP43 variant (rs778502148) in 24,248 schizophrenia patients, 97,322 controls and 3,402 parent-affected 
offspring trios (Singh et al., 2020). Resequencing the promoter region and exons of GAP43 in 586 patients and 576 controls, Shen 
et al. (2012) identified four rare variants, including a variant in the promoter region (rs118747541), a synonymous variant 

Table 2 
GAP43 variants identified via resequencing.  

Positiona Alleleb dbSNP ID Amino acidc Genotyped In silico analysis Mutant allele 
frequency     

ASD Schizophrenia Control PolyPhen-2 CADD GEM-J HGVD 

115382655 C/T rs28399377 His10His/– 260/33/ 
2 

291/28/4 283/21/ 
0 

– 0.984 0.046 0.0448 

115394897 A/G rs561268447 Asp59Gly/ 
Asp23Gly 

294/1/0 323/0/0 304/0/0 Probably 
damaging 

28.1 0.0001 – 

115394928 G/A rs747505118 Lys69Lsy/ Lys33Lsy 295/0/0 323/0/0 303/1/0 – 12.01 0.0005 0.0008 
115395157 G/A rs369966812 Glu146Lys/ 

Glu110Lys 
295/0/0 322/1/0 304/0/0 Probably 

Damaging 
27.7 0.002 0.0038 

115395221 C/T rs755305822 Ser167Leu/ 
Ser131Leu 

295/0/0 322/1/0 303/1/0 Benign 23.9 0.001 0.0012 

115395321 G/A rs6292 Glu200Glu/ 
Glu164Glu 

272/21/ 
2 

298/22/3 288/16/ 
0 

– 11.07 0.032 0.0316 

ASD, autism spectrum disorder; CADD, Combined Annotation Dependent Depletion; GEM-J, GEnome Medical alliance Japan; HGVD, the Human 
Genetic Variation Database; PolyPhen-2, Polymorphism Phenotyping v2. 

a Position according to GRCh37. 
b Reference/alternative allele. 
c Isoform 1/isoform 2. 
d Homozygous for reference allele/heterozygous/homozygous for mutant allele. 
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(rs76253894) and two missense variants (rs57478210 and rs76766788), exclusively in schizophrenia patients. However, statistical 
evidence did not indicate association between these variants and schizophrenia. Taken together, these findings do not provide evi-
dence for GAP43 being a risk gene with a large effect for ASD or schizophrenia. 

GAP43 is a presynaptic protein involved in axonal growth and degeneration (Holahan, 2017). GAP43 is also localized at post-
synaptic sites and plays an important role in synaptic plasticity (Han et al., 2013). Converging evidence from genetic, postmortem 
brain and animal model studies suggests that synaptic proteins are implicated in the pathophysiology of ASD and schizophrenia 
(Forrest, Parnell, & Penzes, 2018; Lima Caldeira, Peça, & Carvalho, 2019). Large-scale WES studies with gene ontology annotation of 
ASD and schizophrenia have demonstrated significant enrichment of synaptic genes. Chemical synaptic transmission (GO:0007268) 
was enriched among putative ASD-associated genes in 21,219 family-based and 14,365 case-control samples (Satterstrom et al., 2020). 
Enrichment in the postsynapse gene set (GO:0098794) was observed for ultra-rare protein-coding variants in 24,248 patients, 97,322 
controls and 3,402 parent-affected offspring trios (Singh et al., 2020). Of note, de novo putatively damaging missense variants, 
including a GAP43 variant (rs1368974710), showed enrichment in the post synaptic density gene set in 176 bipolar disorder trios 
(Goes et al., 2019). Further studies should be performed to assess whether synaptic genes, including GAP43, contribute to ASD and 
schizophrenia susceptibility. 

Our study has some limitations. First, our sample size (568 ASD patients, 1,473 schizophrenia patients and 10,127 controls) may 
not provide adequate statistical power to detect an association of rs561268447 with ASD or schizophrenia because the risk allele 
frequencies were extremely low (0.000099 in controls). Assuming a risk allele frequency of 0.000099 and a genotypic relative risk for 
heterozygous risk allele carriers of 8.9 under the dominant model of inheritance, approximately 6000 patients and 6000 controls are 
needed to adequately detect association with a power of 0.80. We were not able to use additional samples to assess an association of 
rs561268447 with ASD or schizophrenia. Therefore, we cannot exclude the possibility that our negative results may be caused by an 
insufficient sample size. However, our observations are consistent with those from the Autism Sequencing Consortium (https://asc. 
broadinstitute.org/) and the Schizophrenia Exome Sequencing Meta-analysis consortium (https://schema.broadinstitute.org/). 
Additionally, with the exception of rs561268447, we did not identify rare, putatively damaging variants by resequencing the GAP43 
coding region in 922 individuals. Taken together, our results indicate that coding variants in GAP43 do not exert a large effect on ASD 
or schizophrenia susceptibility in the Japanese population. Second, we resequenced the coding region of GAP43. Therefore, we may 
have overlooked non-coding variants. Recent whole-genome sequencing studies have demonstrated that rare non-coding variants play 
roles in the genetic etiology of ASD and schizophrenia (Halvorsen et al., 2020; Takata, 2019; Trost et al., 2020; Turner & Eichler, 2019; 
Zhou et al., 2019). To identify non-coding risk variants in specific genes for ASD and schizophrenia, further studies with larger sample 
sizes are needed. 

In conclusion, our present study does not provide evidence for the contribution of rare GAP43 variants to ASD or schizophrenia 
susceptibility in the Japanese population. 

Fig. 1. Genomic structure of GAP43 isoform 1 (A) and isoform 2 (B). Isoform 1 and isoform 2 have four and three exons (rectangles), respectively. 
Black and white rectangles represent coding and untranslated regions, respectively. Arrows indicate locations of coding variants identified via 
resequencing. 

Table 3 
Association analysis of rs561268447.  

Sample Allelea  

ASD Schizophrenia Control 

Resequencing 589/1 646/0 608/0 
Genotyping 546/0 2,300/0 2,044/0 
GEM-J WGA – – 15,198/2 
HGVD – – 2,402/0 
Combined 1,135/1 2,946/0 20,252/2 

ASD, autism spectrum disorder; GEM-J, GEnome Medical alliance Japan Whole Genome Aggregation; HGVD, the Human 
Genetic Variation Database. 

a Reference/alternative allele. 
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